diff options
Diffstat (limited to 'tqtinterface/qt4/src/3rdparty/sqlite/btree_rb.c')
-rw-r--r-- | tqtinterface/qt4/src/3rdparty/sqlite/btree_rb.c | 1488 |
1 files changed, 1488 insertions, 0 deletions
diff --git a/tqtinterface/qt4/src/3rdparty/sqlite/btree_rb.c b/tqtinterface/qt4/src/3rdparty/sqlite/btree_rb.c new file mode 100644 index 0000000..cc90075 --- /dev/null +++ b/tqtinterface/qt4/src/3rdparty/sqlite/btree_rb.c @@ -0,0 +1,1488 @@ +/* +** 2003 Feb 4 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you tqfind forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** $Id: btree_rb.c,v 1.24 2004/02/29 00:11:31 drh Exp $ +** +** This file implements an in-core database using Red-Black balanced +** binary trees. +** +** It was contributed to STQLite by anonymous on 2003-Feb-04 23:24:49 UTC. +*/ +#include "btree.h" +#include "sqliteInt.h" +#include <assert.h> + +/* +** Omit this whole file if the STQLITE_OMIT_INMEMORYDB macro is +** defined. This allows a lot of code to be omitted for installations +** that do not need it. +*/ +#ifndef STQLITE_OMIT_INMEMORYDB + + +typedef struct BtRbTree BtRbTree; +typedef struct BtRbNode BtRbNode; +typedef struct BtRollbackOp BtRollbackOp; +typedef struct Rbtree Rbtree; +typedef struct RbtCursor RbtCursor; + +/* Forward declarations */ +static BtOps sqliteRbtreeOps; +static BtCursorOps sqliteRbtreeCursorOps; + +/* + * During each transaction (or checkpoint), a linked-list of + * "rollback-operations" is accumulated. If the transaction is rolled back, + * then the list of operations must be executed (to restore the database to + * it's state before the transaction started). If the transaction is to be + * committed, just delete the list. + * + * Each operation is represented as follows, depending on the value of eOp: + * + * ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab. + * ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab. + * ROLLBACK_CREATE -> Need to create table iTab. + * ROLLBACK_DROP -> Need to drop table iTab. + */ +struct BtRollbackOp { + u8 eOp; + int iTab; + int nKey; + void *pKey; + int nData; + void *pData; + BtRollbackOp *pNext; +}; + +/* +** Legal values for BtRollbackOp.eOp: +*/ +#define ROLLBACK_INSERT 1 /* Insert a record */ +#define ROLLBACK_DELETE 2 /* Delete a record */ +#define ROLLBACK_CREATE 3 /* Create a table */ +#define ROLLBACK_DROP 4 /* Drop a table */ + +struct Rbtree { + BtOps *pOps; /* Function table */ + int aMetaData[STQLITE_N_BTREE_META]; + + int next_idx; /* next available table index */ + Hash tblHash; /* All created tables, by index */ + u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */ + u8 eTransState; /* State of this Rbtree wrt transactions */ + + BtRollbackOp *pTransRollback; + BtRollbackOp *pCheckRollback; + BtRollbackOp *pCheckRollbackTail; +}; + +/* +** Legal values for Rbtree.eTransState. +*/ +#define TRANS_NONE 0 /* No transaction is in progress */ +#define TRANS_INTRANSACTION 1 /* A transaction is in progress */ +#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */ +#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or + * transaction. */ + +struct RbtCursor { + BtCursorOps *pOps; /* Function table */ + Rbtree *pRbtree; + BtRbTree *pTree; + int iTree; /* Index of pTree in pRbtree */ + BtRbNode *pNode; + RbtCursor *pShared; /* List of all cursors on the same Rbtree */ + u8 eSkip; /* Determines if next step operation is a no-op */ + u8 wrFlag; /* True if this cursor is open for writing */ +}; + +/* +** Legal values for RbtCursor.eSkip. +*/ +#define SKIP_NONE 0 /* Always step the cursor */ +#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */ +#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */ +#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */ + +struct BtRbTree { + RbtCursor *pCursors; /* All cursors pointing to this tree */ + BtRbNode *pHead; /* Head of the tree, or NULL */ +}; + +struct BtRbNode { + int nKey; + void *pKey; + int nData; + void *pData; + u8 isBlack; /* true for a black node, 0 for a red node */ + BtRbNode *pParent; /* Nodes tqparent node, NULL for the tree head */ + BtRbNode *pLeft; /* Nodes left child, or NULL */ + BtRbNode *pRight; /* Nodes right child, or NULL */ + + int nBlackHeight; /* Only used during the red-black integrity check */ +}; + +/* Forward declarations */ +static int memRbtreeMoveto( + RbtCursor* pCur, + const void *pKey, + int nKey, + int *pRes +); +static int memRbtreeClearTable(Rbtree* tree, int n); +static int memRbtreeNext(RbtCursor* pCur, int *pRes); +static int memRbtreeLast(RbtCursor* pCur, int *pRes); +static int memRbtreePrevious(RbtCursor* pCur, int *pRes); + + +/* +** This routine checks all cursors that point to the same table +** as pCur points to. If any of those cursors were opened with +** wrFlag==0 then this routine returns STQLITE_LOCKED. If all +** cursors point to the same table were opened with wrFlag==1 +** then this routine returns STQLITE_OK. +** +** In addition to checking for read-locks (where a read-lock +** means a cursor opened with wrFlag==0) this routine also NULLs +** out the pNode field of all other cursors. +** This is necessary because an insert +** or delete might change erase the node out from under +** another cursor. +*/ +static int checkReadLocks(RbtCursor *pCur){ + RbtCursor *p; + assert( pCur->wrFlag ); + for(p=pCur->pTree->pCursors; p; p=p->pShared){ + if( p!=pCur ){ + if( p->wrFlag==0 ) return STQLITE_LOCKED; + p->pNode = 0; + } + } + return STQLITE_OK; +} + +/* + * The key-compare function for the red-black trees. Returns as follows: + * + * (key1 < key2) -1 + * (key1 == key2) 0 + * (key1 > key2) 1 + * + * Keys are compared using memcmp(). If one key is an exact prefix of the + * other, then the shorter key is less than the longer key. + */ +static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2) +{ + int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2); + if( mcmp == 0){ + if( nKey1 == nKey2 ) return 0; + return ((nKey1 < nKey2)?-1:1); + } + return ((mcmp>0)?1:-1); +} + +/* + * Perform the LEFT-rotate transformation on node X of tree pTree. This + * transform is part of the red-black balancing code. + * + * | | + * X Y + * / \ / \ + * a Y X c + * / \ / \ + * b c a b + * + * BEFORE AFTER + */ +static void leftRotate(BtRbTree *pTree, BtRbNode *pX) +{ + BtRbNode *pY; + BtRbNode *pb; + pY = pX->pRight; + pb = pY->pLeft; + + pY->pParent = pX->pParent; + if( pX->pParent ){ + if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; + else pX->pParent->pRight = pY; + } + pY->pLeft = pX; + pX->pParent = pY; + pX->pRight = pb; + if( pb ) pb->pParent = pX; + if( pTree->pHead == pX ) pTree->pHead = pY; +} + +/* + * Perform the RIGHT-rotate transformation on node X of tree pTree. This + * transform is part of the red-black balancing code. + * + * | | + * X Y + * / \ / \ + * Y c a X + * / \ / \ + * a b b c + * + * BEFORE AFTER + */ +static void rightRotate(BtRbTree *pTree, BtRbNode *pX) +{ + BtRbNode *pY; + BtRbNode *pb; + pY = pX->pLeft; + pb = pY->pRight; + + pY->pParent = pX->pParent; + if( pX->pParent ){ + if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; + else pX->pParent->pRight = pY; + } + pY->pRight = pX; + pX->pParent = pY; + pX->pLeft = pb; + if( pb ) pb->pParent = pX; + if( pTree->pHead == pX ) pTree->pHead = pY; +} + +/* + * A string-manipulation helper function for check_redblack_tree(). If (orig == + * NULL) a copy of val is returned. If (orig != NULL) then a copy of the * + * concatenation of orig and val is returned. The original orig is deleted + * (using sqliteFree()). + */ +static char *append_val(char * orig, char const * val){ + char *z; + if( !orig ){ + z = sqliteStrDup( val ); + } else{ + z = 0; + sqliteSetString(&z, orig, val, (char*)0); + sqliteFree( orig ); + } + return z; +} + +/* + * Append a string representation of the entire node to orig and return it. + * This is used to produce debugging information if check_redblack_tree() tqfinds + * a problem with a red-black binary tree. + */ +static char *append_node(char * orig, BtRbNode *pNode, int indent) +{ + char buf[128]; + int i; + + for( i=0; i<indent; i++ ){ + orig = append_val(orig, " "); + } + + sprintf(buf, "%p", pNode); + orig = append_val(orig, buf); + + if( pNode ){ + indent += 3; + if( pNode->isBlack ){ + orig = append_val(orig, " B \n"); + }else{ + orig = append_val(orig, " R \n"); + } + orig = append_node( orig, pNode->pLeft, indent ); + orig = append_node( orig, pNode->pRight, indent ); + }else{ + orig = append_val(orig, "\n"); + } + return orig; +} + +/* + * Print a representation of a node to stdout. This function is only included + * so you can call it from within a debugger if things get really bad. It + * is not called from anyplace in the code. + */ +static void print_node(BtRbNode *pNode) +{ + char * str = append_node(0, pNode, 0); + printf(str); + + /* Suppress a warning message about print_node() being unused */ + (void)print_node; +} + +/* + * Check the following properties of the red-black tree: + * (1) - If a node is red, both of it's tqchildren are black + * (2) - Each path from a given node to a leaf (NULL) node passes thru the + * same number of black nodes + * + * If there is a problem, append a description (using append_val() ) to *msg. + */ +static void check_redblack_tree(BtRbTree * tree, char ** msg) +{ + BtRbNode *pNode; + + /* 0 -> came from tqparent + * 1 -> came from left + * 2 -> came from right */ + int prev_step = 0; + + pNode = tree->pHead; + while( pNode ){ + switch( prev_step ){ + case 0: + if( pNode->pLeft ){ + pNode = pNode->pLeft; + }else{ + prev_step = 1; + } + break; + case 1: + if( pNode->pRight ){ + pNode = pNode->pRight; + prev_step = 0; + }else{ + prev_step = 2; + } + break; + case 2: + /* Check red-black property (1) */ + if( !pNode->isBlack && + ( (pNode->pLeft && !pNode->pLeft->isBlack) || + (pNode->pRight && !pNode->pRight->isBlack) ) + ){ + char buf[128]; + sprintf(buf, "Red node with red child at %p\n", pNode); + *msg = append_val(*msg, buf); + *msg = append_node(*msg, tree->pHead, 0); + *msg = append_val(*msg, "\n"); + } + + /* Check red-black property (2) */ + { + int leftHeight = 0; + int rightHeight = 0; + if( pNode->pLeft ){ + leftHeight += pNode->pLeft->nBlackHeight; + leftHeight += (pNode->pLeft->isBlack?1:0); + } + if( pNode->pRight ){ + rightHeight += pNode->pRight->nBlackHeight; + rightHeight += (pNode->pRight->isBlack?1:0); + } + if( leftHeight != rightHeight ){ + char buf[128]; + sprintf(buf, "Different black-heights at %p\n", pNode); + *msg = append_val(*msg, buf); + *msg = append_node(*msg, tree->pHead, 0); + *msg = append_val(*msg, "\n"); + } + pNode->nBlackHeight = leftHeight; + } + + if( pNode->pParent ){ + if( pNode == pNode->pParent->pLeft ) prev_step = 1; + else prev_step = 2; + } + pNode = pNode->pParent; + break; + default: assert(0); + } + } +} + +/* + * Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()). + * It is possible that pX is a red node with a red tqparent, which is a violation + * of the red-black tree properties. This function performs rotations and + * color changes to rebalance the tree + */ +static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX) +{ + /* In the first iteration of this loop, pX points to the red node just + * inserted in the tree. If the tqparent of pX exists (pX is not the root + * node) and is red, then the properties of the red-black tree are + * violated. + * + * At the start of any subsequent iterations, pX points to a red node + * with a red tqparent. In all other respects the tree is a legal red-black + * binary tree. */ + while( pX != pTree->pHead && !pX->pParent->isBlack ){ + BtRbNode *pUncle; + BtRbNode *pGrandtqparent; + + /* Grandtqparent of pX must exist and must be black. */ + pGrandtqparent = pX->pParent->pParent; + assert( pGrandtqparent ); + assert( pGrandtqparent->isBlack ); + + /* Uncle of pX may or may not exist. */ + if( pX->pParent == pGrandtqparent->pLeft ) + pUncle = pGrandtqparent->pRight; + else + pUncle = pGrandtqparent->pLeft; + + /* If the uncle of pX exists and is red, we do the following: + * | | + * G(b) G(r) + * / \ / \ + * U(r) P(r) U(b) P(b) + * \ \ + * X(r) X(r) + * + * BEFORE AFTER + * pX is then set to G. If the tqparent of G is red, then the while loop + * will run again. */ + if( pUncle && !pUncle->isBlack ){ + pGrandtqparent->isBlack = 0; + pUncle->isBlack = 1; + pX->pParent->isBlack = 1; + pX = pGrandtqparent; + }else{ + + if( pX->pParent == pGrandtqparent->pLeft ){ + if( pX == pX->pParent->pRight ){ + /* If pX is a right-child, do the following transform, essentially + * to change pX into a left-child: + * | | + * G(b) G(b) + * / \ / \ + * P(r) U(b) X(r) U(b) + * \ / + * X(r) P(r) <-- new X + * + * BEFORE AFTER + */ + pX = pX->pParent; + leftRotate(pTree, pX); + } + + /* Do the following transform, which balances the tree :) + * | | + * G(b) P(b) + * / \ / \ + * P(r) U(b) X(r) G(r) + * / \ + * X(r) U(b) + * + * BEFORE AFTER + */ + assert( pGrandtqparent == pX->pParent->pParent ); + pGrandtqparent->isBlack = 0; + pX->pParent->isBlack = 1; + rightRotate( pTree, pGrandtqparent ); + + }else{ + /* This code is symetric to the illustrated case above. */ + if( pX == pX->pParent->pLeft ){ + pX = pX->pParent; + rightRotate(pTree, pX); + } + assert( pGrandtqparent == pX->pParent->pParent ); + pGrandtqparent->isBlack = 0; + pX->pParent->isBlack = 1; + leftRotate( pTree, pGrandtqparent ); + } + } + } + pTree->pHead->isBlack = 1; +} + +/* + * A child of pParent, which in turn had child pX, has just been removed from + * pTree (the figure below depicts the operation, Z is being removed). pParent + * or pX, or both may be NULL. + * | | + * P P + * / \ / \ + * Z X + * / \ + * X nil + * + * This function is only called if Z was black. In this case the red-black tree + * properties have been violated, and pX has an "extra black". This function + * performs rotations and color-changes to re-balance the tree. + */ +static +void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent) +{ + BtRbNode *pSib; + + /* TODO: Comment this code! */ + while( pX != pTree->pHead && (!pX || pX->isBlack) ){ + if( pX == pParent->pLeft ){ + pSib = pParent->pRight; + if( pSib && !(pSib->isBlack) ){ + pSib->isBlack = 1; + pParent->isBlack = 0; + leftRotate(pTree, pParent); + pSib = pParent->pRight; + } + if( !pSib ){ + pX = pParent; + }else if( + (!pSib->pLeft || pSib->pLeft->isBlack) && + (!pSib->pRight || pSib->pRight->isBlack) ) { + pSib->isBlack = 0; + pX = pParent; + }else{ + if( (!pSib->pRight || pSib->pRight->isBlack) ){ + if( pSib->pLeft ) pSib->pLeft->isBlack = 1; + pSib->isBlack = 0; + rightRotate( pTree, pSib ); + pSib = pParent->pRight; + } + pSib->isBlack = pParent->isBlack; + pParent->isBlack = 1; + if( pSib->pRight ) pSib->pRight->isBlack = 1; + leftRotate(pTree, pParent); + pX = pTree->pHead; + } + }else{ + pSib = pParent->pLeft; + if( pSib && !(pSib->isBlack) ){ + pSib->isBlack = 1; + pParent->isBlack = 0; + rightRotate(pTree, pParent); + pSib = pParent->pLeft; + } + if( !pSib ){ + pX = pParent; + }else if( + (!pSib->pLeft || pSib->pLeft->isBlack) && + (!pSib->pRight || pSib->pRight->isBlack) ){ + pSib->isBlack = 0; + pX = pParent; + }else{ + if( (!pSib->pLeft || pSib->pLeft->isBlack) ){ + if( pSib->pRight ) pSib->pRight->isBlack = 1; + pSib->isBlack = 0; + leftRotate( pTree, pSib ); + pSib = pParent->pLeft; + } + pSib->isBlack = pParent->isBlack; + pParent->isBlack = 1; + if( pSib->pLeft ) pSib->pLeft->isBlack = 1; + rightRotate(pTree, pParent); + pX = pTree->pHead; + } + } + pParent = pX->pParent; + } + if( pX ) pX->isBlack = 1; +} + +/* + * Create table n in tree pRbtree. Table n must not exist. + */ +static void btreeCreateTable(Rbtree* pRbtree, int n) +{ + BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree)); + sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl); +} + +/* + * Log a single "rollback-op" for the given Rbtree. See comments for struct + * BtRollbackOp. + */ +static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp) +{ + assert( pRbtree->eTransState == TRANS_INCHECKPOINT || + pRbtree->eTransState == TRANS_INTRANSACTION ); + if( pRbtree->eTransState == TRANS_INTRANSACTION ){ + pRollbackOp->pNext = pRbtree->pTransRollback; + pRbtree->pTransRollback = pRollbackOp; + } + if( pRbtree->eTransState == TRANS_INCHECKPOINT ){ + if( !pRbtree->pCheckRollback ){ + pRbtree->pCheckRollbackTail = pRollbackOp; + } + pRollbackOp->pNext = pRbtree->pCheckRollback; + pRbtree->pCheckRollback = pRollbackOp; + } +} + +int sqliteRbtreeOpen( + const char *zFilename, + int mode, + int nPg, + Btree **ppBtree +){ + Rbtree **ppRbtree = (Rbtree**)ppBtree; + *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree)); + if( sqlite_malloc_failed ) goto open_no_mem; + sqliteHashInit(&(*ppRbtree)->tblHash, STQLITE_HASH_INT, 0); + + /* Create a binary tree for the STQLITE_MASTER table at location 2 */ + btreeCreateTable(*ppRbtree, 2); + if( sqlite_malloc_failed ) goto open_no_mem; + (*ppRbtree)->next_idx = 3; + (*ppRbtree)->pOps = &sqliteRbtreeOps; + /* Set file type to 4; this is so that "attach ':memory:' as ...." does not + ** think that the database in uninitialised and refuse to attach + */ + (*ppRbtree)->aMetaData[2] = 4; + + return STQLITE_OK; + +open_no_mem: + *ppBtree = 0; + return STQLITE_NOMEM; +} + +/* + * Create a new table in the supplied Rbtree. Set *n to the new table number. + * Return STQLITE_OK if the operation is a success. + */ +static int memRbtreeCreateTable(Rbtree* tree, int* n) +{ + assert( tree->eTransState != TRANS_NONE ); + + *n = tree->next_idx++; + btreeCreateTable(tree, *n); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + + /* Set up the rollback structure (if we are not doing this as part of a + * rollback) */ + if( tree->eTransState != TRANS_ROLLBACK ){ + BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); + if( pRollbackOp==0 ) return STQLITE_NOMEM; + pRollbackOp->eOp = ROLLBACK_DROP; + pRollbackOp->iTab = *n; + btreeLogRollbackOp(tree, pRollbackOp); + } + + return STQLITE_OK; +} + +/* + * Delete table n from the supplied Rbtree. + */ +static int memRbtreeDropTable(Rbtree* tree, int n) +{ + BtRbTree *pTree; + assert( tree->eTransState != TRANS_NONE ); + + memRbtreeClearTable(tree, n); + pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0); + assert(pTree); + assert( pTree->pCursors==0 ); + sqliteFree(pTree); + + if( tree->eTransState != TRANS_ROLLBACK ){ + BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); + if( pRollbackOp==0 ) return STQLITE_NOMEM; + pRollbackOp->eOp = ROLLBACK_CREATE; + pRollbackOp->iTab = n; + btreeLogRollbackOp(tree, pRollbackOp); + } + + return STQLITE_OK; +} + +static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey, + int nIgnore, int *pRes) +{ + assert(pCur); + + if( !pCur->pNode ) { + *pRes = -1; + } else { + if( (pCur->pNode->nKey - nIgnore) < 0 ){ + *pRes = -1; + }else{ + *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, + pKey, nKey); + } + } + return STQLITE_OK; +} + +/* + * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag + * parameter indicates that the cursor is open for writing. + * + * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0. + */ +static int memRbtreeCursor( + Rbtree* tree, + int iTable, + int wrFlag, + RbtCursor **ppCur +){ + RbtCursor *pCur; + assert(tree); + pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor)); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable); + assert( pCur->pTree ); + pCur->pRbtree = tree; + pCur->iTree = iTable; + pCur->pOps = &sqliteRbtreeCursorOps; + pCur->wrFlag = wrFlag; + pCur->pShared = pCur->pTree->pCursors; + pCur->pTree->pCursors = pCur; + + assert( (*ppCur)->pTree ); + return STQLITE_OK; +} + +/* + * Insert a new record into the Rbtree. The key is given by (pKey,nKey) + * and the data is given by (pData,nData). The cursor is used only to + * define what database the record should be inserted into. The cursor + * is left pointing at the new record. + * + * If the key exists already in the tree, just tqreplace the data. + */ +static int memRbtreeInsert( + RbtCursor* pCur, + const void *pKey, + int nKey, + const void *pDataInput, + int nData +){ + void * pData; + int match; + + /* It is illegal to call sqliteRbtreeInsert() if we are + ** not in a transaction */ + assert( pCur->pRbtree->eTransState != TRANS_NONE ); + + /* Make sure some other cursor isn't trying to read this same table */ + if( checkReadLocks(pCur) ){ + return STQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + + /* Take a copy of the input data now, in case we need it for the + * tqreplace case */ + pData = sqliteMallocRaw(nData); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + memcpy(pData, pDataInput, nData); + + /* Move the cursor to a node near the key to be inserted. If the key already + * exists in the table, then (match == 0). In this case we can just tqreplace + * the data associated with the entry, we don't need to manipulate the tree. + * + * If there is no exact match, then the cursor points at what would be either + * the predecessor (match == -1) or successor (match == 1) of the + * searched-for key, were it to be inserted. The new node becomes a child of + * this node. + * + * The new node is initially red. + */ + memRbtreeMoveto( pCur, pKey, nKey, &match); + if( match ){ + BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode)); + if( pNode==0 ) return STQLITE_NOMEM; + pNode->nKey = nKey; + pNode->pKey = sqliteMallocRaw(nKey); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + memcpy(pNode->pKey, pKey, nKey); + pNode->nData = nData; + pNode->pData = pData; + if( pCur->pNode ){ + switch( match ){ + case -1: + assert( !pCur->pNode->pRight ); + pNode->pParent = pCur->pNode; + pCur->pNode->pRight = pNode; + break; + case 1: + assert( !pCur->pNode->pLeft ); + pNode->pParent = pCur->pNode; + pCur->pNode->pLeft = pNode; + break; + default: + assert(0); + } + }else{ + pCur->pTree->pHead = pNode; + } + + /* Point the cursor at the node just inserted, as per STQLite requirements */ + pCur->pNode = pNode; + + /* A new node has just been inserted, so run the balancing code */ + do_insert_balancing(pCur->pTree, pNode); + + /* Set up a rollback-op in case we have to roll this operation back */ + if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ + BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); + if( pOp==0 ) return STQLITE_NOMEM; + pOp->eOp = ROLLBACK_DELETE; + pOp->iTab = pCur->iTree; + pOp->nKey = pNode->nKey; + pOp->pKey = sqliteMallocRaw( pOp->nKey ); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + memcpy( pOp->pKey, pNode->pKey, pOp->nKey ); + btreeLogRollbackOp(pCur->pRbtree, pOp); + } + + }else{ + /* No need to insert a new node in the tree, as the key already exists. + * Just clobber the current nodes data. */ + + /* Set up a rollback-op in case we have to roll this operation back */ + if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ + BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); + if( pOp==0 ) return STQLITE_NOMEM; + pOp->iTab = pCur->iTree; + pOp->nKey = pCur->pNode->nKey; + pOp->pKey = sqliteMallocRaw( pOp->nKey ); + if( sqlite_malloc_failed ) return STQLITE_NOMEM; + memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey ); + pOp->nData = pCur->pNode->nData; + pOp->pData = pCur->pNode->pData; + pOp->eOp = ROLLBACK_INSERT; + btreeLogRollbackOp(pCur->pRbtree, pOp); + }else{ + sqliteFree( pCur->pNode->pData ); + } + + /* Actually clobber the nodes data */ + pCur->pNode->pData = pData; + pCur->pNode->nData = nData; + } + + return STQLITE_OK; +} + +/* Move the cursor so that it points to an entry near pKey. +** Return a success code. +** +** *pRes<0 The cursor is left pointing at an entry that +** is smaller than pKey or if the table is empty +** and the cursor is therefore left point to nothing. +** +** *pRes==0 The cursor is left pointing at an entry that +** exactly matches pKey. +** +** *pRes>0 The cursor is left pointing at an entry that +** is larger than pKey. +*/ +static int memRbtreeMoveto( + RbtCursor* pCur, + const void *pKey, + int nKey, + int *pRes +){ + BtRbNode *pTmp = 0; + + pCur->pNode = pCur->pTree->pHead; + *pRes = -1; + while( pCur->pNode && *pRes ) { + *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey); + pTmp = pCur->pNode; + switch( *pRes ){ + case 1: /* cursor > key */ + pCur->pNode = pCur->pNode->pLeft; + break; + case -1: /* cursor < key */ + pCur->pNode = pCur->pNode->pRight; + break; + } + } + + /* If (pCur->pNode == NULL), then we have failed to tqfind a match. Set + * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the + * last node traversed in the search. In either case the relation ship + * between pTmp and the searched for key is already stored in *pRes. pTmp is + * either the successor or predecessor of the key we tried to move to. */ + if( !pCur->pNode ) pCur->pNode = pTmp; + pCur->eSkip = SKIP_NONE; + + return STQLITE_OK; +} + + +/* +** Delete the entry that the cursor is pointing to. +** +** The cursor is left pointing at either the next or the previous +** entry. If the cursor is left pointing to the next entry, then +** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to +** sqliteRbtreeNext() to be a no-op. That way, you can always call +** sqliteRbtreeNext() after a delete and the cursor will be left +** pointing to the first entry after the deleted entry. Similarly, +** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to +** the entry prior to the deleted entry so that a subsequent call to +** sqliteRbtreePrevious() will always leave the cursor pointing at the +** entry immediately before the one that was deleted. +*/ +static int memRbtreeDelete(RbtCursor* pCur) +{ + BtRbNode *pZ; /* The one being deleted */ + BtRbNode *pChild; /* The child of the spliced out node */ + + /* It is illegal to call sqliteRbtreeDelete() if we are + ** not in a transaction */ + assert( pCur->pRbtree->eTransState != TRANS_NONE ); + + /* Make sure some other cursor isn't trying to read this same table */ + if( checkReadLocks(pCur) ){ + return STQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + + pZ = pCur->pNode; + if( !pZ ){ + return STQLITE_OK; + } + + /* If we are not currently doing a rollback, set up a rollback op for this + * deletion */ + if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ + BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); + if( pOp==0 ) return STQLITE_NOMEM; + pOp->iTab = pCur->iTree; + pOp->nKey = pZ->nKey; + pOp->pKey = pZ->pKey; + pOp->nData = pZ->nData; + pOp->pData = pZ->pData; + pOp->eOp = ROLLBACK_INSERT; + btreeLogRollbackOp(pCur->pRbtree, pOp); + } + + /* First do a standard binary-tree delete (node pZ is to be deleted). How + * to do this depends on how many tqchildren pZ has: + * + * If pZ has no tqchildren or one child, then splice out pZ. If pZ has two + * tqchildren, splice out the successor of pZ and tqreplace the key and data of + * pZ with the key and data of the spliced out successor. */ + if( pZ->pLeft && pZ->pRight ){ + BtRbNode *pTmp; + int dummy; + pCur->eSkip = SKIP_NONE; + memRbtreeNext(pCur, &dummy); + assert( dummy == 0 ); + if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ + sqliteFree(pZ->pKey); + sqliteFree(pZ->pData); + } + pZ->pData = pCur->pNode->pData; + pZ->nData = pCur->pNode->nData; + pZ->pKey = pCur->pNode->pKey; + pZ->nKey = pCur->pNode->nKey; + pTmp = pZ; + pZ = pCur->pNode; + pCur->pNode = pTmp; + pCur->eSkip = SKIP_NEXT; + }else{ + int res; + pCur->eSkip = SKIP_NONE; + memRbtreeNext(pCur, &res); + pCur->eSkip = SKIP_NEXT; + if( res ){ + memRbtreeLast(pCur, &res); + memRbtreePrevious(pCur, &res); + pCur->eSkip = SKIP_PREV; + } + if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ + sqliteFree(pZ->pKey); + sqliteFree(pZ->pData); + } + } + + /* pZ now points at the node to be spliced out. This block does the + * splicing. */ + { + BtRbNode **ppParentSlot = 0; + assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */ + pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight); + if( pZ->pParent ){ + assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight ); + ppParentSlot = ((pZ == pZ->pParent->pLeft) + ?&pZ->pParent->pLeft:&pZ->pParent->pRight); + *ppParentSlot = pChild; + }else{ + pCur->pTree->pHead = pChild; + } + if( pChild ) pChild->pParent = pZ->pParent; + } + + /* pZ now points at the spliced out node. pChild is the only child of pZ, or + * NULL if pZ has no tqchildren. If pZ is black, and not the tree root, then we + * will have violated the "same number of black nodes in every path to a + * leaf" property of the red-black tree. The code in do_delete_balancing() + * repairs this. */ + if( pZ->isBlack ){ + do_delete_balancing(pCur->pTree, pChild, pZ->pParent); + } + + sqliteFree(pZ); + return STQLITE_OK; +} + +/* + * Empty table n of the Rbtree. + */ +static int memRbtreeClearTable(Rbtree* tree, int n) +{ + BtRbTree *pTree; + BtRbNode *pNode; + + pTree = sqliteHashFind(&tree->tblHash, 0, n); + assert(pTree); + + pNode = pTree->pHead; + while( pNode ){ + if( pNode->pLeft ){ + pNode = pNode->pLeft; + } + else if( pNode->pRight ){ + pNode = pNode->pRight; + } + else { + BtRbNode *pTmp = pNode->pParent; + if( tree->eTransState == TRANS_ROLLBACK ){ + sqliteFree( pNode->pKey ); + sqliteFree( pNode->pData ); + }else{ + BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp)); + if( pRollbackOp==0 ) return STQLITE_NOMEM; + pRollbackOp->eOp = ROLLBACK_INSERT; + pRollbackOp->iTab = n; + pRollbackOp->nKey = pNode->nKey; + pRollbackOp->pKey = pNode->pKey; + pRollbackOp->nData = pNode->nData; + pRollbackOp->pData = pNode->pData; + btreeLogRollbackOp(tree, pRollbackOp); + } + sqliteFree( pNode ); + if( pTmp ){ + if( pTmp->pLeft == pNode ) pTmp->pLeft = 0; + else if( pTmp->pRight == pNode ) pTmp->pRight = 0; + } + pNode = pTmp; + } + } + + pTree->pHead = 0; + return STQLITE_OK; +} + +static int memRbtreeFirst(RbtCursor* pCur, int *pRes) +{ + if( pCur->pTree->pHead ){ + pCur->pNode = pCur->pTree->pHead; + while( pCur->pNode->pLeft ){ + pCur->pNode = pCur->pNode->pLeft; + } + } + if( pCur->pNode ){ + *pRes = 0; + }else{ + *pRes = 1; + } + pCur->eSkip = SKIP_NONE; + return STQLITE_OK; +} + +static int memRbtreeLast(RbtCursor* pCur, int *pRes) +{ + if( pCur->pTree->pHead ){ + pCur->pNode = pCur->pTree->pHead; + while( pCur->pNode->pRight ){ + pCur->pNode = pCur->pNode->pRight; + } + } + if( pCur->pNode ){ + *pRes = 0; + }else{ + *pRes = 1; + } + pCur->eSkip = SKIP_NONE; + return STQLITE_OK; +} + +/* +** Advance the cursor to the next entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the last entry in the database before +** this routine was called, then set *pRes=1. +*/ +static int memRbtreeNext(RbtCursor* pCur, int *pRes) +{ + if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){ + if( pCur->pNode->pRight ){ + pCur->pNode = pCur->pNode->pRight; + while( pCur->pNode->pLeft ) + pCur->pNode = pCur->pNode->pLeft; + }else{ + BtRbNode * pX = pCur->pNode; + pCur->pNode = pX->pParent; + while( pCur->pNode && (pCur->pNode->pRight == pX) ){ + pX = pCur->pNode; + pCur->pNode = pX->pParent; + } + } + } + pCur->eSkip = SKIP_NONE; + + if( !pCur->pNode ){ + *pRes = 1; + }else{ + *pRes = 0; + } + + return STQLITE_OK; +} + +static int memRbtreePrevious(RbtCursor* pCur, int *pRes) +{ + if( pCur->pNode && pCur->eSkip != SKIP_PREV ){ + if( pCur->pNode->pLeft ){ + pCur->pNode = pCur->pNode->pLeft; + while( pCur->pNode->pRight ) + pCur->pNode = pCur->pNode->pRight; + }else{ + BtRbNode * pX = pCur->pNode; + pCur->pNode = pX->pParent; + while( pCur->pNode && (pCur->pNode->pLeft == pX) ){ + pX = pCur->pNode; + pCur->pNode = pX->pParent; + } + } + } + pCur->eSkip = SKIP_NONE; + + if( !pCur->pNode ){ + *pRes = 1; + }else{ + *pRes = 0; + } + + return STQLITE_OK; +} + +static int memRbtreeKeySize(RbtCursor* pCur, int *pSize) +{ + if( pCur->pNode ){ + *pSize = pCur->pNode->nKey; + }else{ + *pSize = 0; + } + return STQLITE_OK; +} + +static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf) +{ + if( !pCur->pNode ) return 0; + if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){ + memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt); + }else{ + memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset); + amt = pCur->pNode->nKey-offset; + } + return amt; +} + +static int memRbtreeDataSize(RbtCursor* pCur, int *pSize) +{ + if( pCur->pNode ){ + *pSize = pCur->pNode->nData; + }else{ + *pSize = 0; + } + return STQLITE_OK; +} + +static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf) +{ + if( !pCur->pNode ) return 0; + if( (amt + offset) <= pCur->pNode->nData ){ + memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt); + }else{ + memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset); + amt = pCur->pNode->nData-offset; + } + return amt; +} + +static int memRbtreeCloseCursor(RbtCursor* pCur) +{ + if( pCur->pTree->pCursors==pCur ){ + pCur->pTree->pCursors = pCur->pShared; + }else{ + RbtCursor *p = pCur->pTree->pCursors; + while( p && p->pShared!=pCur ){ p = p->pShared; } + assert( p!=0 ); + if( p ){ + p->pShared = pCur->pShared; + } + } + sqliteFree(pCur); + return STQLITE_OK; +} + +static int memRbtreeGetMeta(Rbtree* tree, int* aMeta) +{ + memcpy( aMeta, tree->aMetaData, sizeof(int) * STQLITE_N_BTREE_META ); + return STQLITE_OK; +} + +static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta) +{ + memcpy( tree->aMetaData, aMeta, sizeof(int) * STQLITE_N_BTREE_META ); + return STQLITE_OK; +} + +/* + * Check that each table in the Rbtree meets the requirements for a red-black + * binary tree. If an error is found, return an explanation of the problem in + * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored. + */ +static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot) +{ + char * msg = 0; + HashElem *p; + + for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){ + BtRbTree *pTree = sqliteHashData(p); + check_redblack_tree(pTree, &msg); + } + + return msg; +} + +static int memRbtreeSetCacheSize(Rbtree* tree, int sz) +{ + return STQLITE_OK; +} + +static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){ + return STQLITE_OK; +} + +static int memRbtreeBeginTrans(Rbtree* tree) +{ + if( tree->eTransState != TRANS_NONE ) + return STQLITE_ERROR; + + assert( tree->pTransRollback == 0 ); + tree->eTransState = TRANS_INTRANSACTION; + return STQLITE_OK; +} + +/* +** Delete a linked list of BtRollbackOp structures. +*/ +static void deleteRollbackList(BtRollbackOp *pOp){ + while( pOp ){ + BtRollbackOp *pTmp = pOp->pNext; + sqliteFree(pOp->pData); + sqliteFree(pOp->pKey); + sqliteFree(pOp); + pOp = pTmp; + } +} + +static int memRbtreeCommit(Rbtree* tree){ + /* Just delete pTransRollback and pCheckRollback */ + deleteRollbackList(tree->pCheckRollback); + deleteRollbackList(tree->pTransRollback); + tree->pTransRollback = 0; + tree->pCheckRollback = 0; + tree->pCheckRollbackTail = 0; + tree->eTransState = TRANS_NONE; + return STQLITE_OK; +} + +/* + * Close the supplied Rbtree. Delete everything associated with it. + */ +static int memRbtreeClose(Rbtree* tree) +{ + HashElem *p; + memRbtreeCommit(tree); + while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){ + tree->eTransState = TRANS_ROLLBACK; + memRbtreeDropTable(tree, sqliteHashKeysize(p)); + } + sqliteHashClear(&tree->tblHash); + sqliteFree(tree); + return STQLITE_OK; +} + +/* + * Execute and delete the supplied rollback-list on pRbtree. + */ +static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList) +{ + BtRollbackOp *pTmp; + RbtCursor cur; + int res; + + cur.pRbtree = pRbtree; + cur.wrFlag = 1; + while( pList ){ + switch( pList->eOp ){ + case ROLLBACK_INSERT: + cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); + assert(cur.pTree); + cur.iTree = pList->iTab; + cur.eSkip = SKIP_NONE; + memRbtreeInsert( &cur, pList->pKey, + pList->nKey, pList->pData, pList->nData ); + break; + case ROLLBACK_DELETE: + cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); + assert(cur.pTree); + cur.iTree = pList->iTab; + cur.eSkip = SKIP_NONE; + memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res); + assert(res == 0); + memRbtreeDelete( &cur ); + break; + case ROLLBACK_CREATE: + btreeCreateTable(pRbtree, pList->iTab); + break; + case ROLLBACK_DROP: + memRbtreeDropTable(pRbtree, pList->iTab); + break; + default: + assert(0); + } + sqliteFree(pList->pKey); + sqliteFree(pList->pData); + pTmp = pList->pNext; + sqliteFree(pList); + pList = pTmp; + } +} + +static int memRbtreeRollback(Rbtree* tree) +{ + tree->eTransState = TRANS_ROLLBACK; + execute_rollback_list(tree, tree->pCheckRollback); + execute_rollback_list(tree, tree->pTransRollback); + tree->pTransRollback = 0; + tree->pCheckRollback = 0; + tree->pCheckRollbackTail = 0; + tree->eTransState = TRANS_NONE; + return STQLITE_OK; +} + +static int memRbtreeBeginCkpt(Rbtree* tree) +{ + if( tree->eTransState != TRANS_INTRANSACTION ) + return STQLITE_ERROR; + + assert( tree->pCheckRollback == 0 ); + assert( tree->pCheckRollbackTail == 0 ); + tree->eTransState = TRANS_INCHECKPOINT; + return STQLITE_OK; +} + +static int memRbtreeCommitCkpt(Rbtree* tree) +{ + if( tree->eTransState == TRANS_INCHECKPOINT ){ + if( tree->pCheckRollback ){ + tree->pCheckRollbackTail->pNext = tree->pTransRollback; + tree->pTransRollback = tree->pCheckRollback; + tree->pCheckRollback = 0; + tree->pCheckRollbackTail = 0; + } + tree->eTransState = TRANS_INTRANSACTION; + } + return STQLITE_OK; +} + +static int memRbtreeRollbackCkpt(Rbtree* tree) +{ + if( tree->eTransState != TRANS_INCHECKPOINT ) return STQLITE_OK; + tree->eTransState = TRANS_ROLLBACK; + execute_rollback_list(tree, tree->pCheckRollback); + tree->pCheckRollback = 0; + tree->pCheckRollbackTail = 0; + tree->eTransState = TRANS_INTRANSACTION; + return STQLITE_OK; +} + +#ifdef STQLITE_TEST +static int memRbtreePageDump(Rbtree* tree, int pgno, int rec) +{ + assert(!"Cannot call sqliteRbtreePageDump"); + return STQLITE_OK; +} + +static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes) +{ + assert(!"Cannot call sqliteRbtreeCursorDump"); + return STQLITE_OK; +} +#endif + +static struct Pager *memRbtreePager(Rbtree* tree) +{ + return 0; +} + +/* +** Return the full pathname of the underlying database file. +*/ +static const char *memRbtreeGetFilename(Rbtree *pBt){ + return 0; /* A NULL return indicates there is no underlying file */ +} + +/* +** The copy file function is not implemented for the in-memory database +*/ +static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){ + return STQLITE_INTERNAL; /* Not implemented */ +} + +static BtOps sqliteRbtreeOps = { + (int(*)(Btree*)) memRbtreeClose, + (int(*)(Btree*,int)) memRbtreeSetCacheSize, + (int(*)(Btree*,int)) memRbtreeSetSafetyLevel, + (int(*)(Btree*)) memRbtreeBeginTrans, + (int(*)(Btree*)) memRbtreeCommit, + (int(*)(Btree*)) memRbtreeRollback, + (int(*)(Btree*)) memRbtreeBeginCkpt, + (int(*)(Btree*)) memRbtreeCommitCkpt, + (int(*)(Btree*)) memRbtreeRollbackCkpt, + (int(*)(Btree*,int*)) memRbtreeCreateTable, + (int(*)(Btree*,int*)) memRbtreeCreateTable, + (int(*)(Btree*,int)) memRbtreeDropTable, + (int(*)(Btree*,int)) memRbtreeClearTable, + (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor, + (int(*)(Btree*,int*)) memRbtreeGetMeta, + (int(*)(Btree*,int*)) memRbtreeUpdateMeta, + (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck, + (const char*(*)(Btree*)) memRbtreeGetFilename, + (int(*)(Btree*,Btree*)) memRbtreeCopyFile, + (struct Pager*(*)(Btree*)) memRbtreePager, +#ifdef STQLITE_TEST + (int(*)(Btree*,int,int)) memRbtreePageDump, +#endif +}; + +static BtCursorOps sqliteRbtreeCursorOps = { + (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto, + (int(*)(BtCursor*)) memRbtreeDelete, + (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert, + (int(*)(BtCursor*,int*)) memRbtreeFirst, + (int(*)(BtCursor*,int*)) memRbtreeLast, + (int(*)(BtCursor*,int*)) memRbtreeNext, + (int(*)(BtCursor*,int*)) memRbtreePrevious, + (int(*)(BtCursor*,int*)) memRbtreeKeySize, + (int(*)(BtCursor*,int,int,char*)) memRbtreeKey, + (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare, + (int(*)(BtCursor*,int*)) memRbtreeDataSize, + (int(*)(BtCursor*,int,int,char*)) memRbtreeData, + (int(*)(BtCursor*)) memRbtreeCloseCursor, +#ifdef STQLITE_TEST + (int(*)(BtCursor*,int*)) memRbtreeCursorDump, +#endif + +}; + +#endif /* STQLITE_OMIT_INMEMORYDB */ |