1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
// vim: set tabstop=4 shiftwidth=4 noexpandtab
/*
Gwenview - A simple image viewer for KDE
Copyright 2000-2004 Aur�lien G�teau
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <math.h>
// TQt
#include <tqimage.h>
#include <tqwmatrix.h>
// KDE
#include <kdebug.h>
#include <kdeversion.h>
#include <kglobal.h>
// Local
#include "imageutils/orientation.h"
namespace ImageUtils {
TQWMatrix transformMatrix(Orientation orientation) {
TQWMatrix matrix;
switch (orientation) {
case NOT_AVAILABLE:
case NORMAL:
break;
case HFLIP:
matrix.scale(-1,1);
break;
case ROT_180:
matrix.rotate(180);
break;
case VFLIP:
matrix.scale(1,-1);
break;
case TRANSPOSE:
matrix.scale(-1,1);
matrix.rotate(90);
break;
case ROT_90:
matrix.rotate(90);
break;
case TRANSVERSE:
matrix.scale(1,-1);
matrix.rotate(90);
break;
case ROT_270:
matrix.rotate(270);
break;
}
return matrix;
}
TQImage transform(const TQImage& img, Orientation orientation) {
if (orientation != NOT_AVAILABLE && orientation != NORMAL) {
return img.xForm(transformMatrix(orientation));
} else {
return img;
}
}
inline
int changeBrightness( int value, int brightness )
{
return KCLAMP( value + brightness * 255 / 100, 0, 255 );
}
inline
int changeContrast( int value, int contrast )
{
return KCLAMP((( value - 127 ) * contrast / 100 ) + 127, 0, 255 );
}
inline
int changeGamma( int value, int gamma )
{
return KCLAMP( int( pow( value / 255.0, 100.0 / gamma ) * 255 ), 0, 255 );
}
inline
int changeUsingTable( int value, const int table[] )
{
return table[ value ];
}
/*
Applies either brightness, contrast or gamma conversion on the image.
If the image is not truecolor, the color table is changed. If it is
truecolor, every pixel has to be changed. In order to make it as fast
as possible, alpha value is converted only if necessary. Additionally,
since color components (red/green/blue/alpha) can have only 256 values
but images usually have many pixels, a conversion table is first
created for every color component value, and pixels are converted
using this table.
*/
template< int operation( int, int ) >
static
TQImage changeImage( const TQImage& image, int value )
{
TQImage im = image;
im.detach();
if( im.numColors() == 0 ) /* truecolor */
{
if( im.depth() != 32 ) /* just in case */
im = im.convertDepth( 32 );
int table[ 256 ];
for( int i = 0;
i < 256;
++i )
table[ i ] = operation( i, value );
if( im.hasAlphaBuffer())
{
for( int y = 0;
y < im.height();
++y )
{
TQRgb* line = reinterpret_cast< TQRgb* >( im.scanLine( y ));
for( int x = 0;
x < im.width();
++x )
line[ x ] = tqRgba( changeUsingTable( tqRed( line[ x ] ), table ),
changeUsingTable( tqGreen( line[ x ] ), table ),
changeUsingTable( tqBlue( line[ x ] ), table ),
changeUsingTable( tqAlpha( line[ x ] ), table ));
}
}
else
{
for( int y = 0;
y < im.height();
++y )
{
TQRgb* line = reinterpret_cast< TQRgb* >( im.scanLine( y ));
for( int x = 0;
x < im.width();
++x )
line[ x ] = tqRgb( changeUsingTable( tqRed( line[ x ] ), table ),
changeUsingTable( tqGreen( line[ x ] ), table ),
changeUsingTable( tqBlue( line[ x ] ), table ));
}
}
}
else
{
TQRgb* colors = im.tqcolorTable();
for( int i = 0;
i < im.numColors();
++i )
colors[ i ] = tqRgb( operation( tqRed( colors[ i ] ), value ),
operation( tqGreen( colors[ i ] ), value ),
operation( tqBlue( colors[ i ] ), value ));
}
return im;
}
// brightness is multiplied by 100 in order to avoid floating point numbers
TQImage changeBrightness( const TQImage& image, int brightness )
{
if( brightness == 0 ) // no change
return image;
return changeImage< changeBrightness >( image, brightness );
}
// contrast is multiplied by 100 in order to avoid floating point numbers
TQImage changeContrast( const TQImage& image, int contrast )
{
if( contrast == 100 ) // no change
return image;
return changeImage< changeContrast >( image, contrast );
}
// gamma is multiplied by 100 in order to avoid floating point numbers
TQImage changeGamma( const TQImage& image, int gamma )
{
if( gamma == 100 ) // no change
return image;
return changeImage< changeGamma >( image, gamma );
}
} // Namespace
|