From 71fb4a139179e9d27070f7f3e98971e3e029697f Mon Sep 17 00:00:00 2001 From: Michele Calgaro Date: Wed, 19 May 2021 16:22:10 +0900 Subject: uncrustify: updated to version 0.73 Signed-off-by: Michele Calgaro --- .../expected/cpp/31702-toggle_processing_cmt.cpp | 68 ++++++++++++++++++++++ 1 file changed, 68 insertions(+) create mode 100644 debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31702-toggle_processing_cmt.cpp (limited to 'debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31702-toggle_processing_cmt.cpp') diff --git a/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31702-toggle_processing_cmt.cpp b/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31702-toggle_processing_cmt.cpp new file mode 100644 index 00000000..adf1b8be --- /dev/null +++ b/debian/uncrustify-trinity/uncrustify-trinity-0.73.0/tests/expected/cpp/31702-toggle_processing_cmt.cpp @@ -0,0 +1,68 @@ +void func() { +} + +// **ABC** +void func() { } +// *INDENT-ON* + +void func() { +} + +/** + * Function to solve for roots of a generic quartic polynomial of the + * following form: + * \verbatim + + p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e, + + where a, b, c, d, and e are real coefficients + + * \endverbatim + * + * This object's tolerance defines a threshold for root solutions + * above which iterative methods will be employed to achieve the + * desired accuracy + * + * \verbatim - this should cause the following line to not wrap due to cmt_width + * Upon success, the roots array contains the solution to the polynomial p(x) = 0 + * \endverbatim + * + Return value on output: + * - 0, if an error occurs (invalid coefficients) + * - 1, if all roots are real + * - 2, if two roots are real and two roots are complex conjugates + * - 3, if the roots are two pairs of complex conjugates + */ +int solve(double a, + double b, + double c, + double d, + double e, + std::complex roots[4]); + +/** + * Function to solve for roots of a generic quartic polynomial of the + * following form: + * + * + * p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e, where a, b, c, d, + * and e are real coefficients + * + * Upon success, root1, root2, root3, and root4 contain the solution + * to the polynomial p(x) = 0 + * + Return value on output: + * - 0, if an error occurs (invalid coefficients) + * - 1, if all roots are real + * - 2, if two roots are real and two roots are complex conjugates + * - 3, if the roots are two pairs of complex conjugates + */ +/* **ABC** */ + int solve(double a, + double b, + double c, + double d, + double e, + std::complex &root1, + std::complex &root2, + std::complex &root3, + std::complex &root4); +/* ??DEF?? */ -- cgit v1.2.1