summaryrefslogtreecommitdiffstats
path: root/tqtinterface/qt4/src/kernel/tqwmatrix.cpp~
diff options
context:
space:
mode:
Diffstat (limited to 'tqtinterface/qt4/src/kernel/tqwmatrix.cpp~')
-rw-r--r--tqtinterface/qt4/src/kernel/tqwmatrix.cpp~1204
1 files changed, 0 insertions, 1204 deletions
diff --git a/tqtinterface/qt4/src/kernel/tqwmatrix.cpp~ b/tqtinterface/qt4/src/kernel/tqwmatrix.cpp~
deleted file mode 100644
index f95b660..0000000
--- a/tqtinterface/qt4/src/kernel/tqwmatrix.cpp~
+++ /dev/null
@@ -1,1204 +0,0 @@
-/****************************************************************************
-**
-** Implementation of TQWMatrix class
-**
-** Created : 941020
-**
-** Copyright (C) 2010 Timothy Pearson and (C) 1992-2008 Trolltech ASA.
-**
-** This file is part of the kernel module of the TQt GUI Toolkit.
-**
-** This file may be used under the terms of the GNU General
-** Public License versions 2.0 or 3.0 as published by the Free
-** Software Foundation and appearing in the files LICENSE.GPL2
-** and LICENSE.GPL3 included in the packaging of this file.
-** Alternatively you may (at your option) use any later version
-** of the GNU General Public License if such license has been
-** publicly approved by Trolltech ASA (or its successors, if any)
-** and the KDE Free TQt Foundation.
-**
-** Please review the following information to ensure GNU General
-** Public Licensing requirements will be met:
-** http://trolltech.com/products/qt/licenses/licensing/opensource/.
-** If you are unsure which license is appropriate for your use, please
-** review the following information:
-** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
-** or contact the sales department at sales@trolltech.com.
-**
-** This file may be used under the terms of the Q Public License as
-** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
-** included in the packaging of this file. Licensees holding valid TQt
-** Commercial licenses may use this file in accordance with the TQt
-** Commercial License Agreement provided with the Software.
-**
-** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
-** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
-** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
-** herein.
-**
-**********************************************************************/
-
-#include "tqwmatrix.h"
-#include "tqdatastream.h"
-#include "tqregion.h"
-#if defined(TQ_WS_X11)
-double qsincos( double, bool calcCos ); // defined in qpainter_x11.cpp
-#else
-#include <math.h>
-#endif
-
-#include <limits.h>
-
-#ifndef TQT_NO_WMATRIX
-
-#ifdef USE_QT4
-
-// some defines to inline some code
-#define MAPDOUBLE( x, y, nx, ny ) \
-{ \
- double fx = x; \
- double fy = y; \
- nx = m11()*fx + m21()*fy + dx(); \
- ny = m12()*fx + m22()*fy + dy(); \
-}
-
-#define MAPINT( x, y, nx, ny ) \
-{ \
- double fx = x; \
- double fy = y; \
- nx = tqRound(m11()*fx + m21()*fy + dx()); \
- ny = tqRound(m12()*fx + m22()*fy + dy()); \
-}
-
-struct TQWMDoublePoint {
- double x;
- double y;
-};
-
-bool qt_old_transformations = TRUE;
-
-// TQWMatrix TQWMatrix::invert(bool *invertible=0) {
-// return convertFromQMatrix(inverted(invertible));
-// }
-
-/*!
- Sets the transformation mode that TQWMatrix and painter
- transformations use to \a m.
-
- \sa TQWMatrix::TransformationMode
-*/
-void TQWMatrix::setTransformationMode( TQWMatrix::TransformationMode m )
-{
- printf("[WARNING] TQWMatrix::setTransformationMode has no effect!\n\r");
-
- if ( m == TQWMatrix::Points )
- qt_old_transformations = TRUE;
- else
- qt_old_transformations = FALSE;
-}
-
-
-/*!
- Returns the current transformation mode.
-
- \sa TQWMatrix::TransformationMode
-*/
-TQWMatrix::TransformationMode TQWMatrix::transformationMode()
-{
- return (qt_old_transformations ? TQWMatrix::Points : TQWMatrix::Areas );
-}
-
-/*!
- \internal
-*/
-TQPointArray TQWMatrix::operator *( const TQPointArray &a ) const
-{
- if( qt_old_transformations ) {
- TQPointArray result = a.copy();
- int x, y;
- for ( int i=0; i<(int)result.size(); i++ ) {
- result.point( i, &x, &y );
- MAPINT( x, y, x, y );
- result.setPoint( i, x, y );
- }
- return result;
- } else {
- int size = a.size();
- int i;
- TQMemArray<TQWMDoublePoint> p( size );
- TQPoint *da = TQT_TQPOINT_CONST(a.data());
- TQWMDoublePoint *dp = p.data();
- double xmin = INT_MAX;
- double ymin = xmin;
- double xmax = INT_MIN;
- double ymax = xmax;
- int xminp = 0;
- int yminp = 0;
- for( i = 0; i < size; i++ ) {
- dp[i].x = da[i].x();
- dp[i].y = da[i].y();
- if ( dp[i].x < xmin ) {
- xmin = dp[i].x;
- xminp = i;
- }
- if ( dp[i].y < ymin ) {
- ymin = dp[i].y;
- yminp = i;
- }
- xmax = TQMAX( xmax, dp[i].x );
- ymax = TQMAX( ymax, dp[i].y );
- }
- double w = TQMAX( xmax - xmin, 1 );
- double h = TQMAX( ymax - ymin, 1 );
- for( i = 0; i < size; i++ ) {
- dp[i].x += (dp[i].x - xmin)/w;
- dp[i].y += (dp[i].y - ymin)/h;
- MAPDOUBLE( dp[i].x, dp[i].y, dp[i].x, dp[i].y );
- }
-
- // now apply correction back for transformed values...
- xmin = INT_MAX;
- ymin = xmin;
- xmax = INT_MIN;
- ymax = xmax;
- for( i = 0; i < size; i++ ) {
- xmin = TQMIN( xmin, dp[i].x );
- ymin = TQMIN( ymin, dp[i].y );
- xmax = TQMAX( xmax, dp[i].x );
- ymax = TQMAX( ymax, dp[i].y );
- }
- w = TQMAX( xmax - xmin, 1 );
- h = TQMAX( ymax - ymin, 1 );
-
- TQPointArray result( size );
- TQPoint *dr = TQT_TQPOINT(result.data());
- for( i = 0; i < size; i++ ) {
- dr[i].setX( tqRound( dp[i].x - (dp[i].x - dp[xminp].x)/w ) );
- dr[i].setY( tqRound( dp[i].y - (dp[i].y - dp[yminp].y)/h ) );
- }
- return result;
- }
-}
-
-/*!
- Returns the result of multiplying this matrix by matrix \a m.
-*/
-
-TQWMatrix &TQWMatrix::operator*=( const TQWMatrix &m )
-{
- double tm11 = m11()*m.m11() + m12()*m.m21();
- double tm12 = m11()*m.m12() + m12()*m.m22();
- double tm21 = m21()*m.m11() + m22()*m.m21();
- double tm22 = m21()*m.m12() + m22()*m.m22();
-
- double tdx = dx()*m.m11() + dy()*m.m21() + m.dx();
- double tdy = dx()*m.m12() + dy()*m.m22() + m.dy();
-
- *this = TQWMatrix(tm11, tm12, tm21, tm22, tdx, tdy);
-
- return *this;
-}
-
-/*!
- \overload
- \relates TQWMatrix
- Returns the product of \a m1 * \a m2.
-
- Note that matrix multiplication is not commutative, i.e. a*b !=
- b*a.
-*/
-
-TQWMatrix operator*( const TQWMatrix &m1, const TQWMatrix &m2 )
-{
- TQWMatrix result = m1;
- result *= m2;
- return result;
-}
-
-#else // USE_QT4
-
-/*!
- \class TQWMatrix tqwmatrix.h
- \brief The TQWMatrix class specifies 2D transformations of a
- coordinate system.
-
- \ingroup graphics
- \ingroup images
-
- The standard coordinate system of a \link TQPaintDevice paint
- tqdevice\endlink has the origin located at the top-left position. X
- values increase to the right; Y values increase downward.
-
- This coordinate system is the default for the TQPainter, which
- renders graphics in a paint tqdevice. A user-defined coordinate
- system can be specified by setting a TQWMatrix for the painter.
-
- Example:
- \code
- MyWidget::paintEvent( TQPaintEvent * )
- {
- TQPainter p; // our painter
- TQWMatrix m; // our transformation matrix
- m.rotate( 22.5 ); // rotated coordinate system
- p.begin( this ); // start painting
- p.setWorldMatrix( m ); // use rotated coordinate system
- p.drawText( 30,20, "detator" ); // draw rotated text at 30,20
- p.end(); // painting done
- }
- \endcode
-
- A matrix specifies how to translate, scale, shear or rotate the
- graphics; the actual transformation is performed by the drawing
- routines in TQPainter and by TQPixmap::xForm().
-
- The TQWMatrix class tqcontains a 3x3 matrix of the form:
- <table align=center border=1 cellpadding=1 cellspacing=0>
- <tr align=center><td>m11</td><td>m12</td><td>&nbsp;0 </td></tr>
- <tr align=center><td>m21</td><td>m22</td><td>&nbsp;0 </td></tr>
- <tr align=center><td>dx</td> <td>dy</td> <td>&nbsp;1 </td></tr>
- </table>
-
- A matrix transforms a point in the plane to another point:
- \code
- x' = m11*x + m21*y + dx
- y' = m22*y + m12*x + dy
- \endcode
-
- The point \e (x, y) is the original point, and \e (x', y') is the
- transformed point. \e (x', y') can be transformed back to \e (x,
- y) by performing the same operation on the \link
- TQWMatrix::invert() inverted matrix\endlink.
-
- The elements \e dx and \e dy specify horizontal and vertical
- translation. The elements \e m11 and \e m22 specify horizontal and
- vertical scaling. The elements \e m12 and \e m21 specify
- horizontal and vertical shearing.
-
- The identity matrix has \e m11 and \e m22 set to 1; all others are
- set to 0. This matrix maps a point to itself.
-
- Translation is the simplest transformation. Setting \e dx and \e
- dy will move the coordinate system \e dx units along the X axis
- and \e dy units along the Y axis.
-
- Scaling can be done by setting \e m11 and \e m22. For example,
- setting \e m11 to 2 and \e m22 to 1.5 will double the height and
- increase the width by 50%.
-
- Shearing is controlled by \e m12 and \e m21. Setting these
- elements to values different from zero will twist the coordinate
- system.
-
- Rotation is achieved by carefully setting both the shearing
- factors and the scaling factors. The TQWMatrix also has a function
- that sets \link rotate() rotation \endlink directly.
-
- TQWMatrix lets you combine transformations like this:
- \code
- TQWMatrix m; // identity matrix
- m.translate(10, -20); // first translate (10,-20)
- m.rotate(25); // then rotate 25 degrees
- m.scale(1.2, 0.7); // finally scale it
- \endcode
-
- Here's the same example using basic matrix operations:
- \code
- double a = pi/180 * 25; // convert 25 to radians
- double sina = sin(a);
- double cosa = cos(a);
- TQWMatrix m1(1, 0, 0, 1, 10, -20); // translation matrix
- TQWMatrix m2( cosa, sina, // rotation matrix
- -sina, cosa, 0, 0 );
- TQWMatrix m3(1.2, 0, 0, 0.7, 0, 0); // scaling matrix
- TQWMatrix m;
- m = m3 * m2 * m1; // combine all transformations
- \endcode
-
- \l TQPainter has functions to translate, scale, shear and rotate the
- coordinate system without using a TQWMatrix. Although these
- functions are very convenient, it can be more efficient to build a
- TQWMatrix and call TQPainter::setWorldMatrix() if you want to perform
- more than a single transform operation.
-
- \sa TQPainter::setWorldMatrix(), TQPixmap::xForm()
-*/
-
-bool qt_old_transformations = TRUE;
-
-/*!
- \enum TQWMatrix::TransformationMode
-
- \keyword transformation matrix
-
- TQWMatrix offers two transformation modes. Calculations can either
- be done in terms of points (Points mode, the default), or in
- terms of area (Area mode).
-
- In Points mode the transformation is applied to the points that
- mark out the tqshape's bounding line. In Areas mode the
- transformation is applied in such a way that the area of the
- contained region is correctly transformed under the matrix.
-
- \value Points transformations are applied to the tqshape's points.
- \value Areas transformations are applied (e.g. to the width and
- height) so that the area is transformed.
-
- Example:
-
- Suppose we have a rectangle,
- \c{TQRect( 10, 20, 30, 40 )} and a transformation matrix
- \c{TQWMatrix( 2, 0, 0, 2, 0, 0 )} to double the rectangle's size.
-
- In Points mode, the matrix will transform the top-left (10,20) and
- the bottom-right (39,59) points producing a rectangle with its
- top-left point at (20,40) and its bottom-right point at (78,118),
- i.e. with a width of 59 and a height of 79.
-
- In Areas mode, the matrix will transform the top-left point in
- the same way as in Points mode to (20/40), and double the width
- and height, so the bottom-right will become (69,99), i.e. a width
- of 60 and a height of 80.
-
- Because integer arithmetic is used (for speed), rounding
- differences mean that the modes will produce slightly different
- results given the same tqshape and the same transformation,
- especially when scaling up. This also means that some operations
- are not commutative.
-
- Under Points mode, \c{matrix * ( region1 | region2 )} is not equal to
- \c{matrix * region1 | matrix * region2}. Under Area mode, \c{matrix *
- (pointarray[i])} is not neccesarily equal to
- \c{(matrix * pointarry)[i]}.
-
- \img xform.png Comparison of Points and Areas TransformationModes
-*/
-
-/*!
- Sets the transformation mode that TQWMatrix and painter
- transformations use to \a m.
-
- \sa TQWMatrix::TransformationMode
-*/
-void TQWMatrix::setTransformationMode( TQWMatrix::TransformationMode m )
-{
- if ( m == TQWMatrix::Points )
- qt_old_transformations = TRUE;
- else
- qt_old_transformations = FALSE;
-}
-
-
-/*!
- Returns the current transformation mode.
-
- \sa TQWMatrix::TransformationMode
-*/
-TQWMatrix::TransformationMode TQWMatrix::transformationMode()
-{
- return (qt_old_transformations ? TQWMatrix::Points : TQWMatrix::Areas );
-}
-
-
-// some defines to inline some code
-#define MAPDOUBLE( x, y, nx, ny ) \
-{ \
- double fx = x; \
- double fy = y; \
- nx = _m11*fx + _m21*fy + _dx; \
- ny = _m12*fx + _m22*fy + _dy; \
-}
-
-#define MAPINT( x, y, nx, ny ) \
-{ \
- double fx = x; \
- double fy = y; \
- nx = tqRound(_m11*fx + _m21*fy + _dx); \
- ny = tqRound(_m12*fx + _m22*fy + _dy); \
-}
-
-/*****************************************************************************
- TQWMatrix member functions
- *****************************************************************************/
-
-/*!
- Constructs an identity matrix. All elements are set to zero except
- \e m11 and \e m22 (scaling), which are set to 1.
-*/
-
-TQWMatrix::TQWMatrix()
-{
- _m11 = _m22 = 1.0;
- _m12 = _m21 = _dx = _dy = 0.0;
-}
-
-/*!
- Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a
- m22, \a dx and \a dy.
-*/
-
-TQWMatrix::TQWMatrix( double m11, double m12, double m21, double m22,
- double dx, double dy )
-{
- _m11 = m11; _m12 = m12;
- _m21 = m21; _m22 = m22;
- _dx = dx; _dy = dy;
-}
-
-
-/*!
- Sets the matrix elements to the specified values, \a m11, \a m12,
- \a m21, \a m22, \a dx and \a dy.
-*/
-
-void TQWMatrix::setMatrix( double m11, double m12, double m21, double m22,
- double dx, double dy )
-{
- _m11 = m11; _m12 = m12;
- _m21 = m21; _m22 = m22;
- _dx = dx; _dy = dy;
-}
-
-
-/*!
- \fn double TQWMatrix::m11() const
-
- Returns the X scaling factor.
-*/
-
-/*!
- \fn double TQWMatrix::m12() const
-
- Returns the vertical shearing factor.
-*/
-
-/*!
- \fn double TQWMatrix::m21() const
-
- Returns the horizontal shearing factor.
-*/
-
-/*!
- \fn double TQWMatrix::m22() const
-
- Returns the Y scaling factor.
-*/
-
-/*!
- \fn double TQWMatrix::dx() const
-
- Returns the horizontal translation.
-*/
-
-/*!
- \fn double TQWMatrix::dy() const
-
- Returns the vertical translation.
-*/
-
-
-/*!
- \overload
-
- Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the
- following formulae:
-
- \code
- *tx = m11*x + m21*y + dx
- *ty = m22*y + m12*x + dy
- \endcode
-*/
-
-void TQWMatrix::map( double x, double y, double *tx, double *ty ) const
-{
- MAPDOUBLE( x, y, *tx, *ty );
-}
-
-/*!
- Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the formulae:
-
- \code
- *tx = m11*x + m21*y + dx (rounded to the nearest integer)
- *ty = m22*y + m12*x + dy (rounded to the nearest integer)
- \endcode
-*/
-
-void TQWMatrix::map( int x, int y, int *tx, int *ty ) const
-{
- MAPINT( x, y, *tx, *ty );
-}
-
-/*!
- \fn TQPoint TQWMatrix::map( const TQPoint &p ) const
-
- \overload
-
- Transforms \a p to using the formulae:
-
- \code
- retx = m11*px + m21*py + dx (rounded to the nearest integer)
- rety = m22*py + m12*px + dy (rounded to the nearest integer)
- \endcode
-*/
-
-/*!
- \fn TQRect TQWMatrix::map( const TQRect &r ) const
-
- \obsolete
-
- Please use \l TQWMatrix::mapRect() instead.
-
- Note that this method does return the bounding rectangle of the \a r, when
- shearing or rotations are used.
-*/
-
-/*!
- \fn TQPointArray TQWMatrix::map( const TQPointArray &a ) const
-
- \overload
-
- Returns the point array \a a transformed by calling map for each point.
-*/
-
-
-/*!
- \fn TQRegion TQWMatrix::map( const TQRegion &r ) const
-
- \overload
-
- Transforms the region \a r.
-
- Calling this method can be rather expensive, if rotations or
- shearing are used.
-*/
-
-/*!
- \fn TQRegion TQWMatrix::mapToRegion( const TQRect &rect ) const
-
- Returns the transformed rectangle \a rect.
-
- A rectangle which has been rotated or sheared may result in a
- non-rectangular region being returned.
-
- Calling this method can be expensive, if rotations or shearing are
- used. If you just need to know the bounding rectangle of the
- returned region, use mapRect() which is a lot faster than this
- function.
-
- \sa TQWMatrix::mapRect()
-*/
-
-
-/*!
- Returns the transformed rectangle \a rect.
-
- The bounding rectangle is returned if rotation or shearing has
- been specified.
-
- If you need to know the exact region \a rect maps to use \l
- operator*().
-
- \sa operator*()
-*/
-
-TQRect TQWMatrix::mapRect( const TQRect &rect ) const
-{
- TQRect result;
- if( qt_old_transformations ) {
- if ( _m12 == 0.0F && _m21 == 0.0F ) {
- result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
- } else {
- TQPointArray a( rect );
- a = map( a );
- result = a.boundingRect();
- }
- } else {
- if ( _m12 == 0.0F && _m21 == 0.0F ) {
- int x = tqRound( _m11*rect.x() + _dx );
- int y = tqRound( _m22*rect.y() + _dy );
- int w = tqRound( _m11*rect.width() );
- int h = tqRound( _m22*rect.height() );
- if ( w < 0 ) {
- w = -w;
- x -= w-1;
- }
- if ( h < 0 ) {
- h = -h;
- y -= h-1;
- }
- result = TQRect( x, y, w, h );
- } else {
-
- // see mapToPolygon for explanations of the algorithm.
- double x0, y0;
- double x, y;
- MAPDOUBLE( rect.left(), rect.top(), x0, y0 );
- double xmin = x0;
- double ymin = y0;
- double xmax = x0;
- double ymax = y0;
- MAPDOUBLE( rect.right() + 1, rect.top(), x, y );
- xmin = TQMIN( xmin, x );
- ymin = TQMIN( ymin, y );
- xmax = TQMAX( xmax, x );
- ymax = TQMAX( ymax, y );
- MAPDOUBLE( rect.right() + 1, rect.bottom() + 1, x, y );
- xmin = TQMIN( xmin, x );
- ymin = TQMIN( ymin, y );
- xmax = TQMAX( xmax, x );
- ymax = TQMAX( ymax, y );
- MAPDOUBLE( rect.left(), rect.bottom() + 1, x, y );
- xmin = TQMIN( xmin, x );
- ymin = TQMIN( ymin, y );
- xmax = TQMAX( xmax, x );
- ymax = TQMAX( ymax, y );
- double w = xmax - xmin;
- double h = ymax - ymin;
- xmin -= ( xmin - x0 ) / w;
- ymin -= ( ymin - y0 ) / h;
- xmax -= ( xmax - x0 ) / w;
- ymax -= ( ymax - y0 ) / h;
- result = TQRect( tqRound(xmin), tqRound(ymin), tqRound(xmax)-tqRound(xmin)+1, tqRound(ymax)-tqRound(ymin)+1 );
- }
- }
- return result;
-}
-
-
-/*!
- \internal
-*/
-TQPoint TQWMatrix::operator *( const TQPoint &p ) const
-{
- double fx = p.x();
- double fy = p.y();
- return TQPoint( tqRound(_m11*fx + _m21*fy + _dx),
- tqRound(_m12*fx + _m22*fy + _dy) );
-}
-
-
-struct TQWMDoublePoint {
- double x;
- double y;
-};
-
-/*!
- \internal
-*/
-TQPointArray TQWMatrix::operator *( const TQPointArray &a ) const
-{
- if( qt_old_transformations ) {
- TQPointArray result = a.copy();
- int x, y;
- for ( int i=0; i<(int)result.size(); i++ ) {
- result.point( i, &x, &y );
- MAPINT( x, y, x, y );
- result.setPoint( i, x, y );
- }
- return result;
- } else {
- int size = a.size();
- int i;
- TQMemArray<TQWMDoublePoint> p( size );
- TQPoint *da = a.data();
- TQWMDoublePoint *dp = p.data();
- double xmin = INT_MAX;
- double ymin = xmin;
- double xmax = INT_MIN;
- double ymax = xmax;
- int xminp = 0;
- int yminp = 0;
- for( i = 0; i < size; i++ ) {
- dp[i].x = da[i].x();
- dp[i].y = da[i].y();
- if ( dp[i].x < xmin ) {
- xmin = dp[i].x;
- xminp = i;
- }
- if ( dp[i].y < ymin ) {
- ymin = dp[i].y;
- yminp = i;
- }
- xmax = TQMAX( xmax, dp[i].x );
- ymax = TQMAX( ymax, dp[i].y );
- }
- double w = TQMAX( xmax - xmin, 1 );
- double h = TQMAX( ymax - ymin, 1 );
- for( i = 0; i < size; i++ ) {
- dp[i].x += (dp[i].x - xmin)/w;
- dp[i].y += (dp[i].y - ymin)/h;
- MAPDOUBLE( dp[i].x, dp[i].y, dp[i].x, dp[i].y );
- }
-
- // now apply correction back for transformed values...
- xmin = INT_MAX;
- ymin = xmin;
- xmax = INT_MIN;
- ymax = xmax;
- for( i = 0; i < size; i++ ) {
- xmin = TQMIN( xmin, dp[i].x );
- ymin = TQMIN( ymin, dp[i].y );
- xmax = TQMAX( xmax, dp[i].x );
- ymax = TQMAX( ymax, dp[i].y );
- }
- w = TQMAX( xmax - xmin, 1 );
- h = TQMAX( ymax - ymin, 1 );
-
- TQPointArray result( size );
- TQPoint *dr = result.data();
- for( i = 0; i < size; i++ ) {
- dr[i].setX( tqRound( dp[i].x - (dp[i].x - dp[xminp].x)/w ) );
- dr[i].setY( tqRound( dp[i].y - (dp[i].y - dp[yminp].y)/h ) );
- }
- return result;
- }
-}
-
-/*!
-\internal
-*/
-TQRegion TQWMatrix::operator * (const TQRect &rect ) const
-{
- TQRegion result;
- if ( isIdentity() ) {
- result = rect;
- } else if ( _m12 == 0.0F && _m21 == 0.0F ) {
- if( qt_old_transformations ) {
- result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
- } else {
- int x = tqRound( _m11*rect.x() + _dx );
- int y = tqRound( _m22*rect.y() + _dy );
- int w = tqRound( _m11*rect.width() );
- int h = tqRound( _m22*rect.height() );
- if ( w < 0 ) {
- w = -w;
- x -= w - 1;
- }
- if ( h < 0 ) {
- h = -h;
- y -= h - 1;
- }
- result = TQRect( x, y, w, h );
- }
- } else {
- result = TQRegion( mapToPolygon( rect ) );
- }
- return result;
-
-}
-
-/*!
- Returns the transformed rectangle \a rect as a polygon.
-
- Polygons and rectangles behave slightly differently
- when transformed (due to integer rounding), so
- \c{matrix.map( TQPointArray( rect ) )} is not always the same as
- \c{matrix.mapToPolygon( rect )}.
-*/
-TQPointArray TQWMatrix::mapToPolygon( const TQRect &rect ) const
-{
- TQPointArray a( 4 );
- if ( qt_old_transformations ) {
- a = TQPointArray( rect );
- return operator *( a );
- }
- double x[4], y[4];
- if ( _m12 == 0.0F && _m21 == 0.0F ) {
- x[0] = tqRound( _m11*rect.x() + _dx );
- y[0] = tqRound( _m22*rect.y() + _dy );
- double w = tqRound( _m11*rect.width() );
- double h = tqRound( _m22*rect.height() );
- if ( w < 0 ) {
- w = -w;
- x[0] -= w - 1.;
- }
- if ( h < 0 ) {
- h = -h;
- y[0] -= h - 1.;
- }
- x[1] = x[0]+w-1;
- x[2] = x[1];
- x[3] = x[0];
- y[1] = y[0];
- y[2] = y[0]+h-1;
- y[3] = y[2];
- } else {
- MAPINT( rect.left(), rect.top(), x[0], y[0] );
- MAPINT( rect.right() + 1, rect.top(), x[1], y[1] );
- MAPINT( rect.right() + 1, rect.bottom() + 1, x[2], y[2] );
- MAPINT( rect.left(), rect.bottom() + 1, x[3], y[3] );
-
- /*
- Including rectangles as we have are evil.
-
- We now have a rectangle that is one pixel to wide and one to
- high. the tranformed position of the top-left corner is
- correct. All other points need some adjustments.
-
- Doing this mathematically exact would force us to calculate some square roots,
- something we don't want for the sake of speed.
-
- Instead we use an approximation, that converts to the correct
- answer when m12 -> 0 and m21 -> 0, and accept smaller
- errors in the general transformation case.
-
- The solution is to calculate the width and height of the
- bounding rect, and scale the points 1/2/3 by (xp-x0)/xw pixel direction
- to point 0.
- */
-
- double xmin = x[0];
- double ymin = y[0];
- double xmax = x[0];
- double ymax = y[0];
- int i;
- for( i = 1; i< 4; i++ ) {
- xmin = TQMIN( xmin, x[i] );
- ymin = TQMIN( ymin, y[i] );
- xmax = TQMAX( xmax, x[i] );
- ymax = TQMAX( ymax, y[i] );
- }
- double w = xmax - xmin;
- double h = ymax - ymin;
-
- for( i = 1; i < 4; i++ ) {
- x[i] -= (x[i] - x[0])/w;
- y[i] -= (y[i] - y[0])/h;
- }
- }
-#if 0
- int i;
- for( i = 0; i< 4; i++ )
- qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], tqRound(x[i]), tqRound(y[i]) );
- qDebug( "width=%f, height=%f", sqrt( (x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0]) ),
- sqrt( (x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]) ) );
-#endif
- // all coordinates are correctly, tranform to a pointarray
- // (rounding to the next integer)
- a.setPoints( 4, tqRound( x[0] ), tqRound( y[0] ),
- tqRound( x[1] ), tqRound( y[1] ),
- tqRound( x[2] ), tqRound( y[2] ),
- tqRound( x[3] ), tqRound( y[3] ) );
- return a;
-}
-
-/*!
-\internal
-*/
-TQRegion TQWMatrix::operator * (const TQRegion &r ) const
-{
- if ( isIdentity() )
- return r;
- TQMemArray<TQRect> rects = r.rects();
- TQRegion result;
- register TQRect *rect = rects.data();
- register int i = rects.size();
- if ( _m12 == 0.0F && _m21 == 0.0F && _m11 > 1.0F && _m22 > 1.0F ) {
- // simple case, no rotation
- while ( i ) {
- int x = tqRound( _m11*rect->x() + _dx );
- int y = tqRound( _m22*rect->y() + _dy );
- int w = tqRound( _m11*rect->width() );
- int h = tqRound( _m22*rect->height() );
- if ( w < 0 ) {
- w = -w;
- x -= w-1;
- }
- if ( h < 0 ) {
- h = -h;
- y -= h-1;
- }
- *rect = TQRect( x, y, w, h );
- rect++;
- i--;
- }
- result.setRects( rects.data(), rects.size() );
- } else {
- while ( i ) {
- result |= operator *( *rect );
- rect++;
- i--;
- }
- }
- return result;
-}
-
-/*!
- Resets the matrix to an identity matrix.
-
- All elements are set to zero, except \e m11 and \e m22 (scaling)
- which are set to 1.
-
- \sa isIdentity()
-*/
-
-void TQWMatrix::reset()
-{
- _m11 = _m22 = 1.0;
- _m12 = _m21 = _dx = _dy = 0.0;
-}
-
-/*!
- Returns TRUE if the matrix is the identity matrix; otherwise returns FALSE.
-
- \sa reset()
-*/
-bool TQWMatrix::isIdentity() const
-{
- return _m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0
- && _dx == 0.0 && _dy == 0.0;
-}
-
-/*!
- Moves the coordinate system \a dx along the X-axis and \a dy along
- the Y-axis.
-
- Returns a reference to the matrix.
-
- \sa scale(), shear(), rotate()
-*/
-
-TQWMatrix &TQWMatrix::translate( double dx, double dy )
-{
- _dx += dx*_m11 + dy*_m21;
- _dy += dy*_m22 + dx*_m12;
- return *this;
-}
-
-/*!
- Scales the coordinate system unit by \a sx horizontally and \a sy
- vertically.
-
- Returns a reference to the matrix.
-
- \sa translate(), shear(), rotate()
-*/
-
-TQWMatrix &TQWMatrix::scale( double sx, double sy )
-{
- _m11 *= sx;
- _m12 *= sx;
- _m21 *= sy;
- _m22 *= sy;
- return *this;
-}
-
-/*!
- Shears the coordinate system by \a sh horizontally and \a sv
- vertically.
-
- Returns a reference to the matrix.
-
- \sa translate(), scale(), rotate()
-*/
-
-TQWMatrix &TQWMatrix::shear( double sh, double sv )
-{
- double tm11 = sv*_m21;
- double tm12 = sv*_m22;
- double tm21 = sh*_m11;
- double tm22 = sh*_m12;
- _m11 += tm11;
- _m12 += tm12;
- _m21 += tm21;
- _m22 += tm22;
- return *this;
-}
-
-const double deg2rad = 0.017453292519943295769; // pi/180
-
-/*!
- Rotates the coordinate system \a a degrees counterclockwise.
-
- Returns a reference to the matrix.
-
- \sa translate(), scale(), shear()
-*/
-
-TQWMatrix &TQWMatrix::rotate( double a )
-{
- double b = deg2rad*a; // convert to radians
-#if defined(TQ_WS_X11)
- double sina = qsincos(b,FALSE); // fast and convenient
- double cosa = qsincos(b,TRUE);
-#else
- double sina = sin(b);
- double cosa = cos(b);
-#endif
- double tm11 = cosa*_m11 + sina*_m21;
- double tm12 = cosa*_m12 + sina*_m22;
- double tm21 = -sina*_m11 + cosa*_m21;
- double tm22 = -sina*_m12 + cosa*_m22;
- _m11 = tm11; _m12 = tm12;
- _m21 = tm21; _m22 = tm22;
- return *this;
-}
-
-/*!
- \fn bool TQWMatrix::isInvertible() const
-
- Returns TRUE if the matrix is invertible; otherwise returns FALSE.
-
- \sa invert()
-*/
-
-/*!
- \fn double TQWMatrix::det() const
-
- Returns the matrix's determinant.
-*/
-
-
-/*!
- Returns the inverted matrix.
-
- If the matrix is singular (not invertible), the identity matrix is
- returned.
-
- If \a invertible is not 0: the value of \a *invertible is set
- to TRUE if the matrix is invertible; otherwise \a *invertible is
- set to FALSE.
-
- \sa isInvertible()
-*/
-
-TQWMatrix TQWMatrix::invert( bool *invertible ) const
-{
- double determinant = det();
- if ( determinant == 0.0 ) {
- if ( invertible )
- *invertible = FALSE; // singular matrix
- TQWMatrix defaultMatrix;
- return defaultMatrix;
- }
- else { // invertible matrix
- if ( invertible )
- *invertible = TRUE;
- double dinv = 1.0/determinant;
- TQWMatrix imatrix( (_m22*dinv), (-_m12*dinv),
- (-_m21*dinv), ( _m11*dinv),
- ((_m21*_dy - _m22*_dx)*dinv),
- ((_m12*_dx - _m11*_dy)*dinv) );
- return imatrix;
- }
-}
-
-
-/*!
- Returns TRUE if this matrix is equal to \a m; otherwise returns FALSE.
-*/
-
-bool TQWMatrix::operator==( const TQWMatrix &m ) const
-{
- return _m11 == m._m11 &&
- _m12 == m._m12 &&
- _m21 == m._m21 &&
- _m22 == m._m22 &&
- _dx == m._dx &&
- _dy == m._dy;
-}
-
-/*!
- Returns TRUE if this matrix is not equal to \a m; otherwise returns FALSE.
-*/
-
-bool TQWMatrix::operator!=( const TQWMatrix &m ) const
-{
- return _m11 != m._m11 ||
- _m12 != m._m12 ||
- _m21 != m._m21 ||
- _m22 != m._m22 ||
- _dx != m._dx ||
- _dy != m._dy;
-}
-
-/*!
- Returns the result of multiplying this matrix by matrix \a m.
-*/
-
-TQWMatrix &TQWMatrix::operator*=( const TQWMatrix &m )
-{
- double tm11 = _m11*m._m11 + _m12*m._m21;
- double tm12 = _m11*m._m12 + _m12*m._m22;
- double tm21 = _m21*m._m11 + _m22*m._m21;
- double tm22 = _m21*m._m12 + _m22*m._m22;
-
- double tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
- double tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
-
- _m11 = tm11; _m12 = tm12;
- _m21 = tm21; _m22 = tm22;
- _dx = tdx; _dy = tdy;
- return *this;
-}
-
-/*!
- \overload
- \relates TQWMatrix
- Returns the product of \a m1 * \a m2.
-
- Note that matrix multiplication is not commutative, i.e. a*b !=
- b*a.
-*/
-
-TQWMatrix operator*( const TQWMatrix &m1, const TQWMatrix &m2 )
-{
- TQWMatrix result = m1;
- result *= m2;
- return result;
-}
-
-/*****************************************************************************
- TQWMatrix stream functions
- *****************************************************************************/
-#ifndef TQT_NO_DATASTREAM
-/*!
- \relates TQWMatrix
-
- Writes the matrix \a m to the stream \a s and returns a reference
- to the stream.
-
- \sa \link datastreamformat.html Format of the TQDataStream operators \endlink
-*/
-
-TQDataStream &operator<<( TQDataStream &s, const TQWMatrix &m )
-{
- if ( s.version() == 1 )
- s << (float)m.m11() << (float)m.m12() << (float)m.m21()
- << (float)m.m22() << (float)m.dx() << (float)m.dy();
- else
- s << m.m11() << m.m12() << m.m21() << m.m22()
- << m.dx() << m.dy();
- return s;
-}
-
-/*!
- \relates TQWMatrix
-
- Reads the matrix \a m from the stream \a s and returns a reference
- to the stream.
-
- \sa \link datastreamformat.html Format of the TQDataStream operators \endlink
-*/
-
-TQDataStream &operator>>( TQDataStream &s, TQWMatrix &m )
-{
- if ( s.version() == 1 ) {
- float m11, m12, m21, m22, dx, dy;
- s >> m11; s >> m12; s >> m21; s >> m22;
- s >> dx; s >> dy;
- m.setMatrix( m11, m12, m21, m22, dx, dy );
- }
- else {
- double m11, m12, m21, m22, dx, dy;
- s >> m11; s >> m12; s >> m21; s >> m22;
- s >> dx; s >> dy;
- m.setMatrix( m11, m12, m21, m22, dx, dy );
- }
- return s;
-}
-#endif // TQT_NO_DATASTREAM
-
-#endif // USE_QT4
-
-#endif // TQT_NO_WMATRIX
-