1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
/* Analyze file differences for GNU DIFF.
Modified for KDiff3 by Joachim Eibl 2003.
The original file was part of GNU DIFF.
Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1998, 2001, 2002
Free Software Foundation, Inc.
GNU DIFF is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU DIFF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.
If not, write to the Free Software Foundation,
51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. */
/* The basic algorithm is described in:
"An O(ND) Difference Algorithm and its Variations", Eugene Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;
see especially section 4.2, which describes the variation used below.
Unless the --minimal option is specified, this code uses the TOO_EXPENSIVE
heuristic, by Paul Eggert, to limit the cost to O(N**1.5 log N)
at the price of producing suboptimal output for large inputs with
many differences.
The basic algorithm was independently discovered as described in:
"Algorithms for Approximate String Matching", E. Ukkonen,
Information and Control Vol. 64, 1985, pp. 100-118. */
#define GDIFF_MAIN
#include "gnudiff_diff.h"
//#include <error.h>
#include <stdlib.h>
static lin *xvec, *yvec; /* Vectors being compared. */
static lin *fdiag; /* Vector, indexed by diagonal, containing
1 + the X coordinate of the point furthest
along the given diagonal in the forward
search of the edit matrix. */
static lin *bdiag; /* Vector, indexed by diagonal, containing
the X coordinate of the point furthest
along the given diagonal in the backward
search of the edit matrix. */
static lin too_expensive; /* Edit scripts longer than this are too
expensive to compute. */
#define SNAKE_LIMIT 20 /* Snakes bigger than this are considered `big'. */
struct partition
{
lin xmid, ymid; /* Midpoints of this partition. */
bool lo_minimal; /* Nonzero if low half will be analyzed minimally. */
bool hi_minimal; /* Likewise for high half. */
};
/* Find the midpoint of the shortest edit script for a specified
portion of the two files.
Scan from the beginnings of the files, and simultaneously from the ends,
doing a breadth-first search through the space of edit-sequence.
When the two searches meet, we have found the midpoint of the shortest
edit sequence.
If FIND_MINIMAL is nonzero, find the minimal edit script regardless
of expense. Otherwise, if the search is too expensive, use
heuristics to stop the search and report a suboptimal answer.
Set PART->(xmid,ymid) to the midpoint (XMID,YMID). The diagonal number
XMID - YMID equals the number of inserted lines minus the number
of deleted lines (counting only lines before the midpoint).
Return the approximate edit cost; this is the total number of
lines inserted or deleted (counting only lines before the midpoint),
unless a heuristic is used to terminate the search prematurely.
Set PART->lo_minimal to true iff the minimal edit script for the
left half of the partition is known; similarly for PART->hi_minimal.
This function assumes that the first lines of the specified portions
of the two files do not match, and likewise that the last lines do not
match. The caller must trim matching lines from the beginning and end
of the portions it is going to specify.
If we return the "wrong" partitions,
the worst this can do is cause suboptimal diff output.
It cannot cause incorrect diff output. */
lin
GnuDiff::diag (lin xoff, lin xlim, lin yoff, lin ylim, bool find_minimal,
struct partition *part)
{
lin *const fd = fdiag; /* Give the compiler a chance. */
lin *const bd = bdiag; /* Additional help for the compiler. */
lin const *const xv = xvec; /* Still more help for the compiler. */
lin const *const yv = yvec; /* And more and more . . . */
lin const dmin = xoff - ylim; /* Minimum valid diagonal. */
lin const dmax = xlim - yoff; /* Maximum valid diagonal. */
lin const fmid = xoff - yoff; /* Center diagonal of top-down search. */
lin const bmid = xlim - ylim; /* Center diagonal of bottom-up search. */
lin fmin = fmid, fmax = fmid; /* Limits of top-down search. */
lin bmin = bmid, bmax = bmid; /* Limits of bottom-up search. */
lin c; /* Cost. */
bool odd = (fmid - bmid) & 1; /* True if southeast corner is on an odd
diagonal with respect to the northwest. */
fd[fmid] = xoff;
bd[bmid] = xlim;
for (c = 1;; ++c)
{
lin d; /* Active diagonal. */
bool big_snake = 0;
/* Extend the top-down search by an edit step in each diagonal. */
fmin > dmin ? fd[--fmin - 1] = -1 : ++fmin;
fmax < dmax ? fd[++fmax + 1] = -1 : --fmax;
for (d = fmax; d >= fmin; d -= 2)
{
lin x, y, oldx, tlo = fd[d - 1], thi = fd[d + 1];
if (tlo >= thi)
x = tlo + 1;
else
x = thi;
oldx = x;
y = x - d;
while (x < xlim && y < ylim && xv[x] == yv[y])
++x, ++y;
if (x - oldx > SNAKE_LIMIT)
big_snake = 1;
fd[d] = x;
if (odd && bmin <= d && d <= bmax && bd[d] <= x)
{
part->xmid = x;
part->ymid = y;
part->lo_minimal = part->hi_minimal = 1;
return 2 * c - 1;
}
}
/* Similarly extend the bottom-up search. */
bmin > dmin ? bd[--bmin - 1] = LIN_MAX : ++bmin;
bmax < dmax ? bd[++bmax + 1] = LIN_MAX : --bmax;
for (d = bmax; d >= bmin; d -= 2)
{
lin x, y, oldx, tlo = bd[d - 1], thi = bd[d + 1];
if (tlo < thi)
x = tlo;
else
x = thi - 1;
oldx = x;
y = x - d;
while (x > xoff && y > yoff && xv[x - 1] == yv[y - 1])
--x, --y;
if (oldx - x > SNAKE_LIMIT)
big_snake = 1;
bd[d] = x;
if (!odd && fmin <= d && d <= fmax && x <= fd[d])
{
part->xmid = x;
part->ymid = y;
part->lo_minimal = part->hi_minimal = 1;
return 2 * c;
}
}
if (find_minimal)
continue;
/* Heuristic: check occasionally for a diagonal that has made
lots of progress compared with the edit distance.
If we have any such, find the one that has made the most
progress and return it as if it had succeeded.
With this heuristic, for files with a constant small density
of changes, the algorithm is linear in the file size. */
if (200 < c && big_snake && speed_large_files)
{
lin best;
best = 0;
for (d = fmax; d >= fmin; d -= 2)
{
lin dd = d - fmid;
lin x = fd[d];
lin y = x - d;
lin v = (x - xoff) * 2 - dd;
if (v > 12 * (c + (dd < 0 ? -dd : dd)))
{
if (v > best
&& xoff + SNAKE_LIMIT <= x && x < xlim
&& yoff + SNAKE_LIMIT <= y && y < ylim)
{
/* We have a good enough best diagonal;
now insist that it end with a significant snake. */
int k;
for (k = 1; xv[x - k] == yv[y - k]; k++)
if (k == SNAKE_LIMIT)
{
best = v;
part->xmid = x;
part->ymid = y;
break;
}
}
}
}
if (best > 0)
{
part->lo_minimal = 1;
part->hi_minimal = 0;
return 2 * c - 1;
}
best = 0;
for (d = bmax; d >= bmin; d -= 2)
{
lin dd = d - bmid;
lin x = bd[d];
lin y = x - d;
lin v = (xlim - x) * 2 + dd;
if (v > 12 * (c + (dd < 0 ? -dd : dd)))
{
if (v > best
&& xoff < x && x <= xlim - SNAKE_LIMIT
&& yoff < y && y <= ylim - SNAKE_LIMIT)
{
/* We have a good enough best diagonal;
now insist that it end with a significant snake. */
int k;
for (k = 0; xv[x + k] == yv[y + k]; k++)
if (k == SNAKE_LIMIT - 1)
{
best = v;
part->xmid = x;
part->ymid = y;
break;
}
}
}
}
if (best > 0)
{
part->lo_minimal = 0;
part->hi_minimal = 1;
return 2 * c - 1;
}
}
/* Heuristic: if we've gone well beyond the call of duty,
give up and report halfway between our best results so far. */
if (c >= too_expensive)
{
lin fxybest, fxbest;
lin bxybest, bxbest;
fxbest = bxbest = 0; /* Pacify `gcc -Wall'. */
/* Find forward diagonal that maximizes X + Y. */
fxybest = -1;
for (d = fmax; d >= fmin; d -= 2)
{
lin x = MIN (fd[d], xlim);
lin y = x - d;
if (ylim < y)
x = ylim + d, y = ylim;
if (fxybest < x + y)
{
fxybest = x + y;
fxbest = x;
}
}
/* Find backward diagonal that minimizes X + Y. */
bxybest = LIN_MAX;
for (d = bmax; d >= bmin; d -= 2)
{
lin x = MAX (xoff, bd[d]);
lin y = x - d;
if (y < yoff)
x = yoff + d, y = yoff;
if (x + y < bxybest)
{
bxybest = x + y;
bxbest = x;
}
}
/* Use the better of the two diagonals. */
if ((xlim + ylim) - bxybest < fxybest - (xoff + yoff))
{
part->xmid = fxbest;
part->ymid = fxybest - fxbest;
part->lo_minimal = 1;
part->hi_minimal = 0;
}
else
{
part->xmid = bxbest;
part->ymid = bxybest - bxbest;
part->lo_minimal = 0;
part->hi_minimal = 1;
}
return 2 * c - 1;
}
}
}
/* Compare in detail contiguous subsequences of the two files
which are known, as a whole, to match each other.
The results are recorded in the vectors files[N].changed, by
storing 1 in the element for each line that is an insertion or deletion.
The subsequence of file 0 is [XOFF, XLIM) and likewise for file 1.
Note that XLIM, YLIM are exclusive bounds.
All line numbers are origin-0 and discarded lines are not counted.
If FIND_MINIMAL, find a minimal difference no matter how
expensive it is. */
void GnuDiff::compareseq (lin xoff, lin xlim, lin yoff, lin ylim, bool find_minimal)
{
lin * const xv = xvec; /* Help the compiler. */
lin * const yv = yvec;
/* Slide down the bottom initial diagonal. */
while (xoff < xlim && yoff < ylim && xv[xoff] == yv[yoff])
++xoff, ++yoff;
/* Slide up the top initial diagonal. */
while (xlim > xoff && ylim > yoff && xv[xlim - 1] == yv[ylim - 1])
--xlim, --ylim;
/* Handle simple cases. */
if (xoff == xlim)
while (yoff < ylim)
files[1].changed[files[1].realindexes[yoff++]] = 1;
else if (yoff == ylim)
while (xoff < xlim)
files[0].changed[files[0].realindexes[xoff++]] = 1;
else
{
lin c;
struct partition part;
/* Find a point of correspondence in the middle of the files. */
c = diag (xoff, xlim, yoff, ylim, find_minimal, &part);
if (c == 1)
{
/* This should be impossible, because it implies that
one of the two subsequences is empty,
and that case was handled above without calling `diag'.
Let's verify that this is true. */
abort ();
#if 0
/* The two subsequences differ by a single insert or delete;
record it and we are done. */
if (part.xmid - part.ymid < xoff - yoff)
files[1].changed[files[1].realindexes[part.ymid - 1]] = 1;
else
files[0].changed[files[0].realindexes[part.xmid]] = 1;
#endif
}
else
{
/* Use the partitions to split this problem into subproblems. */
compareseq (xoff, part.xmid, yoff, part.ymid, part.lo_minimal);
compareseq (part.xmid, xlim, part.ymid, ylim, part.hi_minimal);
}
}
}
/* Discard lines from one file that have no matches in the other file.
A line which is discarded will not be considered by the actual
comparison algorithm; it will be as if that line were not in the file.
The file's `realindexes' table maps virtual line numbers
(which don't count the discarded lines) into real line numbers;
this is how the actual comparison algorithm produces results
that are comprehensible when the discarded lines are counted.
When we discard a line, we also mark it as a deletion or insertion
so that it will be printed in the output. */
void GnuDiff::discard_confusing_lines (struct file_data filevec[])
{
int f;
lin i;
char *discarded[2];
lin *equiv_count[2];
lin *p;
/* Allocate our results. */
p = (lin*)xmalloc ((filevec[0].buffered_lines + filevec[1].buffered_lines)
* (2 * sizeof *p));
for (f = 0; f < 2; f++)
{
filevec[f].undiscarded = p; p += filevec[f].buffered_lines;
filevec[f].realindexes = p; p += filevec[f].buffered_lines;
}
/* Set up equiv_count[F][I] as the number of lines in file F
that fall in equivalence class I. */
p = (lin*)zalloc (filevec[0].equiv_max * (2 * sizeof *p));
equiv_count[0] = p;
equiv_count[1] = p + filevec[0].equiv_max;
for (i = 0; i < filevec[0].buffered_lines; ++i)
++equiv_count[0][filevec[0].equivs[i]];
for (i = 0; i < filevec[1].buffered_lines; ++i)
++equiv_count[1][filevec[1].equivs[i]];
/* Set up tables of which lines are going to be discarded. */
discarded[0] = (char*)zalloc (filevec[0].buffered_lines
+ filevec[1].buffered_lines);
discarded[1] = discarded[0] + filevec[0].buffered_lines;
/* Mark to be discarded each line that matches no line of the other file.
If a line matches many lines, mark it as provisionally discardable. */
for (f = 0; f < 2; f++)
{
size_t end = filevec[f].buffered_lines;
char *discards = discarded[f];
lin *counts = equiv_count[1 - f];
lin *equivs = filevec[f].equivs;
size_t many = 5;
size_t tem = end / 64;
/* Multiply MANY by approximate square root of number of lines.
That is the threshold for provisionally discardable lines. */
while ((tem = tem >> 2) > 0)
many *= 2;
for (i = 0; i < (lin)end; i++)
{
lin nmatch;
if (equivs[i] == 0)
continue;
nmatch = counts[equivs[i]];
if (nmatch == 0)
discards[i] = 1;
else if (nmatch > (lin)many)
discards[i] = 2;
}
}
/* Don't really discard the provisional lines except when they occur
in a run of discardables, with nonprovisionals at the beginning
and end. */
for (f = 0; f < 2; f++)
{
lin end = filevec[f].buffered_lines;
register char *discards = discarded[f];
for (i = 0; i < end; i++)
{
/* Cancel provisional discards not in middle of run of discards. */
if (discards[i] == 2)
discards[i] = 0;
else if (discards[i] != 0)
{
/* We have found a nonprovisional discard. */
register lin j;
lin length;
lin provisional = 0;
/* Find end of this run of discardable lines.
Count how many are provisionally discardable. */
for (j = i; j < end; j++)
{
if (discards[j] == 0)
break;
if (discards[j] == 2)
++provisional;
}
/* Cancel provisional discards at end, and shrink the run. */
while (j > i && discards[j - 1] == 2)
discards[--j] = 0, --provisional;
/* Now we have the length of a run of discardable lines
whose first and last are not provisional. */
length = j - i;
/* If 1/4 of the lines in the run are provisional,
cancel discarding of all provisional lines in the run. */
if (provisional * 4 > length)
{
while (j > i)
if (discards[--j] == 2)
discards[j] = 0;
}
else
{
register lin consec;
lin minimum = 1;
lin tem = length >> 2;
/* MINIMUM is approximate square root of LENGTH/4.
A subrun of two or more provisionals can stand
when LENGTH is at least 16.
A subrun of 4 or more can stand when LENGTH >= 64. */
while (0 < (tem >>= 2))
minimum <<= 1;
minimum++;
/* Cancel any subrun of MINIMUM or more provisionals
within the larger run. */
for (j = 0, consec = 0; j < length; j++)
if (discards[i + j] != 2)
consec = 0;
else if (minimum == ++consec)
/* Back up to start of subrun, to cancel it all. */
j -= consec;
else if (minimum < consec)
discards[i + j] = 0;
/* Scan from beginning of run
until we find 3 or more nonprovisionals in a row
or until the first nonprovisional at least 8 lines in.
Until that point, cancel any provisionals. */
for (j = 0, consec = 0; j < length; j++)
{
if (j >= 8 && discards[i + j] == 1)
break;
if (discards[i + j] == 2)
consec = 0, discards[i + j] = 0;
else if (discards[i + j] == 0)
consec = 0;
else
consec++;
if (consec == 3)
break;
}
/* I advances to the last line of the run. */
i += length - 1;
/* Same thing, from end. */
for (j = 0, consec = 0; j < length; j++)
{
if (j >= 8 && discards[i - j] == 1)
break;
if (discards[i - j] == 2)
consec = 0, discards[i - j] = 0;
else if (discards[i - j] == 0)
consec = 0;
else
consec++;
if (consec == 3)
break;
}
}
}
}
}
/* Actually discard the lines. */
for (f = 0; f < 2; f++)
{
char *discards = discarded[f];
lin end = filevec[f].buffered_lines;
lin j = 0;
for (i = 0; i < end; ++i)
if (minimal || discards[i] == 0)
{
filevec[f].undiscarded[j] = filevec[f].equivs[i];
filevec[f].realindexes[j++] = i;
}
else
filevec[f].changed[i] = 1;
filevec[f].nondiscarded_lines = j;
}
free (discarded[0]);
free (equiv_count[0]);
}
/* Adjust inserts/deletes of identical lines to join changes
as much as possible.
We do something when a run of changed lines include a
line at one end and have an excluded, identical line at the other.
We are free to choose which identical line is included.
`compareseq' usually chooses the one at the beginning,
but usually it is cleaner to consider the following identical line
to be the "change". */
void GnuDiff::shift_boundaries (struct file_data filevec[])
{
int f;
for (f = 0; f < 2; f++)
{
bool *changed = filevec[f].changed;
bool const *other_changed = filevec[1 - f].changed;
lin const *equivs = filevec[f].equivs;
lin i = 0;
lin j = 0;
lin i_end = filevec[f].buffered_lines;
while (1)
{
lin runlength, start, corresponding;
/* Scan forwards to find beginning of another run of changes.
Also keep track of the corresponding point in the other file. */
while (i < i_end && !changed[i])
{
while (other_changed[j++])
continue;
i++;
}
if (i == i_end)
break;
start = i;
/* Find the end of this run of changes. */
while (changed[++i])
continue;
while (other_changed[j])
j++;
do
{
/* Record the length of this run of changes, so that
we can later determine whether the run has grown. */
runlength = i - start;
/* Move the changed region back, so long as the
previous unchanged line matches the last changed one.
This merges with previous changed regions. */
while (start && equivs[start - 1] == equivs[i - 1])
{
changed[--start] = 1;
changed[--i] = 0;
while (changed[start - 1])
start--;
while (other_changed[--j])
continue;
}
/* Set CORRESPONDING to the end of the changed run, at the last
point where it corresponds to a changed run in the other file.
CORRESPONDING == I_END means no such point has been found. */
corresponding = other_changed[j - 1] ? i : i_end;
/* Move the changed region forward, so long as the
first changed line matches the following unchanged one.
This merges with following changed regions.
Do this second, so that if there are no merges,
the changed region is moved forward as far as possible. */
while (i != i_end && equivs[start] == equivs[i])
{
changed[start++] = 0;
changed[i++] = 1;
while (changed[i])
i++;
while (other_changed[++j])
corresponding = i;
}
}
while (runlength != i - start);
/* If possible, move the fully-merged run of changes
back to a corresponding run in the other file. */
while (corresponding < i)
{
changed[--start] = 1;
changed[--i] = 0;
while (other_changed[--j])
continue;
}
}
}
}
/* Cons an additional entry onto the front of an edit script OLD.
LINE0 and LINE1 are the first affected lines in the two files (origin 0).
DELETED is the number of lines deleted here from file 0.
INSERTED is the number of lines inserted here in file 1.
If DELETED is 0 then LINE0 is the number of the line before
which the insertion was done; vice versa for INSERTED and LINE1. */
GnuDiff::change* GnuDiff::add_change (lin line0, lin line1, lin deleted, lin inserted, struct change *old)
{
struct change *newChange = (change*) xmalloc (sizeof *newChange);
newChange->line0 = line0;
newChange->line1 = line1;
newChange->inserted = inserted;
newChange->deleted = deleted;
newChange->link = old;
return newChange;
}
/* Scan the tables of which lines are inserted and deleted,
producing an edit script in reverse order. */
GnuDiff::change* GnuDiff::build_reverse_script (struct file_data const filevec[])
{
struct change *script = 0;
bool *changed0 = filevec[0].changed;
bool *changed1 = filevec[1].changed;
lin len0 = filevec[0].buffered_lines;
lin len1 = filevec[1].buffered_lines;
/* Note that changedN[len0] does exist, and is 0. */
lin i0 = 0, i1 = 0;
while (i0 < len0 || i1 < len1)
{
if (changed0[i0] | changed1[i1])
{
lin line0 = i0, line1 = i1;
/* Find # lines changed here in each file. */
while (changed0[i0]) ++i0;
while (changed1[i1]) ++i1;
/* Record this change. */
script = add_change (line0, line1, i0 - line0, i1 - line1, script);
}
/* We have reached lines in the two files that match each other. */
i0++, i1++;
}
return script;
}
/* Scan the tables of which lines are inserted and deleted,
producing an edit script in forward order. */
GnuDiff::change* GnuDiff::build_script (struct file_data const filevec[])
{
struct change *script = 0;
bool *changed0 = filevec[0].changed;
bool *changed1 = filevec[1].changed;
lin i0 = filevec[0].buffered_lines, i1 = filevec[1].buffered_lines;
/* Note that changedN[-1] does exist, and is 0. */
while (i0 >= 0 || i1 >= 0)
{
if (changed0[i0 - 1] | changed1[i1 - 1])
{
lin line0 = i0, line1 = i1;
/* Find # lines changed here in each file. */
while (changed0[i0 - 1]) --i0;
while (changed1[i1 - 1]) --i1;
/* Record this change. */
script = add_change (i0, i1, line0 - i0, line1 - i1, script);
}
/* We have reached lines in the two files that match each other. */
i0--, i1--;
}
return script;
}
/* Report the differences of two files. */
GnuDiff::change* GnuDiff::diff_2_files (struct comparison *cmp)
{
lin diags;
int f;
//struct change *e, *p;
struct change *script;
int changes;
read_files (cmp->file, files_can_be_treated_as_binary);
{
/* Allocate vectors for the results of comparison:
a flag for each line of each file, saying whether that line
is an insertion or deletion.
Allocate an extra element, always 0, at each end of each vector. */
size_t s = cmp->file[0].buffered_lines + cmp->file[1].buffered_lines + 4;
bool *flag_space = (bool*)zalloc (s * sizeof(*flag_space));
cmp->file[0].changed = flag_space + 1;
cmp->file[1].changed = flag_space + cmp->file[0].buffered_lines + 3;
/* Some lines are obviously insertions or deletions
because they don't match anything. Detect them now, and
avoid even thinking about them in the main comparison algorithm. */
discard_confusing_lines (cmp->file);
/* Now do the main comparison algorithm, considering just the
undiscarded lines. */
xvec = cmp->file[0].undiscarded;
yvec = cmp->file[1].undiscarded;
diags = (cmp->file[0].nondiscarded_lines
+ cmp->file[1].nondiscarded_lines + 3);
fdiag = (lin*)xmalloc (diags * (2 * sizeof *fdiag));
bdiag = fdiag + diags;
fdiag += cmp->file[1].nondiscarded_lines + 1;
bdiag += cmp->file[1].nondiscarded_lines + 1;
/* Set TOO_EXPENSIVE to be approximate square root of input size,
bounded below by 256. */
too_expensive = 1;
for (; diags != 0; diags >>= 2)
too_expensive <<= 1;
too_expensive = MAX (256, too_expensive);
files[0] = cmp->file[0];
files[1] = cmp->file[1];
compareseq (0, cmp->file[0].nondiscarded_lines,
0, cmp->file[1].nondiscarded_lines, minimal);
free (fdiag - (cmp->file[1].nondiscarded_lines + 1));
/* Modify the results slightly to make them prettier
in cases where that can validly be done. */
shift_boundaries (cmp->file);
/* Get the results of comparison in the form of a chain
of `struct change's -- an edit script. */
script = build_script (cmp->file);
changes = (script != 0);
free (cmp->file[0].undiscarded);
free (flag_space);
for (f = 0; f < 2; f++)
{
free (cmp->file[f].equivs);
free (cmp->file[f].linbuf + cmp->file[f].linbuf_base);
}
}
return script;
}
|