1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in STQLite.
**
** $Id: select.c,v 1.160 2004/03/02 18:37:41 drh Exp $
*/
#include "sqliteInt.h"
/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqliteSelectNew(
ExprList *pEList, /* which columns to include in the result */
SrcList *pSrc, /* the FROM clause -- which tables to scan */
Expr *pWhere, /* the WHERE clause */
ExprList *pGroupBy, /* the GROUP BY clause */
Expr *pHaving, /* the HAVING clause */
ExprList *pOrderBy, /* the ORDER BY clause */
int isDistinct, /* true if the DISTINCT keyword is present */
int nLimit, /* LIMIT value. -1 means not used */
int nOffset /* OFFSET value. 0 means no offset */
){
Select *pNew;
pNew = sqliteMalloc( sizeof(*pNew) );
if( pNew==0 ){
sqliteExprListDelete(pEList);
sqliteSrcListDelete(pSrc);
sqliteExprDelete(pWhere);
sqliteExprListDelete(pGroupBy);
sqliteExprDelete(pHaving);
sqliteExprListDelete(pOrderBy);
}else{
if( pEList==0 ){
pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
}
pNew->pEList = pEList;
pNew->pSrc = pSrc;
pNew->pWhere = pWhere;
pNew->pGroupBy = pGroupBy;
pNew->pHaving = pHaving;
pNew->pOrderBy = pOrderBy;
pNew->isDistinct = isDistinct;
pNew->op = TK_SELECT;
pNew->nLimit = nLimit;
pNew->nOffset = nOffset;
pNew->iLimit = -1;
pNew->iOffset = -1;
}
return pNew;
}
/*
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
** type of join. Return an integer constant that expresses that type
** in terms of the following bit values:
**
** JT_INNER
** JT_OUTER
** JT_NATURAL
** JT_LEFT
** JT_RIGHT
**
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
**
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
int jointype = 0;
Token *apAll[3];
Token *p;
static struct {
const char *zKeyword;
int nChar;
int code;
} keywords[] = {
{ "natural", 7, JT_NATURAL },
{ "left", 4, JT_LEFT|JT_OUTER },
{ "right", 5, JT_RIGHT|JT_OUTER },
{ "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
{ "outer", 5, JT_OUTER },
{ "inner", 5, JT_INNER },
{ "cross", 5, JT_INNER },
};
int i, j;
apAll[0] = pA;
apAll[1] = pB;
apAll[2] = pC;
for(i=0; i<3 && apAll[i]; i++){
p = apAll[i];
for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
if( p->n==keywords[j].nChar
&& sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
jointype |= keywords[j].code;
break;
}
}
if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
jointype |= JT_ERROR;
break;
}
}
if(
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
(jointype & JT_ERROR)!=0
){
static Token dummy = { 0, 0 };
char *zSp1 = " ", *zSp2 = " ";
if( pB==0 ){ pB = &dummy; zSp1 = 0; }
if( pC==0 ){ pC = &dummy; zSp2 = 0; }
sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
pParse->nErr++;
jointype = JT_INNER;
}else if( jointype & JT_RIGHT ){
sqliteErrorMsg(pParse,
"RIGHT and FULL OUTER JOINs are not currently supported");
jointype = JT_INNER;
}
return jointype;
}
/*
** Return the index of a column in a table. Return -1 if the column
** is not contained in the table.
*/
static int columnIndex(Table *pTab, const char *zCol){
int i;
for(i=0; i<pTab->nCol; i++){
if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
}
return -1;
}
/*
** Add a term to the WHERE expression in *ppExpr that requires the
** zCol column to be equal in the two tables pTab1 and pTab2.
*/
static void addWhereTerm(
const char *zCol, /* Name of the column */
const Table *pTab1, /* First table */
const Table *pTab2, /* Second table */
Expr **ppExpr /* Add the equality term to this expression */
){
Token dummy;
Expr *pE1a, *pE1b, *pE1c;
Expr *pE2a, *pE2b, *pE2c;
Expr *pE;
dummy.z = zCol;
dummy.n = strlen(zCol);
dummy.dyn = 0;
pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
dummy.z = pTab1->zName;
dummy.n = strlen(dummy.z);
pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
dummy.z = pTab2->zName;
dummy.n = strlen(dummy.z);
pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
ExprSetProperty(pE, EP_FromJoin);
if( *ppExpr ){
*ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
}else{
*ppExpr = pE;
}
}
/*
** Set the EP_FromJoin property on all terms of the given expression.
**
** The EP_FromJoin property is used on terms of an expression to tell
** the LEFT OUTER JOIN processing logic that this term is part of the
** join restriction specified in the ON or USING clause and not a part
** of the more general WHERE clause. These terms are moved over to the
** WHERE clause during join processing but we need to remember that they
** originated in the ON or USING clause.
*/
static void setJoinExpr(Expr *p){
while( p ){
ExprSetProperty(p, EP_FromJoin);
setJoinExpr(p->pLeft);
p = p->pRight;
}
}
/*
** This routine processes the join information for a SELECT statement.
** ON and USING clauses are converted into extra terms of the WHERE clause.
** NATURAL joins also create extra WHERE clause terms.
**
** This routine returns the number of errors encountered.
*/
static int sqliteProcessJoin(Parse *pParse, Select *p){
SrcList *pSrc;
int i, j;
pSrc = p->pSrc;
for(i=0; i<pSrc->nSrc-1; i++){
struct SrcList_item *pTerm = &pSrc->a[i];
struct SrcList_item *pOther = &pSrc->a[i+1];
if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
/* When the NATURAL keyword is present, add WHERE clause terms for
** every column that the two tables have in common.
*/
if( pTerm->jointype & JT_NATURAL ){
Table *pTab;
if( pTerm->pOn || pTerm->pUsing ){
sqliteErrorMsg(pParse, "a NATURAL join may not have "
"an ON or USING clause", 0);
return 1;
}
pTab = pTerm->pTab;
for(j=0; j<pTab->nCol; j++){
if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
}
}
}
/* Disallow both ON and USING clauses in the same join
*/
if( pTerm->pOn && pTerm->pUsing ){
sqliteErrorMsg(pParse, "cannot have both ON and USING "
"clauses in the same join");
return 1;
}
/* Add the ON clause to the end of the WHERE clause, connected by
** and AND operator.
*/
if( pTerm->pOn ){
setJoinExpr(pTerm->pOn);
if( p->pWhere==0 ){
p->pWhere = pTerm->pOn;
}else{
p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
}
pTerm->pOn = 0;
}
/* Create extra terms on the WHERE clause for each column named
** in the USING clause. Example: If the two tables to be joined are
** A and B and the USING clause names X, Y, and Z, then add this
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
** Report an error if any column mentioned in the USING clause is
** not contained in both tables to be joined.
*/
if( pTerm->pUsing ){
IdList *pList;
int j;
assert( i<pSrc->nSrc-1 );
pList = pTerm->pUsing;
for(j=0; j<pList->nId; j++){
if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
sqliteErrorMsg(pParse, "cannot join using column %s - column "
"not present in both tables", pList->a[j].zName);
return 1;
}
addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
}
}
}
return 0;
}
/*
** Delete the given Select structure and all of its substructures.
*/
void sqliteSelectDelete(Select *p){
if( p==0 ) return;
sqliteExprListDelete(p->pEList);
sqliteSrcListDelete(p->pSrc);
sqliteExprDelete(p->pWhere);
sqliteExprListDelete(p->pGroupBy);
sqliteExprDelete(p->pHaving);
sqliteExprListDelete(p->pOrderBy);
sqliteSelectDelete(p->pPrior);
sqliteFree(p->zSelect);
sqliteFree(p);
}
/*
** Delete the aggregate information from the parse structure.
*/
static void sqliteAggregateInfoReset(Parse *pParse){
sqliteFree(pParse->aAgg);
pParse->aAgg = 0;
pParse->nAgg = 0;
pParse->useAgg = 0;
}
/*
** Insert code into "v" that will push the record on the top of the
** stack into the sorter.
*/
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
char *zSortOrder;
int i;
zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
if( zSortOrder==0 ) return;
for(i=0; i<pOrderBy->nExpr; i++){
int order = pOrderBy->a[i].sortOrder;
int type;
int c;
if( (order & STQLITE_SO_TYPEMASK)==STQLITE_SO_TEXT ){
type = STQLITE_SO_TEXT;
}else if( (order & STQLITE_SO_TYPEMASK)==STQLITE_SO_NUM ){
type = STQLITE_SO_NUM;
}else if( pParse->db->file_format>=4 ){
type = sqliteExprType(pOrderBy->a[i].pExpr);
}else{
type = STQLITE_SO_NUM;
}
if( (order & STQLITE_SO_DIRMASK)==STQLITE_SO_ASC ){
c = type==STQLITE_SO_TEXT ? 'A' : '+';
}else{
c = type==STQLITE_SO_TEXT ? 'D' : '-';
}
zSortOrder[i] = c;
sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
}
zSortOrder[pOrderBy->nExpr] = 0;
sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
}
/*
** This routine adds a P3 argument to the last VDBE opcode that was
** inserted. The P3 argument added is a string suitable for the
** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
** characters 't' or 'n' depending on whether or not the various
** fields of the key to be generated should be treated as numeric
** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
** documentation for additional information about the P3 string.
** See also the sqliteAddIdxKeyType() routine.
*/
void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
int nColumn = pEList->nExpr;
char *zType = sqliteMalloc( nColumn+1 );
int i;
if( zType==0 ) return;
for(i=0; i<nColumn; i++){
zType[i] = sqliteExprType(pEList->a[i].pExpr)==STQLITE_SO_NUM ? 'n' : 't';
}
zType[i] = 0;
sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
}
/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row. If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the
** datatypes for each column.
*/
static int selectInnerLoop(
Parse *pParse, /* The parser context */
Select *p, /* The complete select statement being coded */
ExprList *pEList, /* List of values being extracted */
int srcTab, /* Pull data from this table */
int nColumn, /* Number of columns in the source table */
ExprList *pOrderBy, /* If not NULL, sort results using this key */
int distinct, /* If >=0, make sure results are distinct */
int eDest, /* How to dispose of the results */
int iParm, /* An argument to the disposal method */
int iContinue, /* Jump here to continue with next row */
int iBreak /* Jump here to break out of the inner loop */
){
Vdbe *v = pParse->pVdbe;
int i;
if( v==0 ) return 0;
assert( pEList!=0 );
/* If there was a LIMIT clause on the SELECT statement, then do the check
** to see if this row should be output.
*/
if( pOrderBy==0 ){
if( p->iOffset>=0 ){
int addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+2);
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
}
if( p->iLimit>=0 ){
sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
}
}
/* Pull the requested columns.
*/
if( nColumn>0 ){
for(i=0; i<nColumn; i++){
sqliteVdbeAddOp(v, OP_Column, srcTab, i);
}
}else{
nColumn = pEList->nExpr;
for(i=0; i<pEList->nExpr; i++){
sqliteExprCode(pParse, pEList->a[i].pExpr);
}
}
/* If the DISTINCT keyword was present on the SELECT statement
** and this row has been seen before, then do not make this row
** part of the result.
*/
if( distinct>=0 && pEList && pEList->nExpr>0 ){
#if NULL_ALWAYS_DISTINCT
sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
#endif
sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
}
switch( eDest ){
/* In this mode, write each query result to the key of the temporary
** table iParm.
*/
case SRT_Union: {
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
break;
}
/* Store the result as data using a unique key.
*/
case SRT_Table:
case SRT_TempTable: {
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
}
break;
}
/* Construct a record from the query result, but instead of
** saving that record, use it as a key to delete elements from
** the temporary table iParm.
*/
case SRT_Except: {
int addr;
addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
break;
}
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
** then there should be a single item on the stack. Write this
** item into the set table with bogus data.
*/
case SRT_Set: {
int addr1 = sqliteVdbeCurrentAddr(v);
int addr2;
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
}
sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
break;
}
/* If this is a scalar select that is part of an expression, then
** store the results in the appropriate memory cell and break out
** of the scan loop.
*/
case SRT_Mem: {
assert( nColumn==1 );
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
}
break;
}
/* Send the data to the callback function.
*/
case SRT_Callback:
case SRT_Sorter: {
if( pOrderBy ){
sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
pushOntoSorter(pParse, v, pOrderBy);
}else{
assert( eDest==SRT_Callback );
sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
}
break;
}
/* Invoke a subroutine to handle the results. The subroutine itself
** is responsible for popping the results off of the stack.
*/
case SRT_Subroutine: {
if( pOrderBy ){
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
}
break;
}
/* Discard the results. This is used for SELECT statements inside
** the body of a TRIGGER. The purpose of such selects is to call
** user-defined functions that have side effects. We do not care
** about the actual results of the select.
*/
default: {
assert( eDest==SRT_Discard );
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
break;
}
}
return 0;
}
/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter. After the loop is terminated
** we need to run the sorter and output the results. The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
Select *p, /* The SELECT statement */
Vdbe *v, /* Generate code into this VDBE */
int nColumn, /* Number of columns of data */
int eDest, /* Write the sorted results here */
int iParm /* Optional parameter associated with eDest */
){
int end1 = sqliteVdbeMakeLabel(v);
int end2 = sqliteVdbeMakeLabel(v);
int addr;
if( eDest==SRT_Sorter ) return;
sqliteVdbeAddOp(v, OP_Sort, 0, 0);
addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
if( p->iOffset>=0 ){
sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr+4);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, addr);
}
if( p->iLimit>=0 ){
sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, end2);
}
switch( eDest ){
case SRT_Callback: {
sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
break;
}
case SRT_Table:
case SRT_TempTable: {
sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
break;
}
case SRT_Set: {
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
break;
}
case SRT_Mem: {
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
sqliteVdbeAddOp(v, OP_Goto, 0, end1);
break;
}
case SRT_Subroutine: {
int i;
for(i=0; i<nColumn; i++){
sqliteVdbeAddOp(v, OP_Column, -1-i, i);
}
sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
break;
}
default: {
/* Do nothing */
break;
}
}
sqliteVdbeAddOp(v, OP_Goto, 0, addr);
sqliteVdbeResolveLabel(v, end2);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeResolveLabel(v, end1);
sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
}
/*
** Generate code that will tell the VDBE the datatypes of
** columns in the result set.
**
** This routine only generates code if the "PRAGMA show_datatypes=on"
** has been executed. The datatypes are reported out in the azCol
** parameter to the callback function. The first N azCol[] entries
** are the names of the columns, and the second N entries are the
** datatypes for the columns.
**
** The "datatype" for a result that is a column of a type is the
** datatype definition extracted from the CREATE TABLE statement.
** The datatype for an expression is either TEXT or NUMERIC. The
** datatype for a ROWID field is INTEGER.
*/
static void generateColumnTypes(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* List of tables */
ExprList *pEList /* Expressions defining the result set */
){
Vdbe *v = pParse->pVdbe;
int i, j;
for(i=0; i<pEList->nExpr; i++){
Expr *p = pEList->a[i].pExpr;
char *zType = 0;
if( p==0 ) continue;
if( p->op==TK_COLUMN && pTabList ){
Table *pTab;
int iCol = p->iColumn;
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
assert( j<pTabList->nSrc );
pTab = pTabList->a[j].pTab;
if( iCol<0 ) iCol = pTab->iPKey;
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
if( iCol<0 ){
zType = "INTEGER";
}else{
zType = pTab->aCol[iCol].zType;
}
}else{
if( sqliteExprType(p)==STQLITE_SO_TEXT ){
zType = "TEXT";
}else{
zType = "NUMERIC";
}
}
sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
}
}
/*
** Generate code that will tell the VDBE the names of columns
** in the result set. This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* List of tables */
ExprList *pEList /* Expressions defining the result set */
){
Vdbe *v = pParse->pVdbe;
int i, j;
sqlite *db = pParse->db;
int fullNames, shortNames;
assert( v!=0 );
if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
pParse->colNamesSet = 1;
fullNames = (db->flags & STQLITE_FullColNames)!=0;
shortNames = (db->flags & STQLITE_ShortColNames)!=0;
for(i=0; i<pEList->nExpr; i++){
Expr *p;
int p2 = i==pEList->nExpr-1;
p = pEList->a[i].pExpr;
if( p==0 ) continue;
if( pEList->a[i].zName ){
char *zName = pEList->a[i].zName;
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
continue;
}
if( p->op==TK_COLUMN && pTabList ){
Table *pTab;
char *zCol;
int iCol = p->iColumn;
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
assert( j<pTabList->nSrc );
pTab = pTabList->a[j].pTab;
if( iCol<0 ) iCol = pTab->iPKey;
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
if( iCol<0 ){
zCol = "_ROWID_";
}else{
zCol = pTab->aCol[iCol].zName;
}
if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
sqliteVdbeCompressSpace(v, addr);
}else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
char *zName = 0;
char *zTab;
zTab = pTabList->a[j].zAlias;
if( fullNames || zTab==0 ) zTab = pTab->zName;
sqliteSetString(&zName, zTab, ".", zCol, 0);
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
}else{
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
}
}else if( p->span.z && p->span.z[0] ){
int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
sqliteVdbeCompressSpace(v, addr);
}else{
char zName[30];
assert( p->op!=TK_COLUMN || pTabList==0 );
sprintf(zName, "column%d", i+1);
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
}
}
}
/*
** Name of the connection operator, used for error messages.
*/
static const char *selectOpName(int id){
char *z;
switch( id ){
case TK_ALL: z = "UNION ALL"; break;
case TK_INTERSECT: z = "INTERSECT"; break;
case TK_EXCEPT: z = "EXCEPT"; break;
default: z = "UNION"; break;
}
return z;
}
/*
** Forward declaration
*/
static int fillInColumnList(Parse*, Select*);
/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
Table *pTab;
int i, j;
ExprList *pEList;
Column *aCol;
if( fillInColumnList(pParse, pSelect) ){
return 0;
}
pTab = sqliteMalloc( sizeof(Table) );
if( pTab==0 ){
return 0;
}
pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
pEList = pSelect->pEList;
pTab->nCol = pEList->nExpr;
assert( pTab->nCol>0 );
pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
for(i=0; i<pTab->nCol; i++){
Expr *p, *pR;
if( pEList->a[i].zName ){
aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
}else if( (p=pEList->a[i].pExpr)->op==TK_DOT
&& (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
int cnt;
sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
for(j=cnt=0; j<i; j++){
if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
int n;
char zBuf[30];
sprintf(zBuf,"_%d",++cnt);
n = strlen(zBuf);
sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
j = -1;
}
}
}else if( p->span.z && p->span.z[0] ){
sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
}else{
char zBuf[30];
sprintf(zBuf, "column%d", i+1);
pTab->aCol[i].zName = sqliteStrDup(zBuf);
}
}
pTab->iPKey = -1;
return pTab;
}
/*
** For the given SELECT statement, do three things.
**
** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
** defines the set of tables that should be scanned. For views,
** fill pTabList->a[].pSelect with a copy of the SELECT statement
** that implements the view. A copy is made of the view's SELECT
** statement so that we can freely modify or delete that statement
** without worrying about messing up the presistent representation
** of the view.
**
** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
** on joins and the ON and USING clause of joins.
**
** (3) Scan the list of columns in the result set (pEList) looking
** for instances of the "*" operator or the TABLE.* operator.
** If found, expand each "*" to be every column in every table
** and TABLE.* to be every column in TABLE.
**
** Return 0 on success. If there are problems, leave an error message
** in pParse and return non-zero.
*/
static int fillInColumnList(Parse *pParse, Select *p){
int i, j, k, rc;
SrcList *pTabList;
ExprList *pEList;
Table *pTab;
if( p==0 || p->pSrc==0 ) return 1;
pTabList = p->pSrc;
pEList = p->pEList;
/* Look up every table in the table list.
*/
for(i=0; i<pTabList->nSrc; i++){
if( pTabList->a[i].pTab ){
/* This routine has run before! No need to continue */
return 0;
}
if( pTabList->a[i].zName==0 ){
/* A sub-query in the FROM clause of a SELECT */
assert( pTabList->a[i].pSelect!=0 );
if( pTabList->a[i].zAlias==0 ){
char zFakeName[60];
sprintf(zFakeName, "sqlite_subquery_%p_",
(void*)pTabList->a[i].pSelect);
sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
}
pTabList->a[i].pTab = pTab =
sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
pTabList->a[i].pSelect);
if( pTab==0 ){
return 1;
}
/* The isTransient flag indicates that the Table structure has been
** dynamically allocated and may be freed at any time. In other words,
** pTab is not pointing to a persistent table structure that defines
** part of the schema. */
pTab->isTransient = 1;
}else{
/* An ordinary table or view name in the FROM clause */
pTabList->a[i].pTab = pTab =
sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
if( pTab==0 ){
return 1;
}
if( pTab->pSelect ){
/* We reach here if the named table is a really a view */
if( sqliteViewGetColumnNames(pParse, pTab) ){
return 1;
}
/* If pTabList->a[i].pSelect!=0 it means we are dealing with a
** view within a view. The SELECT structure has already been
** copied by the outer view so we can skip the copy step here
** in the inner view.
*/
if( pTabList->a[i].pSelect==0 ){
pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
}
}
}
}
/* Process NATURAL keywords, and ON and USING clauses of joins.
*/
if( sqliteProcessJoin(pParse, p) ) return 1;
/* For every "*" that occurs in the column list, insert the names of
** all columns in all tables. And for every TABLE.* insert the names
** of all columns in TABLE. The parser inserted a special expression
** with the TK_ALL operator for each "*" that it found in the column list.
** The following code just has to locate the TK_ALL expressions and expand
** each one to the list of all columns in all tables.
**
** The first loop just checks to see if there are any "*" operators
** that need expanding.
*/
for(k=0; k<pEList->nExpr; k++){
Expr *pE = pEList->a[k].pExpr;
if( pE->op==TK_ALL ) break;
if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
&& pE->pLeft && pE->pLeft->op==TK_ID ) break;
}
rc = 0;
if( k<pEList->nExpr ){
/*
** If we get here it means the result set contains one or more "*"
** operators that need to be expanded. Loop through each expression
** in the result set and expand them one by one.
*/
struct ExprList_item *a = pEList->a;
ExprList *pNew = 0;
for(k=0; k<pEList->nExpr; k++){
Expr *pE = a[k].pExpr;
if( pE->op!=TK_ALL &&
(pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
/* This particular expression does not need to be expanded.
*/
pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
pNew->a[pNew->nExpr-1].zName = a[k].zName;
a[k].pExpr = 0;
a[k].zName = 0;
}else{
/* This expression is a "*" or a "TABLE.*" and needs to be
** expanded. */
int tableSeen = 0; /* Set to 1 when TABLE matches */
Token *pName; /* text of name of TABLE */
if( pE->op==TK_DOT && pE->pLeft ){
pName = &pE->pLeft->token;
}else{
pName = 0;
}
for(i=0; i<pTabList->nSrc; i++){
Table *pTab = pTabList->a[i].pTab;
char *zTabName = pTabList->a[i].zAlias;
if( zTabName==0 || zTabName[0]==0 ){
zTabName = pTab->zName;
}
if( pName && (zTabName==0 || zTabName[0]==0 ||
sqliteStrNICmp(pName->z, zTabName, pName->n)!=0 ||
zTabName[pName->n]!=0) ){
continue;
}
tableSeen = 1;
for(j=0; j<pTab->nCol; j++){
Expr *pExpr, *pLeft, *pRight;
char *zName = pTab->aCol[j].zName;
if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
/* In a NATURAL join, omit the join columns from the
** table on the right */
continue;
}
if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
/* In a join with a USING clause, omit columns in the
** using clause from the table on the right. */
continue;
}
pRight = sqliteExpr(TK_ID, 0, 0, 0);
if( pRight==0 ) break;
pRight->token.z = zName;
pRight->token.n = strlen(zName);
pRight->token.dyn = 0;
if( zTabName && pTabList->nSrc>1 ){
pLeft = sqliteExpr(TK_ID, 0, 0, 0);
pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
if( pExpr==0 ) break;
pLeft->token.z = zTabName;
pLeft->token.n = strlen(zTabName);
pLeft->token.dyn = 0;
sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
pExpr->span.n = strlen(pExpr->span.z);
pExpr->span.dyn = 1;
pExpr->token.z = 0;
pExpr->token.n = 0;
pExpr->token.dyn = 0;
}else{
pExpr = pRight;
pExpr->span = pExpr->token;
}
pNew = sqliteExprListAppend(pNew, pExpr, 0);
}
}
if( !tableSeen ){
if( pName ){
sqliteErrorMsg(pParse, "no such table: %T", pName);
}else{
sqliteErrorMsg(pParse, "no tables specified");
}
rc = 1;
}
}
}
sqliteExprListDelete(pEList);
p->pEList = pNew;
}
return rc;
}
/*
** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
** in a select structure. It just sets the pointers to NULL. This
** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
** pointer is not NULL, this routine is called recursively on that pointer.
**
** This routine is called on the Select structure that defines a
** VIEW in order to undo any bindings to tables. This is necessary
** because those tables might be DROPed by a subsequent SQL command.
** If the bindings are not removed, then the Select.pSrc->a[].pTab field
** will be left pointing to a deallocated Table structure after the
** DROP and a coredump will occur the next time the VIEW is used.
*/
void sqliteSelectUnbind(Select *p){
int i;
SrcList *pSrc = p->pSrc;
Table *pTab;
if( p==0 ) return;
for(i=0; i<pSrc->nSrc; i++){
if( (pTab = pSrc->a[i].pTab)!=0 ){
if( pTab->isTransient ){
sqliteDeleteTable(0, pTab);
}
pSrc->a[i].pTab = 0;
if( pSrc->a[i].pSelect ){
sqliteSelectUnbind(pSrc->a[i].pSelect);
}
}
}
}
/*
** This routine associates entries in an ORDER BY expression list with
** columns in a result. For each ORDER BY expression, the opcode of
** the top-level node is changed to TK_COLUMN and the iColumn value of
** the top-level node is filled in with column number and the iTable
** value of the top-level node is filled with iTable parameter.
**
** If there are prior SELECT clauses, they are processed first. A match
** in an earlier SELECT takes precedence over a later SELECT.
**
** Any entry that does not match is flagged as an error. The number
** of errors is returned.
**
** This routine does NOT correctly initialize the Expr.dataType field
** of the ORDER BY expressions. The multiSelectSortOrder() routine
** must be called to do that after the individual select statements
** have all been analyzed. This routine is unable to compute Expr.dataType
** because it must be called before the individual select statements
** have been analyzed.
*/
static int matchOrderbyToColumn(
Parse *pParse, /* A place to leave error messages */
Select *pSelect, /* Match to result columns of this SELECT */
ExprList *pOrderBy, /* The ORDER BY values to match against columns */
int iTable, /* Insert this value in iTable */
int mustComplete /* If TRUE all ORDER BYs must match */
){
int nErr = 0;
int i, j;
ExprList *pEList;
if( pSelect==0 || pOrderBy==0 ) return 1;
if( mustComplete ){
for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
}
if( fillInColumnList(pParse, pSelect) ){
return 1;
}
if( pSelect->pPrior ){
if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
return 1;
}
}
pEList = pSelect->pEList;
for(i=0; i<pOrderBy->nExpr; i++){
Expr *pE = pOrderBy->a[i].pExpr;
int iCol = -1;
if( pOrderBy->a[i].done ) continue;
if( sqliteExprIsInteger(pE, &iCol) ){
if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"ORDER BY position %d should be between 1 and %d",
iCol, pEList->nExpr);
nErr++;
break;
}
if( !mustComplete ) continue;
iCol--;
}
for(j=0; iCol<0 && j<pEList->nExpr; j++){
if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
char *zName, *zLabel;
zName = pEList->a[j].zName;
assert( pE->token.z );
zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
sqliteDequote(zLabel);
if( sqliteStrICmp(zName, zLabel)==0 ){
iCol = j;
}
sqliteFree(zLabel);
}
if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
iCol = j;
}
}
if( iCol>=0 ){
pE->op = TK_COLUMN;
pE->iColumn = iCol;
pE->iTable = iTable;
pOrderBy->a[i].done = 1;
}
if( iCol<0 && mustComplete ){
sqliteErrorMsg(pParse,
"ORDER BY term number %d does not match any result column", i+1);
nErr++;
break;
}
}
return nErr;
}
/*
** Get a VDBE for the given parser context. Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqliteGetVdbe(Parse *pParse){
Vdbe *v = pParse->pVdbe;
if( v==0 ){
v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
}
return v;
}
/*
** This routine sets the Expr.dataType field on all elements of
** the pOrderBy expression list. The pOrderBy list will have been
** set up by matchOrderbyToColumn(). Hence each expression has
** a TK_COLUMN as its root node. The Expr.iColumn refers to a
** column in the result set. The datatype is set to STQLITE_SO_TEXT
** if the corresponding column in p and every SELECT to the left of
** p has a datatype of STQLITE_SO_TEXT. If the cooressponding column
** in p or any of the left SELECTs is STQLITE_SO_NUM, then the datatype
** of the order-by expression is set to STQLITE_SO_NUM.
**
** Examples:
**
** CREATE TABLE one(a INTEGER, b TEXT);
** CREATE TABLE two(c VARCHAR(5), d FLOAT);
**
** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
**
** The primary sort key will use STQLITE_SO_NUM because the "d" in
** the second SELECT is numeric. The 1st column of the first SELECT
** is text but that does not matter because a numeric always overrides
** a text.
**
** The secondary key will use the STQLITE_SO_TEXT sort order because
** both the (second) "b" in the first SELECT and the "c" in the second
** SELECT have a datatype of text.
*/
static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
int i;
ExprList *pEList;
if( pOrderBy==0 ) return;
if( p==0 ){
for(i=0; i<pOrderBy->nExpr; i++){
pOrderBy->a[i].pExpr->dataType = STQLITE_SO_TEXT;
}
return;
}
multiSelectSortOrder(p->pPrior, pOrderBy);
pEList = p->pEList;
for(i=0; i<pOrderBy->nExpr; i++){
Expr *pE = pOrderBy->a[i].pExpr;
if( pE->dataType==STQLITE_SO_NUM ) continue;
assert( pE->iColumn>=0 );
if( pEList->nExpr>pE->iColumn ){
pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
}
}
}
/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** nLimit and nOffset fields. nLimit and nOffset hold the integers
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords. Or that hold -1 and 0 if those keywords are omitted.
** iLimit and iOffset are the integer memory register numbers for
** counters used to compute the limit and offset. If there is no
** limit and/or offset, then iLimit and iOffset are negative.
**
** This routine changes the values if iLimit and iOffset only if
** a limit or offset is defined by nLimit and nOffset. iLimit and
** iOffset should have been preset to appropriate default values
** (usually but not always -1) prior to calling this routine.
** Only if nLimit>=0 or nOffset>0 do the limit registers get
** redefined. The UNION ALL operator uses this property to force
** the reuse of the same limit and offset registers across multiple
** SELECT statements.
*/
static void computeLimitRegisters(Parse *pParse, Select *p){
/*
** If the comparison is p->nLimit>0 then "LIMIT 0" shows
** all rows. It is the same as no limit. If the comparision is
** p->nLimit>=0 then "LIMIT 0" show no rows at all.
** "LIMIT -1" always shows all rows. There is some
** contraversy about what the correct behavior should be.
** The current implementation interprets "LIMIT 0" to mean
** no rows.
*/
if( p->nLimit>=0 ){
int iMem = pParse->nMem++;
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
p->iLimit = iMem;
}
if( p->nOffset>0 ){
int iMem = pParse->nMem++;
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
p->iOffset = iMem;
}
}
/*
** This routine is called to process a query that is really the union
** or intersection of two or more separate queries.
**
** "p" points to the right-most of the two queries. the query on the
** left is p->pPrior. The left query could also be a compound query
** in which case this routine will be called recursively.
**
** The results of the total query are to be written into a destination
** of type eDest with parameter iParm.
**
** Example 1: Consider a three-way compound SQL statement.
**
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
**
** This statement is parsed up as follows:
**
** SELECT c FROM t3
** |
** `-----> SELECT b FROM t2
** |
** `------> SELECT a FROM t1
**
** The arrows in the diagram above represent the Select.pPrior pointer.
** So if this routine is called with p equal to the t3 query, then
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
**
** Notice that because of the way STQLite parses compound SELECTs, the
** individual selects always group from left to right.
*/
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
int rc; /* Success code from a subroutine */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last SELECT in the series may have an ORDER BY or LIMIT.
*/
if( p==0 || p->pPrior==0 ) return 1;
pPrior = p->pPrior;
if( pPrior->pOrderBy ){
sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
selectOpName(p->op));
return 1;
}
if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
selectOpName(p->op));
return 1;
}
/* Make sure we have a valid query engine. If not, create a new one.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) return 1;
/* Create the destination temporary table if necessary
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
eDest = SRT_Table;
}
/* Generate code for the left and right SELECT statements.
*/
switch( p->op ){
case TK_ALL: {
if( p->pOrderBy==0 ){
pPrior->nLimit = p->nLimit;
pPrior->nOffset = p->nOffset;
rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
if( rc ) return rc;
p->pPrior = 0;
p->iLimit = pPrior->iLimit;
p->iOffset = pPrior->iOffset;
p->nLimit = -1;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
p->pPrior = pPrior;
if( rc ) return rc;
break;
}
/* For UNION ALL ... ORDER BY fall through to the next case */
}
case TK_EXCEPT:
case TK_UNION: {
int unionTab; /* Cursor number of the temporary table holding result */
int op; /* One of the SRT_ operations to apply to self */
int priorOp; /* The SRT_ operation to apply to prior selects */
int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
unionTab = iParm;
}else{
/* We will need to create our own temporary table to hold the
** intermediate results.
*/
unionTab = pParse->nTab++;
if( p->pOrderBy
&& matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
return 1;
}
if( p->op!=TK_ALL ){
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
}else{
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
}
}
/* Code the SELECT statements to our left
*/
rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
if( rc ) return rc;
/* Code the current SELECT statement
*/
switch( p->op ){
case TK_EXCEPT: op = SRT_Except; break;
case TK_UNION: op = SRT_Union; break;
case TK_ALL: op = SRT_Table; break;
}
p->pPrior = 0;
pOrderBy = p->pOrderBy;
p->pOrderBy = 0;
nLimit = p->nLimit;
p->nLimit = -1;
nOffset = p->nOffset;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
p->pPrior = pPrior;
p->pOrderBy = pOrderBy;
p->nLimit = nLimit;
p->nOffset = nOffset;
if( rc ) return rc;
/* Convert the data in the temporary table into whatever form
** it is that we currently need.
*/
if( eDest!=priorOp || unionTab!=iParm ){
int iCont, iBreak, iStart;
assert( p->pEList );
if( eDest==SRT_Callback ){
generateColumnNames(pParse, 0, p->pEList);
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
iBreak = sqliteVdbeMakeLabel(v);
iCont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
computeLimitRegisters(pParse, p);
iStart = sqliteVdbeCurrentAddr(v);
multiSelectSortOrder(p, p->pOrderBy);
rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
p->pOrderBy, -1, eDest, iParm,
iCont, iBreak);
if( rc ) return 1;
sqliteVdbeResolveLabel(v, iCont);
sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
sqliteVdbeResolveLabel(v, iBreak);
sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
if( p->pOrderBy ){
generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
}
}
break;
}
case TK_INTERSECT: {
int tab1, tab2;
int iCont, iBreak, iStart;
int nLimit, nOffset;
/* INTERSECT is different from the others since it requires
** two temporary tables. Hence it has its own case. Begin
** by allocating the tables we will need.
*/
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
return 1;
}
sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
/* Code the SELECTs to our left into temporary table "tab1".
*/
rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
if( rc ) return rc;
/* Code the current SELECT into temporary table "tab2"
*/
sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
p->pPrior = 0;
nLimit = p->nLimit;
p->nLimit = -1;
nOffset = p->nOffset;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
p->pPrior = pPrior;
p->nLimit = nLimit;
p->nOffset = nOffset;
if( rc ) return rc;
/* Generate code to take the intersection of the two temporary
** tables.
*/
assert( p->pEList );
if( eDest==SRT_Callback ){
generateColumnNames(pParse, 0, p->pEList);
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
iBreak = sqliteVdbeMakeLabel(v);
iCont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
computeLimitRegisters(pParse, p);
iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
multiSelectSortOrder(p, p->pOrderBy);
rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
p->pOrderBy, -1, eDest, iParm,
iCont, iBreak);
if( rc ) return 1;
sqliteVdbeResolveLabel(v, iCont);
sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
sqliteVdbeResolveLabel(v, iBreak);
sqliteVdbeAddOp(v, OP_Close, tab2, 0);
sqliteVdbeAddOp(v, OP_Close, tab1, 0);
if( p->pOrderBy ){
generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
}
break;
}
}
assert( p->pEList && pPrior->pEList );
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
" do not have the same number of result columns", selectOpName(p->op));
return 1;
}
return 0;
}
/*
** Scan through the expression pExpr. Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList. (But leave references to the ROWID column
** unchanged.)
**
** This routine is part of the flattening procedure. A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable. This routine make the necessary
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
if( pExpr==0 ) return;
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
if( pExpr->iColumn<0 ){
pExpr->op = TK_NULL;
}else{
Expr *pNew;
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
pNew = pEList->a[pExpr->iColumn].pExpr;
assert( pNew!=0 );
pExpr->op = pNew->op;
pExpr->dataType = pNew->dataType;
assert( pExpr->pLeft==0 );
pExpr->pLeft = sqliteExprDup(pNew->pLeft);
assert( pExpr->pRight==0 );
pExpr->pRight = sqliteExprDup(pNew->pRight);
assert( pExpr->pList==0 );
pExpr->pList = sqliteExprListDup(pNew->pList);
pExpr->iTable = pNew->iTable;
pExpr->iColumn = pNew->iColumn;
pExpr->iAgg = pNew->iAgg;
sqliteTokenCopy(&pExpr->token, &pNew->token);
sqliteTokenCopy(&pExpr->span, &pNew->span);
}
}else{
substExpr(pExpr->pLeft, iTable, pEList);
substExpr(pExpr->pRight, iTable, pEList);
substExprList(pExpr->pList, iTable, pEList);
}
}
static void
substExprList(ExprList *pList, int iTable, ExprList *pEList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nExpr; i++){
substExpr(pList->a[i].pExpr, iTable, pEList);
}
}
/*
** This routine attempts to flatten subqueries in order to speed
** execution. It returns 1 if it makes changes and 0 if no flattening
** occurs.
**
** To understand the concept of flattening, consider the following
** query:
**
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
**
** The default way of implementing this query is to execute the
** subquery first and store the results in a temporary table, then
** run the outer query on that temporary table. This requires two
** passes over the data. Furthermore, because the temporary table
** has no indices, the WHERE clause on the outer query cannot be
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simpification gives the same result
** but only has to scan the data once. And because indices might
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
** (1) The subquery and the outer query do not both use aggregates.
**
** (2) The subquery is not an aggregate or the outer query is not a join.
**
** (3) The subquery is not the right operand of a left outer join, or
** the subquery is not itself a join. (Ticket #306)
**
** (4) The subquery is not DISTINCT or the outer query is not a join.
**
** (5) The subquery is not DISTINCT or the outer query does not use
** aggregates.
**
** (6) The subquery does not use aggregates or the outer query is not
** DISTINCT.
**
** (7) The subquery has a FROM clause.
**
** (8) The subquery does not use LIMIT or the outer query is not a join.
**
** (9) The subquery does not use LIMIT or the outer query does not use
** aggregates.
**
** (10) The subquery does not use aggregates or the outer query does not
** use LIMIT.
**
** (11) The subquery and the outer query do not both have ORDER BY clauses.
**
** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
** subquery has no WHERE clause. (added by ticket #350)
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
**
** All of the expression analysis must occur on both the outer query and
** the subquery before this routine runs.
*/
static int flattenSubquery(
Parse *pParse, /* The parsing context */
Select *p, /* The tqparent or outer SELECT statement */
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
int isAgg, /* True if outer SELECT uses aggregate functions */
int subqueryIsAgg /* True if the subquery uses aggregate functions */
){
Select *pSub; /* The inner query or "subquery" */
SrcList *pSrc; /* The FROM clause of the outer query */
SrcList *pSubSrc; /* The FROM clause of the subquery */
ExprList *pList; /* The result set of the outer query */
int iParent; /* VDBE cursor number of the pSub result set temp table */
int i;
Expr *pWhere;
/* Check to see if flattening is permitted. Return 0 if not.
*/
if( p==0 ) return 0;
pSrc = p->pSrc;
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
pSub = pSrc->a[iFrom].pSelect;
assert( pSub!=0 );
if( isAgg && subqueryIsAgg ) return 0;
if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
pSubSrc = pSub->pSrc;
assert( pSubSrc );
if( pSubSrc->nSrc==0 ) return 0;
if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
return 0;
}
if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
if( p->pOrderBy && pSub->pOrderBy ) return 0;
/* Restriction 3: If the subquery is a join, make sure the subquery is
** not used as the right operand of an outer join. Examples of why this
** is not allowed:
**
** t1 LEFT OUTER JOIN (t2 JOIN t3)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) JOIN t3
**
** which is not at all the same thing.
*/
if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
return 0;
}
/* Restriction 12: If the subquery is the right operand of a left outer
** join, make sure the subquery has no WHERE clause.
** An examples of why this is not allowed:
**
** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
**
** But the t2.x>0 test will always fail on a NULL row of t2, which
** effectively converts the OUTER JOIN into an INNER JOIN.
*/
if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
&& pSub->pWhere!=0 ){
return 0;
}
/* If we reach this point, it means flattening is permitted for the
** iFrom-th entry of the FROM clause in the outer query.
*/
/* Move all of the FROM elements of the subquery into the
** the FROM clause of the outer query. Before doing this, remember
** the cursor number for the original outer query FROM element in
** iParent. The iParent cursor will never be used. Subsequent code
** will scan expressions looking for iParent references and replace
** those references with expressions that resolve to the subquery FROM
** elements we are now copying in.
*/
iParent = pSrc->a[iFrom].iCursor;
{
int nSubSrc = pSubSrc->nSrc;
int jointype = pSrc->a[iFrom].jointype;
if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
}
sqliteFree(pSrc->a[iFrom].zDatabase);
sqliteFree(pSrc->a[iFrom].zName);
sqliteFree(pSrc->a[iFrom].zAlias);
if( nSubSrc>1 ){
int extra = nSubSrc - 1;
for(i=1; i<nSubSrc; i++){
pSrc = sqliteSrcListAppend(pSrc, 0, 0);
}
p->pSrc = pSrc;
for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
pSrc->a[i] = pSrc->a[i-extra];
}
}
for(i=0; i<nSubSrc; i++){
pSrc->a[i+iFrom] = pSubSrc->a[i];
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
}
pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
}
/* Now begin substituting subquery result set expressions for
** references to the iParent in the outer query.
**
** Example:
**
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
** \ \_____________ subquery __________/ /
** \_____________________ outer query ______________________________/
**
** We look at every expression in the outer query and every place we see
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
*/
substExprList(p->pEList, iParent, pSub->pEList);
pList = p->pEList;
for(i=0; i<pList->nExpr; i++){
Expr *pExpr;
if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
}
}
if( isAgg ){
substExprList(p->pGroupBy, iParent, pSub->pEList);
substExpr(p->pHaving, iParent, pSub->pEList);
}
if( pSub->pOrderBy ){
assert( p->pOrderBy==0 );
p->pOrderBy = pSub->pOrderBy;
pSub->pOrderBy = 0;
}else if( p->pOrderBy ){
substExprList(p->pOrderBy, iParent, pSub->pEList);
}
if( pSub->pWhere ){
pWhere = sqliteExprDup(pSub->pWhere);
}else{
pWhere = 0;
}
if( subqueryIsAgg ){
assert( p->pHaving==0 );
p->pHaving = p->pWhere;
p->pWhere = pWhere;
substExpr(p->pHaving, iParent, pSub->pEList);
if( pSub->pHaving ){
Expr *pHaving = sqliteExprDup(pSub->pHaving);
if( p->pHaving ){
p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
}else{
p->pHaving = pHaving;
}
}
assert( p->pGroupBy==0 );
p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
}else if( p->pWhere==0 ){
p->pWhere = pWhere;
}else{
substExpr(p->pWhere, iParent, pSub->pEList);
if( pWhere ){
p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
}
}
/* The flattened query is distinct if either the inner or the
** outer query is distinct.
*/
p->isDistinct = p->isDistinct || pSub->isDistinct;
/* Transfer the limit expression from the subquery to the outer
** query.
*/
if( pSub->nLimit>=0 ){
if( p->nLimit<0 ){
p->nLimit = pSub->nLimit;
}else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
}
}
p->nOffset += pSub->nOffset;
/* Finially, delete what is left of the subquery and return
** success.
*/
sqliteSelectDelete(pSub);
return 1;
}
/*
** Analyze the SELECT statement passed in as an argument to see if it
** is a simple min() or max() query. If it is and this query can be
** satisfied using a single seek to the beginning or end of an index,
** then generate the code for this SELECT and return 1. If this is not a
** simple min() or max() query, then return 0;
**
** A simply min() or max() query looks like this:
**
** SELECT min(a) FROM table;
** SELECT max(a) FROM table;
**
** The query may have only a single table in its FROM argument. There
** can be no GROUP BY or HAVING or WHERE clauses. The result set must
** be the min() or max() of a single column of the table. The column
** in the min() or max() function must be indexed.
**
** The parameters to this routine are the same as for sqliteSelect().
** See the header comment on that routine for additional information.
*/
static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
Expr *pExpr;
int iCol;
Table *pTab;
Index *pIdx;
int base;
Vdbe *v;
int seekOp;
int cont;
ExprList eList;
struct ExprList_item eListItem;
/* Check to see if this query is a simple min() or max() query. Return
** zero if it is not.
*/
if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
if( p->pSrc->nSrc!=1 ) return 0;
if( p->pEList->nExpr!=1 ) return 0;
pExpr = p->pEList->a[0].pExpr;
if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
if( pExpr->pList==0 || pExpr->pList->nExpr!=1 ) return 0;
if( pExpr->token.n!=3 ) return 0;
if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
seekOp = OP_Rewind;
}else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
seekOp = OP_Last;
}else{
return 0;
}
pExpr = pExpr->pList->a[0].pExpr;
if( pExpr->op!=TK_COLUMN ) return 0;
iCol = pExpr->iColumn;
pTab = p->pSrc->a[0].pTab;
/* If we get to here, it means the query is of the correct form.
** Check to make sure we have an index and make pIdx point to the
** appropriate index. If the min() or max() is on an INTEGER PRIMARY
** key column, no index is necessary so set pIdx to NULL. If no
** usable index is found, return 0.
*/
if( iCol<0 ){
pIdx = 0;
}else{
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
assert( pIdx->nColumn>=1 );
if( pIdx->aiColumn[0]==iCol ) break;
}
if( pIdx==0 ) return 0;
}
/* Identify column types if we will be using the callback. This
** step is skipped if the output is going to a table or a memory cell.
** The column names have already been generated in the calling function.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) return 0;
if( eDest==SRT_Callback ){
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
/* If the output is destined for a temporary table, open that table.
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
}
/* Generating code to find the min or the max. Basically all we have
** to do is find the first or the last entry in the chosen index. If
** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
** or last entry in the main table.
*/
sqliteCodeVerifySchema(pParse, pTab->iDb);
base = p->pSrc->a[0].iCursor;
computeLimitRegisters(pParse, p);
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
cont = sqliteVdbeMakeLabel(v);
if( pIdx==0 ){
sqliteVdbeAddOp(v, seekOp, base, 0);
}else{
sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
sqliteVdbeAddOp(v, seekOp, base+1, 0);
sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
sqliteVdbeAddOp(v, OP_Close, base+1, 0);
sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
}
eList.nExpr = 1;
memset(&eListItem, 0, sizeof(eListItem));
eList.a = &eListItem;
eList.a[0].pExpr = pExpr;
selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
sqliteVdbeResolveLabel(v, cont);
sqliteVdbeAddOp(v, OP_Close, base, 0);
return 1;
}
/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** value of eDest and iParm.
**
** eDest Value Result
** ------------ -------------------------------------------
** SRT_Callback Invoke the callback for each row of the result.
**
** SRT_Mem Store first result in memory cell iParm
**
** SRT_Set Store results as keys of a table with cursor iParm
**
** SRT_Union Store results as a key in a temporary table iParm
**
** SRT_Except Remove results from the temporary table iParm.
**
** SRT_Table Store results in temporary table iParm
**
** The table above is incomplete. Additional eDist value have be added
** since this comment was written. See the selectInnerLoop() function for
** a complete listing of the allowed values of eDest and their meanings.
**
** This routine returns the number of errors. If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in. The
** calling function needs to do that.
**
** The pParent, parentTab, and *pParentAgg fields are filled in if this
** SELECT is a subquery. This routine may try to combine this SELECT
** with its tqparent to form a single flat query. In so doing, it might
** change the tqparent query from a non-aggregate to an aggregate query.
** For that reason, the pParentAgg flag is passed as a pointer, so it
** can be changed.
**
** Example 1: The meaning of the pParent parameter.
**
** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
** \ \_______ subquery _______/ /
** \ /
** \____________________ outer query ___________________/
**
** This routine is called for the outer query first. For that call,
** pParent will be NULL. During the processing of the outer query, this
** routine is called recursively to handle the subquery. For the recursive
** call, pParent will point to the outer query. Because the subquery is
** the second element in a three-way join, the parentTab parameter will
** be 1 (the 2nd value of a 0-indexed array.)
*/
int sqliteSelect(
Parse *pParse, /* The parser context */
Select *p, /* The SELECT statement being coded. */
int eDest, /* How to dispose of the results */
int iParm, /* A parameter used by the eDest disposal method */
Select *pParent, /* Another SELECT for which this is a sub-query */
int parentTab, /* Index in pParent->pSrc of this query */
int *pParentAgg /* True if pParent uses aggregate functions */
){
int i;
WhereInfo *pWInfo;
Vdbe *v;
int isAgg = 0; /* True for select lists like "count(*)" */
ExprList *pEList; /* List of columns to extract. */
SrcList *pTabList; /* List of tables to select from */
Expr *pWhere; /* The WHERE clause. May be NULL */
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
Expr *pHaving; /* The HAVING clause. May be NULL */
int isDistinct; /* True if the DISTINCT keyword is present */
int distinct; /* Table to use for the distinct set */
int rc = 1; /* Value to return from this function */
if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
if( sqliteAuthCheck(pParse, STQLITE_SELECT, 0, 0, 0) ) return 1;
/* If there is are a sequence of queries, do the earlier ones first.
*/
if( p->pPrior ){
return multiSelect(pParse, p, eDest, iParm);
}
/* Make local copies of the parameters for this query.
*/
pTabList = p->pSrc;
pWhere = p->pWhere;
pOrderBy = p->pOrderBy;
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isDistinct = p->isDistinct;
/* Allocate VDBE cursors for each table in the FROM clause
*/
sqliteSrcListAssignCursors(pParse, pTabList);
/*
** Do not even attempt to generate any code if we have already seen
** errors before this routine starts.
*/
if( pParse->nErr>0 ) goto select_end;
/* Expand any "*" terms in the result set. (For example the "*" in
** "SELECT * FROM t1") The fillInColumnlist() routine also does some
** other housekeeping - see the header comment for details.
*/
if( fillInColumnList(pParse, p) ){
goto select_end;
}
pWhere = p->pWhere;
pEList = p->pEList;
if( pEList==0 ) goto select_end;
/* If writing to memory or generating a set
** only a single column may be output.
*/
if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
sqliteErrorMsg(pParse, "only a single result allowed for "
"a SELECT that is part of an expression");
goto select_end;
}
/* ORDER BY is ignored for some destinations.
*/
switch( eDest ){
case SRT_Union:
case SRT_Except:
case SRT_Discard:
pOrderBy = 0;
break;
default:
break;
}
/* At this point, we should have allocated all the cursors that we
** need to handle subquerys and temporary tables.
**
** Resolve the column names and do a semantics check on all the expressions.
*/
for(i=0; i<pEList->nExpr; i++){
if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
goto select_end;
}
}
if( pWhere ){
if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
goto select_end;
}
}
if( pHaving ){
if( pGroupBy==0 ){
sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
goto select_end;
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
goto select_end;
}
}
if( pOrderBy ){
for(i=0; i<pOrderBy->nExpr; i++){
int iCol;
Expr *pE = pOrderBy->a[i].pExpr;
if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
sqliteExprDelete(pE);
pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
goto select_end;
}
if( sqliteExprIsConstant(pE) ){
if( sqliteExprIsInteger(pE, &iCol)==0 ){
sqliteErrorMsg(pParse,
"ORDER BY terms must not be non-integer constants");
goto select_end;
}else if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"ORDER BY column number %d out of range - should be "
"between 1 and %d", iCol, pEList->nExpr);
goto select_end;
}
}
}
}
if( pGroupBy ){
for(i=0; i<pGroupBy->nExpr; i++){
int iCol;
Expr *pE = pGroupBy->a[i].pExpr;
if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
sqliteExprDelete(pE);
pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
goto select_end;
}
if( sqliteExprIsConstant(pE) ){
if( sqliteExprIsInteger(pE, &iCol)==0 ){
sqliteErrorMsg(pParse,
"GROUP BY terms must not be non-integer constants");
goto select_end;
}else if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"GROUP BY column number %d out of range - should be "
"between 1 and %d", iCol, pEList->nExpr);
goto select_end;
}
}
}
}
/* Begin generating code.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) goto select_end;
/* Identify column names if we will be using them in a callback. This
** step is skipped if the output is going to some other destination.
*/
if( eDest==SRT_Callback ){
generateColumnNames(pParse, pTabList, pEList);
}
/* Check for the special case of a min() or max() function by itself
** in the result set.
*/
if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
rc = 0;
goto select_end;
}
/* Generate code for all sub-queries in the FROM clause
*/
for(i=0; i<pTabList->nSrc; i++){
const char *zSavedAuthContext;
int needRestoreContext;
if( pTabList->a[i].pSelect==0 ) continue;
if( pTabList->a[i].zName!=0 ){
zSavedAuthContext = pParse->zAuthContext;
pParse->zAuthContext = pTabList->a[i].zName;
needRestoreContext = 1;
}else{
needRestoreContext = 0;
}
sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
pTabList->a[i].iCursor, p, i, &isAgg);
if( needRestoreContext ){
pParse->zAuthContext = zSavedAuthContext;
}
pTabList = p->pSrc;
pWhere = p->pWhere;
if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
pOrderBy = p->pOrderBy;
}
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isDistinct = p->isDistinct;
}
/* Check to see if this is a subquery that can be "flattened" into its tqparent.
** If flattening is a possiblity, do so and return immediately.
*/
if( pParent && pParentAgg &&
flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
if( isAgg ) *pParentAgg = 1;
return rc;
}
/* Set the limiter.
*/
computeLimitRegisters(pParse, p);
/* Identify column types if we will be using a callback. This
** step is skipped if the output is going to a destination other
** than a callback.
**
** We have to do this separately from the creation of column names
** above because if the pTabList contains views then they will not
** have been resolved and we will not know the column types until
** now.
*/
if( eDest==SRT_Callback ){
generateColumnTypes(pParse, pTabList, pEList);
}
/* If the output is destined for a temporary table, open that table.
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
}
/* Do an analysis of aggregate expressions.
*/
sqliteAggregateInfoReset(pParse);
if( isAgg || pGroupBy ){
assert( pParse->nAgg==0 );
isAgg = 1;
for(i=0; i<pEList->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
goto select_end;
}
}
if( pGroupBy ){
for(i=0; i<pGroupBy->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
goto select_end;
}
}
}
if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
goto select_end;
}
if( pOrderBy ){
for(i=0; i<pOrderBy->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
goto select_end;
}
}
}
}
/* Reset the aggregator
*/
if( isAgg ){
sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
for(i=0; i<pParse->nAgg; i++){
FuncDef *pFunc;
if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
}
}
if( pGroupBy==0 ){
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
}
}
/* Initialize the memory cell to NULL
*/
if( eDest==SRT_Mem ){
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
}
/* Open a temporary table to use for the distinct set.
*/
if( isDistinct ){
distinct = pParse->nTab++;
sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
}else{
distinct = -1;
}
/* Begin the database scan
*/
pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
pGroupBy ? 0 : &pOrderBy);
if( pWInfo==0 ) goto select_end;
/* Use the standard inner loop if we are not dealing with
** aggregates
*/
if( !isAgg ){
if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
iParm, pWInfo->iContinue, pWInfo->iBreak) ){
goto select_end;
}
}
/* If we are dealing with aggregates, then do the special aggregate
** processing.
*/
else{
AggExpr *pAgg;
if( pGroupBy ){
int lbl1;
for(i=0; i<pGroupBy->nExpr; i++){
sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
}
sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
lbl1 = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
if( pAgg->isAgg ) continue;
sqliteExprCode(pParse, pAgg->pExpr);
sqliteVdbeAddOp(v, OP_AggSet, 0, i);
}
sqliteVdbeResolveLabel(v, lbl1);
}
for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
Expr *pE;
int nExpr;
FuncDef *pDef;
if( !pAgg->isAgg ) continue;
assert( pAgg->pFunc!=0 );
assert( pAgg->pFunc->xStep!=0 );
pDef = pAgg->pFunc;
pE = pAgg->pExpr;
assert( pE!=0 );
assert( pE->op==TK_AGG_FUNCTION );
nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
sqliteVdbeAddOp(v, OP_Integer, i, 0);
sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
}
}
/* End the database scan loop.
*/
sqliteWhereEnd(pWInfo);
/* If we are processing aggregates, we need to set up a second loop
** over all of the aggregate values and process them.
*/
if( isAgg ){
int endagg = sqliteVdbeMakeLabel(v);
int startagg;
startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
pParse->useAgg = 1;
if( pHaving ){
sqliteExprIfFalse(pParse, pHaving, startagg, 1);
}
if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
iParm, startagg, endagg) ){
goto select_end;
}
sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
sqliteVdbeResolveLabel(v, endagg);
sqliteVdbeAddOp(v, OP_Noop, 0, 0);
pParse->useAgg = 0;
}
/* If there is an ORDER BY clause, then we need to sort the results
** and send them to the callback one by one.
*/
if( pOrderBy ){
generateSortTail(p, v, pEList->nExpr, eDest, iParm);
}
/* If this was a subquery, we have now converted the subquery into a
** temporary table. So delete the subquery structure from the tqparent
** to prevent this subquery from being evaluated again and to force the
** the use of the temporary table.
*/
if( pParent ){
assert( pParent->pSrc->nSrc>parentTab );
assert( pParent->pSrc->a[parentTab].pSelect==p );
sqliteSelectDelete(p);
pParent->pSrc->a[parentTab].pSelect = 0;
}
/* The SELECT was successfully coded. Set the return code to 0
** to indicate no errors.
*/
rc = 0;
/* Control jumps to here if an error is encountered above, or upon
** successful coding of the SELECT.
*/
select_end:
sqliteAggregateInfoReset(pParse);
return rc;
}
|