1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
/*
** 2003 October 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you tqfind forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file tqcontains the C functions that implement date and time
** functions for STQLite.
**
** There is only one exported symbol in this file - the function
** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.16 2004/02/29 01:08:18 drh Exp $
**
** NOTES:
**
** STQLite processes all times and dates as Julian Day numbers. The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system.
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implemention requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar. Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale. Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
** Jean Meeus
** Astronomical Algorithms, 2nd Edition, 1998
** ISBM 0-943396-61-1
** Willmann-Bell, Inc
** Richmond, Virginia (USA)
*/
#include "os.h"
#include "sqliteInt.h"
#include <ctype.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
#ifndef STQLITE_OMIT_DATETIME_FUNCS
/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime {
double rJD; /* The julian day number */
int Y, M, D; /* Year, month, and day */
int h, m; /* Hour and minutes */
int tz; /* Timezone offset in minutes */
double s; /* Seconds */
char validYMD; /* True if Y,M,D are valid */
char validHMS; /* True if h,m,s are valid */
char validJD; /* True if rJD is valid */
char validTZ; /* True if tz is valid */
};
/*
** Convert zDate into one or more integers. Additional arguments
** come in groups of 5 as follows:
**
** N number of digits in the integer
** min minimum allowed value of the integer
** max maximum allowed value of the integer
** nextC first character after the integer
** pVal where to write the integers value.
**
** Conversions continue until one with nextC==0 is encountered.
** The function returns the number of successful conversions.
*/
static int getDigits(const char *zDate, ...){
va_list ap;
int val;
int N;
int min;
int max;
int nextC;
int *pVal;
int cnt = 0;
va_start(ap, zDate);
do{
N = va_arg(ap, int);
min = va_arg(ap, int);
max = va_arg(ap, int);
nextC = va_arg(ap, int);
pVal = va_arg(ap, int*);
val = 0;
while( N-- ){
if( !isdigit(*zDate) ){
return cnt;
}
val = val*10 + *zDate - '0';
zDate++;
}
if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
return cnt;
}
*pVal = val;
zDate++;
cnt++;
}while( nextC );
return cnt;
}
/*
** Read text from z[] and convert into a floating point number. Return
** the number of digits converted.
*/
static int getValue(const char *z, double *pR){
const char *zEnd;
*pR = sqliteAtoF(z, &zEnd);
return zEnd - z;
}
/*
** Parse a timezone extension on the end of a date-time.
** The extension is of the form:
**
** (+/-)HH:MM
**
** If the parse is successful, write the number of minutes
** of change in *pnMin and return 0. If a parser error occurs,
** return 0.
**
** A missing specifier is not considered an error.
*/
static int parseTimezone(const char *zDate, DateTime *p){
int sgn = 0;
int nHr, nMn;
while( isspace(*zDate) ){ zDate++; }
p->tz = 0;
if( *zDate=='-' ){
sgn = -1;
}else if( *zDate=='+' ){
sgn = +1;
}else{
return *zDate!=0;
}
zDate++;
if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
return 1;
}
zDate += 5;
p->tz = sgn*(nMn + nHr*60);
while( isspace(*zDate) ){ zDate++; }
return *zDate!=0;
}
/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits. The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int parseHhMmSs(const char *zDate, DateTime *p){
int h, m, s;
double ms = 0.0;
if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
return 1;
}
zDate += 5;
if( *zDate==':' ){
zDate++;
if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
return 1;
}
zDate += 2;
if( *zDate=='.' && isdigit(zDate[1]) ){
double rScale = 1.0;
zDate++;
while( isdigit(*zDate) ){
ms = ms*10.0 + *zDate - '0';
rScale *= 10.0;
zDate++;
}
ms /= rScale;
}
}else{
s = 0;
}
p->validJD = 0;
p->validHMS = 1;
p->h = h;
p->m = m;
p->s = s + ms;
if( parseTimezone(zDate, p) ) return 1;
p->validTZ = p->tz!=0;
return 0;
}
/*
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
** that the YYYY-MM-DD is according to the Gregorian calendar.
**
** Reference: Meeus page 61
*/
static void computeJD(DateTime *p){
int Y, M, D, A, B, X1, X2;
if( p->validJD ) return;
if( p->validYMD ){
Y = p->Y;
M = p->M;
D = p->D;
}else{
Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
M = 1;
D = 1;
}
if( M<=2 ){
Y--;
M += 12;
}
A = Y/100;
B = 2 - A + (A/4);
X1 = 365.25*(Y+4716);
X2 = 30.6001*(M+1);
p->rJD = X1 + X2 + D + B - 1524.5;
p->validJD = 1;
p->validYMD = 0;
if( p->validHMS ){
p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
if( p->validTZ ){
p->rJD += p->tz*60/86400.0;
p->validHMS = 0;
p->validTZ = 0;
}
}
}
/*
** Parse dates of the form
**
** YYYY-MM-DD HH:MM:SS.FFF
** YYYY-MM-DD HH:MM:SS
** YYYY-MM-DD HH:MM
** YYYY-MM-DD
**
** Write the result into the DateTime structure and return 0
** on success and 1 if the input string is not a well-formed
** date.
*/
static int parseYyyyMmDd(const char *zDate, DateTime *p){
int Y, M, D, neg;
if( zDate[0]=='-' ){
zDate++;
neg = 1;
}else{
neg = 0;
}
if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
return 1;
}
zDate += 10;
while( isspace(*zDate) ){ zDate++; }
if( parseHhMmSs(zDate, p)==0 ){
/* We got the time */
}else if( *zDate==0 ){
p->validHMS = 0;
}else{
return 1;
}
p->validJD = 0;
p->validYMD = 1;
p->Y = neg ? -Y : Y;
p->M = M;
p->D = D;
if( p->validTZ ){
computeJD(p);
}
return 0;
}
/*
** Attempt to parse the given string into a Julian Day Number. Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
** DDDD.DD
** now
**
** In the first form, the +/-HH:MM is always optional. The fractional
** seconds extension (the ".FFF") is optional. The seconds portion
** (":SS.FFF") is option. The year and date can be omitted as long
** as there is a time string. The time string can be omitted as long
** as there is a year and date.
*/
static int parseDateOrTime(const char *zDate, DateTime *p){
memset(p, 0, sizeof(*p));
if( parseYyyyMmDd(zDate,p)==0 ){
return 0;
}else if( parseHhMmSs(zDate, p)==0 ){
return 0;
}else if( sqliteStrICmp(zDate,"now")==0){
double r;
if( sqliteOsCurrentTime(&r)==0 ){
p->rJD = r;
p->validJD = 1;
return 0;
}
return 1;
}else if( sqliteIsNumber(zDate) ){
p->rJD = sqliteAtoF(zDate, 0);
p->validJD = 1;
return 0;
}
return 1;
}
/*
** Compute the Year, Month, and Day from the julian day number.
*/
static void computeYMD(DateTime *p){
int Z, A, B, C, D, E, X1;
if( p->validYMD ) return;
if( !p->validJD ){
p->Y = 2000;
p->M = 1;
p->D = 1;
}else{
Z = p->rJD + 0.5;
A = (Z - 1867216.25)/36524.25;
A = Z + 1 + A - (A/4);
B = A + 1524;
C = (B - 122.1)/365.25;
D = 365.25*C;
E = (B-D)/30.6001;
X1 = 30.6001*E;
p->D = B - D - X1;
p->M = E<14 ? E-1 : E-13;
p->Y = p->M>2 ? C - 4716 : C - 4715;
}
p->validYMD = 1;
}
/*
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void computeHMS(DateTime *p){
int Z, s;
if( p->validHMS ) return;
Z = p->rJD + 0.5;
s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
p->s = 0.001*s;
s = p->s;
p->s -= s;
p->h = s/3600;
s -= p->h*3600;
p->m = s/60;
p->s += s - p->m*60;
p->validHMS = 1;
}
/*
** Compute both YMD and HMS
*/
static void computeYMD_HMS(DateTime *p){
computeYMD(p);
computeHMS(p);
}
/*
** Clear the YMD and HMS and the TZ
*/
static void clearYMD_HMS_TZ(DateTime *p){
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
/*
** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
** for the time value p where p is in UTC.
*/
static double localtimeOffset(DateTime *p){
DateTime x, y;
time_t t;
struct tm *pTm;
x = *p;
computeYMD_HMS(&x);
if( x.Y<1971 || x.Y>=2038 ){
x.Y = 2000;
x.M = 1;
x.D = 1;
x.h = 0;
x.m = 0;
x.s = 0.0;
} else {
int s = x.s + 0.5;
x.s = s;
}
x.tz = 0;
x.validJD = 0;
computeJD(&x);
t = (x.rJD-2440587.5)*86400.0 + 0.5;
sqliteOsEnterMutex();
pTm = localtime(&t);
y.Y = pTm->tm_year + 1900;
y.M = pTm->tm_mon + 1;
y.D = pTm->tm_mday;
y.h = pTm->tm_hour;
y.m = pTm->tm_min;
y.s = pTm->tm_sec;
sqliteOsLeaveMutex();
y.validYMD = 1;
y.validHMS = 1;
y.validJD = 0;
y.validTZ = 0;
computeJD(&y);
return y.rJD - x.rJD;
}
/*
** Process a modifier to a date-time stamp. The modifiers are
** as follows:
**
** NNN days
** NNN hours
** NNN minutes
** NNN.NNNN seconds
** NNN months
** NNN years
** start of month
** start of year
** start of week
** start of day
** weekday N
** unixepoch
** localtime
** utc
**
** Return 0 on success and 1 if there is any kind of error.
*/
static int parseModifier(const char *zMod, DateTime *p){
int rc = 1;
int n;
double r;
char *z, zBuf[30];
z = zBuf;
for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
z[n] = tolower(zMod[n]);
}
z[n] = 0;
switch( z[0] ){
case 'l': {
/* localtime
**
** Assuming the current time value is UTC (a.k.a. GMT), shift it to
** show local time.
*/
if( strcmp(z, "localtime")==0 ){
computeJD(p);
p->rJD += localtimeOffset(p);
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
case 'u': {
/*
** unixepoch
**
** Treat the current value of p->rJD as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if( strcmp(z, "unixepoch")==0 && p->validJD ){
p->rJD = p->rJD/86400.0 + 2440587.5;
clearYMD_HMS_TZ(p);
rc = 0;
}else if( strcmp(z, "utc")==0 ){
double c1;
computeJD(p);
c1 = localtimeOffset(p);
p->rJD -= c1;
clearYMD_HMS_TZ(p);
p->rJD += c1 - localtimeOffset(p);
rc = 0;
}
break;
}
case 'w': {
/*
** weekday N
**
** Move the date to the same time on the next occurrance of
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
** date is already on the appropriate weekday, this is a no-op.
*/
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
&& (n=r)==r && n>=0 && r<7 ){
int Z;
computeYMD_HMS(p);
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
Z = p->rJD + 1.5;
Z %= 7;
if( Z>n ) Z -= 7;
p->rJD += n - Z;
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
case 's': {
/*
** start of TTTTT
**
** Move the date backwards to the beginning of the current day,
** or month or year.
*/
if( strncmp(z, "start of ", 9)!=0 ) break;
z += 9;
computeYMD(p);
p->validHMS = 1;
p->h = p->m = 0;
p->s = 0.0;
p->validTZ = 0;
p->validJD = 0;
if( strcmp(z,"month")==0 ){
p->D = 1;
rc = 0;
}else if( strcmp(z,"year")==0 ){
computeYMD(p);
p->M = 1;
p->D = 1;
rc = 0;
}else if( strcmp(z,"day")==0 ){
rc = 0;
}
break;
}
case '+':
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
n = getValue(z, &r);
if( n<=0 ) break;
if( z[n]==':' ){
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
** specified number of hours, minutes, seconds, and fractional seconds
** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
** omitted.
*/
const char *z2 = z;
DateTime tx;
int day;
if( !isdigit(*z2) ) z2++;
memset(&tx, 0, sizeof(tx));
if( parseHhMmSs(z2, &tx) ) break;
computeJD(&tx);
tx.rJD -= 0.5;
day = (int)tx.rJD;
tx.rJD -= day;
if( z[0]=='-' ) tx.rJD = -tx.rJD;
computeJD(p);
clearYMD_HMS_TZ(p);
p->rJD += tx.rJD;
rc = 0;
break;
}
z += n;
while( isspace(z[0]) ) z++;
n = strlen(z);
if( n>10 || n<3 ) break;
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
computeJD(p);
rc = 0;
if( n==3 && strcmp(z,"day")==0 ){
p->rJD += r;
}else if( n==4 && strcmp(z,"hour")==0 ){
p->rJD += r/24.0;
}else if( n==6 && strcmp(z,"minute")==0 ){
p->rJD += r/(24.0*60.0);
}else if( n==6 && strcmp(z,"second")==0 ){
p->rJD += r/(24.0*60.0*60.0);
}else if( n==5 && strcmp(z,"month")==0 ){
int x, y;
computeYMD_HMS(p);
p->M += r;
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
p->Y += x;
p->M -= x*12;
p->validJD = 0;
computeJD(p);
y = r;
if( y!=r ){
p->rJD += (r - y)*30.0;
}
}else if( n==4 && strcmp(z,"year")==0 ){
computeYMD_HMS(p);
p->Y += r;
p->validJD = 0;
computeJD(p);
}else{
rc = 1;
}
clearYMD_HMS_TZ(p);
break;
}
default: {
break;
}
}
return rc;
}
/*
** Process time function arguments. argv[0] is a date-time stamp.
** argv[1] and following are modifiers. Parse them all and write
** the resulting time into the DateTime structure p. Return 0
** on success and 1 if there are any errors.
*/
static int isDate(int argc, const char **argv, DateTime *p){
int i;
if( argc==0 ) return 1;
if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
for(i=1; i<argc; i++){
if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
}
return 0;
}
/*
** The following routines implement the various date and time functions
** of STQLite.
*/
/*
** julianday( TIMESTRING, MOD, MOD, ...)
**
** Return the julian day number of the date specified in the arguments
*/
static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
computeJD(&x);
sqlite_set_result_double(context, x.rJD);
}
}
/*
** datetime( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD HH:MM:SS
*/
static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeYMD_HMS(&x);
sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
(int)(x.s));
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** time( TIMESTRING, MOD, MOD, ...)
**
** Return HH:MM:SS
*/
static void timeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeHMS(&x);
sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** date( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD
*/
static void dateFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
if( isDate(argc, argv, &x)==0 ){
char zBuf[100];
computeYMD(&x);
sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
sqlite_set_result_string(context, zBuf, -1);
}
}
/*
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT. Conversions as follows:
**
** %d day of month
** %f ** fractional seconds SS.SSS
** %H hour 00-24
** %j day of year 000-366
** %J ** Julian day number
** %m month 01-12
** %M minute 00-59
** %s seconds since 1970-01-01
** %S seconds 00-59
** %w day of week 0-6 sunday==0
** %W week of year 00-53
** %Y year 0000-9999
** %% %
*/
static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
DateTime x;
int n, i, j;
char *z;
const char *zFmt = argv[0];
char zBuf[100];
if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
for(i=0, n=1; zFmt[i]; i++, n++){
if( zFmt[i]=='%' ){
switch( zFmt[i+1] ){
case 'd':
case 'H':
case 'm':
case 'M':
case 'S':
case 'W':
n++;
/* fall thru */
case 'w':
case '%':
break;
case 'f':
n += 8;
break;
case 'j':
n += 3;
break;
case 'Y':
n += 8;
break;
case 's':
case 'J':
n += 50;
break;
default:
return; /* ERROR. return a NULL */
}
i++;
}
}
if( n<sizeof(zBuf) ){
z = zBuf;
}else{
z = sqliteMalloc( n );
if( z==0 ) return;
}
computeJD(&x);
computeYMD_HMS(&x);
for(i=j=0; zFmt[i]; i++){
if( zFmt[i]!='%' ){
z[j++] = zFmt[i];
}else{
i++;
switch( zFmt[i] ){
case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
case 'f': {
int s = x.s;
int ms = (x.s - s)*1000.0;
sprintf(&z[j],"%02d.%03d",s,ms);
j += strlen(&z[j]);
break;
}
case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
case 'W': /* Fall thru */
case 'j': {
int n;
DateTime y = x;
y.validJD = 0;
y.M = 1;
y.D = 1;
computeJD(&y);
n = x.rJD - y.rJD + 1;
if( zFmt[i]=='W' ){
sprintf(&z[j],"%02d",(n+6)/7);
j += 2;
}else{
sprintf(&z[j],"%03d",n);
j += 3;
}
break;
}
case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
case 's': {
sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
j += strlen(&z[j]);
break;
}
case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
case '%': z[j++] = '%'; break;
}
}
}
z[j] = 0;
sqlite_set_result_string(context, z, -1);
if( z!=zBuf ){
sqliteFree(z);
}
}
#endif /* !defined(STQLITE_OMIT_DATETIME_FUNCS) */
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
void sqliteRegisterDateTimeFunctions(sqlite *db){
static struct {
char *zName;
int nArg;
int dataType;
void (*xFunc)(sqlite_func*,int,const char**);
} aFuncs[] = {
#ifndef STQLITE_OMIT_DATETIME_FUNCS
{ "julianday", -1, STQLITE_NUMERIC, juliandayFunc },
{ "date", -1, STQLITE_TEXT, dateFunc },
{ "time", -1, STQLITE_TEXT, timeFunc },
{ "datetime", -1, STQLITE_TEXT, datetimeFunc },
{ "strftime", -1, STQLITE_TEXT, strftimeFunc },
#endif
};
int i;
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
sqlite_create_function(db, aFuncs[i].zName,
aFuncs[i].nArg, aFuncs[i].xFunc, 0);
if( aFuncs[i].xFunc ){
sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
}
}
}
|