summaryrefslogtreecommitdiffstats
path: root/doc/chalk/developers-plugins.docbook
blob: 9c0ace37321ea868995a0654330d2adb08901553 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
<sect1 id="developers-plugins">
<title>Developing &chalk; Plugins</title>

<sect2 id="developers-plugins-introduction">
<title>Introduction</title>

<para>
&chalk; is infinitely extensible with plugins. Tools, filters, large
chunks of the user interface and even colorspaces are plugins. In fact,
&chalk; recognizes these six types of plugins:
</para>

<itemizedlist>
<listitem><para>colorspaces &mdash; these define the channels that constitute
a single pixel</para></listitem>
<listitem><para>tools &mdash; anything that is done with a mouse or tablet
input device</para></listitem>
<listitem><para>paint operations &mdash; pluggable painting effects for
tools</para></listitem>
<listitem><para>image filters &mdash; change all pixels, or just the selected
pixels in a layer</para></listitem>
<listitem><para>viewplugins &mdash; extend Chalk’s user interface with new
dialog boxes, palettes and operations</para></listitem>
<listitem><para>import/export filters &mdash; read and write all kinds of
image formats</para></listitem>
</itemizedlist>

<para>
&chalk; itself consists of three layered libraries and a directory with some
common support classes: chalkcolor, chalkimage and chalkui. Within
&chalk;, objects can by identified by a <classname>KisID</classname>, that is
the combination of a unique untranslated string (used when saving, for
instance) and a translated string for GUI purposes.
</para><para>
A word on compatibility: &chalk; is still in development. From &chalk; 1.5 to
1.6 not many API changes are expected, but there may be some. From &chalk; 1.6
to 2.0 we will move from &Qt;3 to &Qt;4, from &tde;3 to &tde;4, from
<command>automake</command> to <command>cmake</command>: many changes are to
be expected. If you develop a plugin for &chalk; and choose to do so in
&chalk;’s subversion repository, chances are excellent that we’ll help you
porting. These changes may also render parts of this document out of date.
Always check with the latest API documentation or the header files installed
on your system.
</para>

<sect3 id="developers-plugins-introduction-chalkcolor">
<title>ChalkColor</title>

<para>
The first library is chalkcolor. This library loads the colorspace plugins.
</para><para>
A colorspace plugin should implement the <classname>KisColorSpace</classname>
abstract class or, if the basic capabilities of the new colorspace will be
implemented by <command>lcms</command> (<ulink url="http://www.littlecms.com/"
/>), extend <classname>KisAbstractColorSpace</classname>. The chalkcolor
library could be used from other applications and does not depend on
&koffice;.
</para>
</sect3>

<sect3 id="developers-plugins-introduction-chalkimage">
<title>ChalkImage</title>

<para>
The libchalkimage library loads the filter and paintop plugins and is
responsible for working with image data: changing pixels, compositing and
painting. Brushes, palettes, gradients and patterns are also loaded by
libchalkimage. It is our stated goal to make libchalkimage independent of
&koffice;, but we currently share the gradient loading code with &koffice;.
</para><para>
It is not easy at the moment to add new types of resources such as brushes,
palettes, gradients or patterns to &chalk;. (Adding new brushes, palettes,
gradients and patterns is easy, of course.) &chalk; follows the guidelines of
the Create project (<ulink url="http://create.freedesktop.org/" />) for these.
Adding support for Photoshop's brush file format needs libchalkimage hacking;
adding more gimp brush data files not.
</para><para>
<classname>ChalkImage</classname> loads the following types of plugins:
</para>

<itemizedlist>
<listitem><para>&chalk; filters must extend and implement the abstract class
<classname>KisFilter</classname>,
<classname>KisFilterConfiguration</classname> and possibly
<classname>KisFilterConfigurationWidget</classname>.
An example of a filter is Unsharp Mask.</para></listitem>
<listitem><para>Paint operations or paintops are the set of operations
painting tools suchs as freehand or circle have access to. Examples of
paintops are pen, airbrush or eraser. Paintops should extend the
<classname>KisPaintop</classname> base class. Examples of new paintops could
be a chalk brush, an oilpaint brush or a complex programmable
brush.</para></listitem>
</itemizedlist>

</sect3>

<sect3 id="developers-plugins-introduction-chalkui">
<title>ChalkUI</title>

<para>
The libchalkui library loads the tool and viewplugins. This library is a
&koffice; Part, but also contains a number of widgets that are useful for
graphics applications. Maybe we will have to split this library in chalkpart
and chalkui in the 2.0 release. For now, script writers are not given access
to this library and plugin writers are only allowed to use this library when
writing tools or viewplugins. <classname>ChalkUI</classname> loads the
following types of plugins:
</para>

<itemizedlist>
<listitem><para>Tools are derived from <classname>KisTool</classname> or one
of the specialized tool base classes such as
<classname>KisToolPaint</classname>, <classname>KisToolNonPaint</classname> or
<classname>KisToolFreehand</classname>. A new tool could be a foreground
object selection tool. Painting tools (and that includes tools that paint on
the selection) can use any paintop to determine the way pixels are
changed.</para></listitem>
<listitem><para>Viewplugins are ordinary KParts that use
<command>kxmlgui</command> to insinuate themselves into &chalk;'s user
interface. Menu options, dialogs, toolbars &mdash; any kind of user interface
extension can be a viewplugin. In fact, important functionality like &chalk;'s
scripting support is written as a viewplugin.</para></listitem>
</itemizedlist>

</sect3>

<sect3 id="developers-plugins-introduction-importexport">
<title>Import/Export filters</title>

<para>
Import/Export filters are &koffice; filters, subclasses of
<classname>KoFilter</classname>. Filters read and write image data in any of
the myriad image formats in existence. And example of a new &chalk;
import/export filter could be a PDF filter. Filters are loaded by the
&koffice; libraries.
</para>

</sect3>

</sect2>

<sect2 id="developers-plugins-creating">
<title>Creating plugins</title>

<para>
Plugins are written in C++ and can use all of &tde; and &Qt; and the &chalk;
developer API. Only viewplugins should use the &koffice; API. Don’t worry:
&chalk;’s API’s are quite clear and rather extensively documented (for free
software) and coding your first filter is really easy.
</para><para>
If you do not want to use C++, you can write scripts in Python or Ruby; that
is a different thing altogether, though, and you cannot currently write tools,
colorspaces, paintops or import/export filters as scripts.
</para><para>
&chalk; plugins use &tde;'s parts mechanism for loading, so the parts
documentation at <ulink url="http://developer.kde.org" /> is relevant here, too.
</para><para>
Your distribution should have either installed the relevant header files with
&chalk; itself, or might have split the header files into either a &koffice;
dev or a &chalk; dev package. You can find the API documentation for &chalk;'s
public API at <ulink url="http://koffice.org/developer/apidocs/chalk/html/" />.
</para>

<sect3 id="developers-plugins-creating-automake">
<title>Automake (and CMake)</title>

<para>
&tde; 3.x and thus &koffice; 1.5 and 1.6 use <command>automake</command>;
&tde; 4.0 and &koffice; 2.0 use <command>cmake</command>. This tutorial
describes the <command>automake</command> way of creating plugins. 
<!-- If I have not updated this manual when we release KOffice 2.0, please
remind me to do so. -->
</para><para>
Plugins are &tde; modules and should be tagged as such in their
<filename>Makefile.am</filename>. Filters, tools, paintops, colorspaces and
import/export filters need <literal role="extension">.desktop</literal> files;
viewplugins need a <application>KXMLGui</application>
<filename>pluginname.rc</filename> file in addition. The easiest way to get
started is to checkout the chalk-plugins project from the &koffice; Subversion
repository and use it as the basis for your own project. We intend to prepare
a skeleton &chalk; plugin pack for KDevelop, but haven’t had the time to do
so yet.
</para>

<sect4 id="d-p-c-a-makefile">
<title><filename>Makefile.am</filename></title>

<para>
Let's look at the skeleton for a plugin module. First, the
<filename>Makefile.am</filename>. This is what &tde; uses to generate the
makefile that builds your plugin:

<programlisting>
kde_services_DATA = chalkLIBRARYNAME.desktop

INCLUDES = $(all_includes)

chalkLIBRARYNAME_la_SOURCES = sourcefile1.cc sourcefile2.cc

kde_module_LTLIBRARIES = chalkLIBRARYNAME.la
noinst_HEADERS = header1.h header2.h

chalkLIBRARYNAME_la_LDFLAGS = $(all_libraries) -module $(KDE_PLUGIN)
chalkLIBRARY_la_LIBADD = -lchalkcommon

chalkextensioncolorsfilters_la_METASOURCES = AUTO
</programlisting>

This is the makefile for a filter plugin. Replace
<replaceable>LIBRARYNAME</replaceable> with the name of your work, and you are
set.
</para><para>
If your plugin is a viewplugin, you will likely also install a <literal
role="extension">.rc</literal> file with entries for menubars and toolbars.
Likewise, you may need to install cursors and icons. That is all done through
the ordinary &tde; <filename>Makefile.am</filename> magic incantantions:

<programlisting>
chalkrcdir = $(kde_datadir)/chalk/chalkplugins
chalkrc_DATA = LIBRARYNAME.rc
EXTRA_DIST = $(chalkrc_DATA)

chalkpics_DATA = \
   bla.png \
   bla_cursor.png
chalkpicsdir = $(kde_datadir)/chalk/pics
</programlisting>

</para>
</sect4>

<sect4 id="d-p-c-a-desktop">
<title>Desktop files</title>

<para>
The <literal role="extension">.desktop</literal> file announces the type of plugin:

<programlisting>
[Desktop Entry]
Encoding=UTF-8
Icon=
Name=User-visible Name
ServiceTypes=Chalk/Filter
Type=Service
X-TDE-Library=chalkLIBRARYNAME
X-TDE-Version=2
</programlisting>
</para><para>
Possible ServiceTypes are:
</para>

<itemizedlist>
<listitem><para>Chalk/Filter</para></listitem>
<listitem><para>Chalk/Paintop</para></listitem>
<listitem><para>Chalk/ViewPlugin</para></listitem>
<listitem><para>Chalk/Tool</para></listitem>
<listitem><para>Chalk/ColorSpace</para></listitem>
</itemizedlist>

<para>
File import and export filters use the generic &koffice; filter framework and
need to be discussed separately.
</para>
</sect4>

<sect4 id="d-p-c-a-boilerplate">
<title>Boilerplate</title>

<para>
You also need a bit of boilerplate code that is called by the &tde; part
framework to instantiate the plugin &mdash; a header file and an implementation file.
</para><para>
A header file:
<programlisting>
#ifndef TOOL_STAR_H_
#define TOOL_STAR_H_

#include &lt;kparts/plugin.h&gt;

/**
* A module that provides a star tool.
*/
class ToolStar : public KParts::Plugin
{
   Q_OBJECT
public:
   ToolStar(QObject *parent, const char *name, const QStringList &amp;);
   virtual ~ToolStar();

};

#endif // TOOL_STAR_H_
</programlisting>
</para>

<para>
And an implementation file:
<programlisting>
#include &lt;kinstance.h&gt;
#include &lt;kgenericfactory.h&gt;

#include &lt;kis_tool_registry.h&gt;

#include "tool_star.h"
#include "kis_tool_star.h"


typedef KGenericFactory&lt;ToolStar&gt; ToolStarFactory;
K_EXPORT_COMPONENT_FACTORY( chalktoolstar, ToolStarFactory( "chalk" ) )


ToolStar::ToolStar(QObject *parent, const char *name, const QStringList &amp;)
   : KParts::Plugin(parent, name)
{
   setInstance(ToolStarFactory::instance());
   if ( parent->inherits("KisToolRegistry") )
   {
       KisToolRegistry * r = dynamic_cast&lt;KisToolRegistry*&gt;( parent );
       r -> add(new KisToolStarFactory());
   }

}

ToolStar::~ToolStar()
{
}

#include "tool_star.moc"
</programlisting>
</para>
</sect4>

<sect4 id="d-p-c-a-registries">
<title>Registries</title>

<para>
Tools are loaded by the tool registry and register themselves with the tool
registry. Plugins like tools, filters and paintops are loaded only once: view
plugins are loaded for every view that is created. Note that we register
factories, generally speaking. For instance, with tools a new instance of a
tool is created for every pointer (mouse, stylus, eraser) for every few. And a
new paintop is created whenever a tool gets a mouse-down event.
</para>

<para>
Filters call the filter registry: 
<programlisting>
   if (parent->inherits("KisFilterRegistry")) {
       KisFilterRegistry * manager = dynamic_cast&lt;KisFilterRegistry *&gt;(parent);
       manager->add(new KisFilterInvert());
   }
</programlisting>
</para><para>
Paintops the paintop registry:
<programlisting>
   if ( parent->inherits("KisPaintOpRegistry") ) {
           KisPaintOpRegistry * r = dynamic_cast&lt;KisPaintOpRegistry*&gt;(parent);
           r -> add ( new KisSmearyOpFactory );
   }
</programlisting>
</para><para>
Colorspaces the colorspace registry (with some complications):
<programlisting>
   if ( parent->inherits("KisColorSpaceFactoryRegistry") ) {
	KisColorSpaceFactoryRegistry * f = dynamic_cast&lt;isColorSpaceFactoryRegistry*&gt;(parent);

       KisProfile *defProfile = new KisProfile(cmsCreate_sRGBProfile());
       f->addProfile(defProfile);

       KisColorSpaceFactory * csFactory = new KisRgbColorSpaceFactory();
       f->add(csFactory);
   
       KisColorSpace * colorSpaceRGBA = new KisRgbColorSpace(f, 0);
       KisHistogramProducerFactoryRegistry::instance() -> add(
               new KisBasicHistogramProducerFactory&lt;KisBasicU8HistogramProducer&gt;
               (KisID("RGB8HISTO", i18n("RGB8 Histogram")), colorSpaceRGBA) );
   }
</programlisting>
</para><para>
View plugins do not have to register themselves, and they get access to a
<classname>KisView</classname> object:
<programlisting>
   if ( parent->inherits("KisView") )
   {
       setInstance(ShearImageFactory::instance());
       setXMLFile(locate("data","chalkplugins/shearimage.rc"), true);

       (void) new KAction(i18n("&amp;Shear Image..."), 0, 0, this, SLOT(slotShearImage()), actionCollection(), "shearimage");
       (void) new KAction(i18n("&amp;Shear Layer..."), 0, 0, this, SLOT(slotShearLayer()), actionCollection(), "shearlayer");

       m_view = (KisView*) parent;
   }
</programlisting>
</para><para>
Remember that this means that a view plugin will be created for every view the
user creates: splitting a view means loading all view plugins again.
</para>
</sect4>

<sect4 id="d-p-c-a-versioning">
<title>Plugin versioning</title>

<para>
&chalk; 1.5 loads plugins with <literal>X-TDE-Version=2</literal> set in the
<literal role="extension">.desktop</literal> file. &chalk; 1.6 plugins will
probably be binary incompatible with 1.5 plugins and will need the version
number 3. &chalk; 2.0 plugins will need the version number 3. Yes, this is not
entirely logical.
</para>

</sect4>
</sect3>
</sect2>

<sect2 id="developers-plugins-colorspaces">
<title>Colorspaces</title>

<para>
Colorspaces implement the <classname>KisColorSpace</classname> pure virtual
class. There are two types of colorspaces: those that can use
<command>lcms</command> for transformations between colorspaces, and those
that are too weird for <command>lcms</command> to handle. Examples of the
first are cmyk, rgb, yuv. An example of the latter is watercolor or wet &amp;
sticky. Colorspaces that use <command>lcms</command> can be derived from
<classname>KisAbstractColorSpace</classname>, or of one of the base classes
that are specialized for a certain number of bits per channel.
</para><para>
Implementing a colorspace is pretty easy. The general principle is that
colorspaces work on a simple array of bytes. The interpretation of these bytes
is up to the colorspace. For instance, a pixel in 16-bit GrayA consists of
four bytes: two bytes for the gray value and two bytes for the alpha value.
You are free to use a struct to work with the memory layout of a pixel in your
colorspace implementation, but that representation is not exported. The only
way the rest of &chalk; can know what channels and types of channels your
colorspace pixels consist of is through the
<classname>KisChannelInfo</classname> class.
</para><para>
Filters and paintops make use of the rich set of methods offered by
<classname>KisColorSpace</classname> to do their work. In many cases, the
default implementation in <classname>KisAbstractColorSpace</classname> will
work, but more slowly than a custom implementation in your own colorspace
because <classname>KisAbstractColorSpace</classname> will convert all pixels
to 16-bit L*a*b and back.
</para>

<sect3 id="developers-plugins-colorspaces-kischannelinfo">
<title><classname>KisChannelInfo</classname></title>

<programlisting>
(http://websvn.kde.org/trunk/koffice/chalk/chalkcolor/kis_channelinfo.h)
</programlisting>
<para>
This class defines the channels that make up a single pixel in a particular
colorspace. A channel has the following important characteristics:
</para>
<itemizedlist>
<listitem><para>a name for display in the user interface</para></listitem>
<listitem><para>a position: the byte where the bytes representing this channel
start in the pixel.</para></listitem>
<listitem><para>a type: color, alpha, substance or substrate. Color is plain
color, alpha is see-throughishness, substance is a representation of amount of
pigment or things like that, substrate is the representation of the canvas.
(Note that this may be refactored at the drop of a hat.)</para></listitem>
<listitem><para>a valuetype: byte, short, integer, float — or
other.</para></listitem>
<listitem><para>size: the number of bytes this channel takes</para></listitem>
<listitem><para>color: a <classname>QColor</classname> representation of this
channel for user interface visualization, for instance in
histograms.</para></listitem>
<listitem><para>an abbreviaton for use in the GUI when there’s not much
space</para></listitem>
</itemizedlist>
</sect3>

<sect3 id="developers-plugins-colorspaces-kiscompositeop">
<title><classname>KisCompositeOp</classname></title>

<para>
As per original Porter-Duff, there are many ways of combining pixels to get a
new color. The <classname>KisCompositeOp</classname> class defines most of
them: this set is not easily extensible except by hacking the chalkcolor
library.
</para><para>
A colorspace plugin can support any subset of these possible composition
operations, but the set must always include "OVER" (same as "NORMAL") and
"COPY". The rest are more or less optional, although more is better, of
course.
</para>
</sect3>

<sect3 id="developers-plugins-colorspaces-kiscolorspace">
<title><classname>KisColorSpace</classname></title>

<para>
The methods in the <classname>KisColorSpace</classname> pure virtual classs
can be divided into a number of groups: conversion, identification and
manipulation.
</para><para>
All classes must be able to convert a pixel from and to 8 bit RGB (i.e., a
<classname>QColor</classname>), and preferably also to and from 16 bit L*a*b.
Additionally, there is a method to convert to any colorspace from the current
colorspace.
</para><para>
Colorspaces are described by the <classname>KisChannelInfo</classname> vector,
number of channels, number of bytes in a single pixel, whether it supports
High Dynamic Range images and more.
</para><para>
Manipulation is for instance the combining of two pixels in a new
pixel: bitBlt, darkening or convolving of pixels.
</para><para>
Please consult the API documentation for a full description of all methods you
need to implement in a colorspace.
</para><para>
<classname>KisAbstractColorSpace</classname> implements many of the virtual
methods of <classname>KisColorSpace</classname> using functions from the
<command>lcms</command> library. On top of
<classname>KisAbstractColorSpace</classname> there are base colorspace classes
for 8 and 16 bit integer and 16 and 32 bit float colorspaces that define
common operations to move between bit depths.
</para>

</sect3>
</sect2>

<sect2 id="developers-plugins-filters">
<title>Filters</title>

<para>
Filters are plugins that examine the pixels in a layer and them make changes
to them. Although &chalk; uses an efficient tiled memory backend to store
pixels, filter writers do not have to bother with that. When writing a filter
plugin for the &Java; imaging API, Photoshop or The Gimp, you need to take care
of tile edges and <quote>cobble</quote> tiles together: &chalk; hides that
implementation detail.
</para>
<note><para>Note that it is theoretically easy to replace the current tile
image data storage backend with another backend, but that backens are not true
plugins at the moment, for performance reasons.</para></note>
<para>
&chalk; uses iterators to read and write pixel values. Alternatively, you can
read a block of pixels into a memory buffer, mess with it and then write it
back as a block. But that is not necessarily more efficient, it may even be
slower than using the iterators; it may just be more convenient. See the API
documentation.
</para><para>
&chalk; images are composed of layers, of which there are currently four
kinds: paint layers, group layers, adjustment layers (that contain a filter
that is applied dynamically to layers below the adjustment layer) and part
layers. Filters always operate on paint layers. Paint layers contain paint
devices, of the class <classname>KisPaintDevice</classname>. A paint device in
its turn gives access to the actual pixels.
</para><para>
<classname>PaintDevice</classname>s are generally passed around wrapped in
shared pointers. A shared pointer keeps track of in how many places the paint
device is currently used and deletes the paint device when it is no longer
used anywhere. You recognize the shared pointer version of a paint device
through its <literal>SP</literal> suffix. Just remember that you never have to
explicitly delete a <classname>KisPaintDeviceSP</classname>.
</para><para>
Let's examine a very simple filter, one that inverts every pixel. The code for
this filter is in the <filename
class="directory">koffice/chalk/plugins/filters/example</filename> directory. 
The main method is 
<programlisting>
KisFilterInvert::process(KisPaintDeviceSP src, KisPaintDeviceSP dst,
                        KisFilterConfiguration* /*config*/, const QRect&amp; rect).
</programlisting>
The function gets passed two paint devices, a configuration object (which is
not used in this simple filter) and a <varname>rect</varname>. The
<varname>rect</varname> describes the area of the
paint device which the filter should act on. This area is described by
integers, which means no sub-pixel accuracy.
</para><para>
The <varname>src</varname> paint device is for reading from, the
<varname>dst</varname> paint device for writing to. These parameters may point
to the same actual paint device, or be two different paint devices. (Note:
this may change to only one paint device in the future.)
</para><para>
Now, let's look at the code line by line:
</para>
<programlisting>
void KisFilterInvert::process(KisPaintDeviceSP src, KisPaintDeviceSP dst,
                             KisFilterConfiguration* /*config*/, const QRect&amp; rect)
{
   Q_ASSERT(src != 0);
   Q_ASSERT(dst != 0);

   KisRectIteratorPixel srcIt = src->createRectIterator(rect.x(), rect.y(), rect.width(), rect.height(), false); <co id="invert1" />
   KisRectIteratorPixel dstIt = dst->createRectIterator(rect.x(), rect.y(), rect.width(), rect.height(), true ); <co id="invert2" />

   int pixelsProcessed = 0;
   setProgressTotalSteps(rect.width() * rect.height());

   KisColorSpace * cs = src->colorSpace();
   TQ_INT32 psize = cs->pixelSize();

   while( ! srcIt.isDone() )
   {
       if(srcIt.isSelected()) <co id="invert3" />
       {
           memcpy(dstIt.rawData(), srcIt.oldRawData(), psize); <co id="invert4" />

           cs->invertColor( dstIt.rawData(), 1); <co id="invert5" />
       }
       setProgress(++pixelsProcessed);
       ++srcIt;
       ++dstIt;
   }
   setProgressDone(); // Must be called even if you don't really support progression
}
</programlisting>

<calloutlist>
<callout arearefs="invert1">
<para>This creates an iterator to read the existing pixels. Chalk has three
types of iterators: horizontal, vertical and rectangular. The rect iterator
takes the most efficient path through the image data, but does not guarantee
anything about the location of the next pixel it returns. That means that you
cannot be sure that the pixel you will retrieve next will be adjacent to the
pixel you just got. The horizontal and vertical line iterators do guarantee
the location of the pixels they return.
</para></callout>
<callout arearefs="invert2"><para>
(2) We create the destination iterator with the <literal>write</literal>
setting to <literal>true</literal>. This means that if the destination paint
device is smaller than the rect we write, it will automatically be enlarged to
fit every pixel we iterate over. Note that we have got a potential bug here:
if <varname>dst</varname> and <varname>src</varname> are not the same device,
then it is quite possible that the pixels returned by the iterators do not
correspond. For every position in the iterator, <varname>src</varname> may be,
for example, at 165,200, while <varname>dst</varname> could be at 20,8 &mdash;
and therefore the copy we perform below may distort the image...
</para></callout>
<callout arearefs="invert3"><para>
Want to know if a pixel is selected? That is easy &mdash; use the
<methodname>isSelected</methodname> method. But selectedness is not a binary
property of a pixel, a pixel can be half selected, barely selected or almost
completely selected. That value you can also got from the iterator. Selections
are actually a mask paint device with a range between 0 and 255, where 0 is
completely unselected and 255 completely selected. The iterator has two
methods: <methodname>isSelected()</methodname> and
<methodname>selectedNess()</methodname>. The first returns true if a pixel is
selected to any extent (i.e., the mask value is greater than 1), the other
returns the maskvalue.
</para></callout>
<callout arearefs="invert4"><para>
As noted above, this <literal>memcpy</literal> is a big bad bug...
<methodname>rawData()</methodname> returns the array of bytes which is the
current state of the pixel; <methodname>oldRawData()</methodname> returns the
array of bytes as it was before we created the iterator. However, we may be
copying the wrong pixel here. In actual practice, that will not happen too
often, unless <varname>dst</varname> already exists and is not aligned with
<varname>src</varname>.
</para></callout>
<callout arearefs="invert5"><para>
But this is correct: instead of figuring out which byte represents which
channel, we use a function supplied by all colorspaces to invert the current
pixel. The colorspaces have a lot of pixel operations you can make use of.
</para></callout>
</calloutlist>

<para>
This is not all there is to creating a filter. Filters have two other
important components: a configuration object and a configuration widget. The
two interact closely. The configuration widget creates a configuration object,
but can also be filled from a pre-existing configuration object. Configuration
objects can represtent themselves as XML and can be created from XML. That is
what makes adjustment layers possible.
</para>

<sect3 id="developers-plugins-filters-iterators">
<title>Iterators</title>

<para>
There are three types of iterators: 
</para>

<itemizedlist>
<listitem><para>Horizontal lines</para></listitem>
<listitem><para>Vertical lines</para></listitem>
<listitem><para>Rectangular iterors</para></listitem>
</itemizedlist>

<para>
The horizontal and vertical line iterators have a method to move the iterator
to the next row or column: <methodname>nextRow()</methodname> and
<methodname>nextCol()</methodname>. Using these is much faster than creating a
new iterator for every line or column.
</para><para>
Iterators are thread-safe in &chalk;, so it is possible to divide the work
over multiple threads. However, future versions of &chalk; will use the
<methodname>supportsThreading()</methodname> method to determine whether your
filter can be applied to chunks of the image (&ie;, all pixels modified
independently, instead of changed by some value determined from an examination
of all pixels in the image) and automatically thread the execution your
filter.
</para>
</sect3>

<sect3 id="developers-plugins-filters-kisfilterconfiguration">
<title><classname>KisFilterConfiguration</classname></title>

<para>
<classname>KisFilterConfiguration</classname> is a structure that is used to
save filter settings to disk, for instance for adjustment layers. The
scripting plugin uses the property map that’s at the back of
<classname>KisFilterConfigaration</classname> to make it possible to script
filters. Filters can provide a custom widget that &chalk; will show in the
filters gallery, the filter preview dialog or the tool option tab of the
paint-with-filters tool.
</para>
<para>
An example, taken from the oilpaint effect filter:
</para>
<programlisting>
class KisOilPaintFilterConfiguration : public KisFilterConfiguration
{

public:

   KisOilPaintFilterConfiguration(TQ_UINT32 brushSize, TQ_UINT32 smooth)
       : KisFilterConfiguration( "oilpaint", 1 )
       {
           setProperty("brushSize", brushSize);
           setProperty("smooth", smooth);
       };
public:

   inline TQ_UINT32 brushSize() { return getInt("brushSize"); };
   inline TQ_UINT32 smooth() {return getInt("smooth"); };

};
</programlisting>
</sect3>

<sect3 id="developers-plugins-filters-kisfilterconfigurationwidget">
<title><classname>KisFilterConfigurationWidget</classname></title>

<para>
Most filters can be tweaked by the user. You can create a configuration widget
that Chalk will use where-ever your filter is used. An example:
</para>

<para>
<screenshot>
<screeninfo>The <guilabel>Oilpaint</guilabel> dialog</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="dialogs-oilpaint.png" format="PNG" />
</imageobject>
<textobject>
<phrase>The <guilabel>Oilpaint</guilabel> dialog</phrase>
</textobject>
<caption><para>The <guilabel>Oilpaint</guilabel> dialog</para></caption>
</mediaobject>
</screenshot>
</para>

<para>
Note that only the left-hand side of this dialog is your responsibility:
&chalk; takes care of the rest. There are three ways of going about creating
an option widget:
</para>

<itemizedlist>
<listitem><para>Use &Qt; Designer to create a widget base, and subclass it for
your filter</para></listitem>
<listitem><para>Use one of the simple widgets that show a number of sliders
for lists of integers, doubles or bools. These are useful if, like the above
screenshot, your filter can be configured by a number of integers, doubles or
bools. See the API dox for <classname>KisMultiIntegerFilterWidget</classname>,
<classname>KisMultiDoubleFilterWidget</classname> and
<classname>KisMultiBoolFilterWidget</classname>.</para></listitem>
<listitem><para>Hand-code a widget. This is not recommended, and if you do so
and want your filter to become part of &chalk;’s official release, then I’ll ask
you to replate your hand-coded widget with a &Qt; Designer
widget.</para></listitem>
</itemizedlist>

<para>
The oilpaint filter uses the multi integer widget:
</para>

<programlisting>
KisFilterConfigWidget * KisOilPaintFilter::createConfigurationWidget(QWidget* parent, KisPaintDeviceSP /*dev*/)
{
   vKisIntegerWidgetParam param;
   param.push_back( KisIntegerWidgetParam( 1, 5, 1, i18n("Brush size"), "brushSize" ) );
   param.push_back( KisIntegerWidgetParam( 10, 255, 30, i18n("Smooth"), "smooth" ) );
   return new KisMultiIntegerFilterWidget(parent, id().id().ascii(), id().id().ascii(), param );
}

KisFilterConfiguration* KisOilPaintFilter::configuration(QWidget* nwidget)
{
   KisMultiIntegerFilterWidget* widget = (KisMultiIntegerFilterWidget*) nwidget;
   if( widget == 0 )
   {
       return new KisOilPaintFilterConfiguration( 1, 30);
   } else {
       return new KisOilPaintFilterConfiguration( widget->valueAt( 0 ), widget->valueAt( 1 ) );
   }
}

std::list&lt;KisFilterConfiguration*&gt; KisOilPaintFilter::listOfExamplesConfiguration(KisPaintDeviceSP )
{
   std::list&lt;KisFilterConfiguration*&gt; list;
   list.insert(list.begin(), new KisOilPaintFilterConfiguration( 1, 30));
   return list;
}
</programlisting>

<para>
You can see how it works: fill a vector with your integer parameters and
create the widget. The <methodname>configuration()</methodname> method
inspects the widget and creates the right filter configuration object, in this
case, of course, <classname>KisOilPaintFilterConfiguration</classname>. The
<methodname>listOfExamplesConfiguration</methodname> method (which should be
renamed to correct English...) returns a list with example configuration
objects for the filters gallery dialog.
</para>
</sect3>

<sect3 id="developers-plugins-filters-conclusion">
<title>Filters conclusion</title>

<para>
There’s more to coding interesting filters, of course, but with this
explanation, the API documentation and access to our source code, you should
be able to get started. Don’t hesitate to contact the &chalk; developers on
IRC or on the mailing list.
</para>
</sect3>

</sect2>

<sect2 id="developers-plugins-tools">
<title>Tools</title>

<para>
Tools appear in &chalk;’s toolbox. This means that there is limited space for
new tools &mdash; think carefully whether a paint operation isn’t enough for
your purposes. Tools can use the mouse/tablet and keyboard in complex ways,
which paint operations cannot. This is the reason that Duplicate is a tool,
but airbrush a paint operation.
</para><para>
Be careful with static data in your tool: a new instance of your tool is
created for every input device: mouse, stylus, eraser, airbrush &mdash; whatever.
Tools come divided into logical groups:
</para>
<itemizedlist>
<listitem><para>shape drawing tools (circle, rect)</para></listitem>
<listitem><para>freehand drawing tools (brush)</para></listitem>
<listitem><para>transform tools that mess up the geometry of a
layer</para></listitem>
<listitem><para>fill tools (like bucket fill or gradient)</para></listitem>
<listitem><para>view tools (that don’t change pixels, but alter the way you
view the canvas, such as zoom)</para></listitem>
<listitem><para>select tools (that change the selection
mask)</para></listitem>
</itemizedlist>

<para>
The tool interface is described in the API documentation for
<classname>KisTool</classname>. There are three subclasses:
<classname>KisToolPaint</classname>, <classname>KisToolNonPaint</classname>
and <classname>KisToolShape</classname> (which is actually a subclass of
<classname>KisToolPaint</classname>) that specialize
<classname>KisTool</classname> for painting tasks (i.e., changing pixels) ,
non-painting tasks and shape painting tasks.
</para><para>
A tool has an option widget, just like filters. Currently, the option widgets
are shown in a tab in a dock window. We may change that to a strip under the
main menu (which then replaces the toolbar) for &chalk; 2.0, but for now,
design your option widget to fit in a tab. As always, it’s best to use &Qt;
Designer for the design of the option widget.
</para><para>
A good example of a tool is the star tool:
</para>

<screen>
kis_tool_star.cc       Makefile.am   tool_star_cursor.png  wdg_tool_star.ui
kis_tool_star.h        Makefile.in   tool_star.h           
chalktoolstar.desktop  tool_star.cc  tool_star.png         
</screen>

<para>
As you see, you need two images: one for the cursor and one for the toolbox.
<filename>tool_star.cc</filename> is just the plugin loader, similar to what
we have seen above. The real meat is in the implementation:
</para>

<programlisting>
KisToolStar::KisToolStar()
   : KisToolShape(i18n("Star")),
     m_dragging (false),
     m_currentImage (0)
{
   setName("tool_star");
   setCursor(KisCursor::load("tool_star_cursor.png", 6, 6));
   m_innerOuterRatio=40;
   m_vertices=5;
}
</programlisting>

<para>
The constructor sets the internal name &mdash; which is not translated
&mdash; and the call to the superclass sets the visible name. We also load the
cursor image and set a number of variables.
</para>

<programlisting>
void KisToolStar::update (KisCanvasSubject *subject)
{
   KisToolShape::update (subject);
   if (m_subject)
       m_currentImage = m_subject->currentImg();
}
</programlisting>

<para>
The <methodname>update()</methodname> method is called when the tool is
selected. This is not a <classname>KisTool</classname> method, but a
<classname>KisCanvasObserver</classname> method. Canvas observers are notified
whenever something changes in the view, which can be useful for tools.
</para><para>
The following methods (<methodname>buttonPress</methodname>,
<methodname>move</methodname> and <methodname>buttonRelease</methodname>) are
called by &chalk; when the input device (mouse, stylus, eraser etc.) is
pressed down, moved or released. Note that you also get move events if the
mouse button isn’t pressed. The events are not the regular &Qt; events, but
synthetic &chalk; events because we make use of low-level trickery to get
enough events to draw a smooth line. By default, toolkits like &Qt; (and GTK)
drop events if they are too busy to handle them, and we want them all.
</para>

<programlisting>
void KisToolStar::buttonPress(KisButtonPressEvent *event)
{
   if (m_currentImage &amp;&amp; event->button() == LeftButton) {
       m_dragging = true;
       m_dragStart = event->pos();
       m_dragEnd = event->pos();
       m_vertices = m_optWidget->verticesSpinBox->value();
       m_innerOuterRatio = m_optWidget->ratioSpinBox->value();
   }
}

void KisToolStar::move(KisMoveEvent *event)
{
   if (m_dragging) {
       // erase old lines on canvas
       draw(m_dragStart, m_dragEnd);
       // move (alt) or resize star
       if (event->state() &amp; Qt::AltButton) {
           KisPoint trans = event->pos() - m_dragEnd;
           m_dragStart += trans;
           m_dragEnd += trans;
       } else {
           m_dragEnd = event->pos();
       }
       // draw new lines on canvas
       draw(m_dragStart, m_dragEnd);
   }
}

void KisToolStar::buttonRelease(KisButtonReleaseEvent *event)
{
   if (!m_subject || !m_currentImage)
       return;

   if (m_dragging &amp;&amp; event->button() == LeftButton) {
       // erase old lines on canvas
       draw(m_dragStart, m_dragEnd);
       m_dragging = false;

       if (m_dragStart == m_dragEnd)
           return;

       if (!m_currentImage)
           return;

       if (!m_currentImage->activeDevice())
           return;
       
       KisPaintDeviceSP device = m_currentImage->activeDevice ();;
       KisPainter painter (device);
       if (m_currentImage->undo()) painter.beginTransaction (i18n("Star"));

       painter.setPaintColor(m_subject->fgColor());
       painter.setBackgroundColor(m_subject->bgColor());
       painter.setFillStyle(fillStyle());
       painter.setBrush(m_subject->currentBrush());
       painter.setPattern(m_subject->currentPattern());
       painter.setOpacity(m_opacity);
       painter.setCompositeOp(m_compositeOp);
       KisPaintOp * op =
	   KisPaintOpRegistry::instance()->paintOp(m_subject->currentPaintop(), m_subject->currentPaintopSettings(), &amp;painter);
       painter.setPaintOp(op); // Painter takes ownership

       vKisPoint coord = starCoordinates(m_vertices, m_dragStart.x(), m_dragStart.y(), m_dragEnd.x(), m_dragEnd.y());

       painter.paintPolygon(coord);
       
       device->setDirty( painter.dirtyRect() );
       notifyModified();

       if (m_currentImage->undo()) {
           m_currentImage->undoAdapter()->addCommand(painter.endTransaction());
       }
   }
}
</programlisting>

<para>
The <methodname>draw()</methodname> method is an internal method of
<classname>KisToolStar</classname> and draws the outline of the star. We call
this from the <methodname>move()</methodname> method to give the user feedback
of the size and shape of their star. Note that we use the
<varname>Qt::NotROP</varname> raster operation, which means that calling
<methodname>draw()</methodname> a second time with the same start and end
point the previously drawn star will be deleted.
</para>

<programlisting>
void KisToolStar::draw(const KisPoint&amp; start, const KisPoint&amp; end )
{
   if (!m_subject || !m_currentImage)
       return;

   KisCanvasController *controller = m_subject->canvasController();
   KisCanvas *canvas = controller->kiscanvas();
   KisCanvasPainter p (canvas);
   QPen pen(Qt::SolidLine);

   KisPoint startPos;
   KisPoint endPos;
   startPos = controller->windowToView(start);
   endPos = controller->windowToView(end);

   p.setRasterOp(Qt::NotROP);

   vKisPoint points = starCoordinates(m_vertices, startPos.x(), startPos.y(), endPos.x(), endPos.y());

   for (uint i = 0; i &lt; points.count() - 1; i++) {
       p.drawLine(points[i].floorQPoint(), points[i + 1].floorQPoint());
   }
   p.drawLine(points[points.count() - 1].floorQPoint(), points[0].floorQPoint());

   p.end ();
}
</programlisting>

<para>
The <methodname>setup()</methodname> method is essential: here we create the
action that will be plugged into the toolbox so users can actually select the
tool. We also assign a shortcut key. Note that there’s some hackery going on:
remember that we create an instance of the tool for every input device. This
also means that we call <methodname>setup()</methodname> for every input
device and that means that an action with the same name is added several times
to the action collection. However, everything seems to work, so why worry?
</para>

<programlisting>
void KisToolStar::setup(KActionCollection *collection)
{
   m_action = static_cast&lt;KRadioAction *&gt;(collection->action(name()));

   if (m_action == 0) {
       KShortcut shortcut(Qt::Key_Plus);
       shortcut.append(KShortcut(Qt::Key_F9));
       m_action = new KRadioAction(i18n("&amp;Star"),
                                   "tool_star",
                                   shortcut,
                                   this,
                                   SLOT(activate()),
                                   collection,
                                   name());
       TQ_CHECK_PTR(m_action);

       m_action->setToolTip(i18n("Draw a star"));
       m_action->setExclusiveGroup("tools");
       m_ownAction = true;
   }
}
</programlisting>

<para>
The <methodname>starCoordinates()</methodname> method contains some funky math
&mdash; but is not too interesting for the discussion of how to create a tool
plugins.
</para>

<programlisting>
KisPoint KisToolStar::starCoordinates(int N, double mx, double my, double x, double y)
{
   double R=0, r=0;
   TQ_INT32 n=0;
   double angle;

   vKisPoint starCoordinatesArray(2*N);

   // the radius of the outer edges
   R=sqrt((x-mx)*(x-mx)+(y-my)*(y-my));

   // the radius of the inner edges
   r=R*m_innerOuterRatio/100.0;

   // the angle
   angle=-atan2((x-mx),(y-my));

   //set outer edges
   for(n=0;n&lt;N;n++){
       starCoordinatesArray[2*n] = KisPoint(mx+R*cos(n * 2.0 * M_PI / N + angle),my+R*sin(n *2.0 * M_PI / N+angle));
   }

   //set inner edges
   for(n=0;n&lt;N;n++){
       starCoordinatesArray[2*n+1] = KisPoint(mx+r*cos((n + 0.5) * 2.0 * M_PI / N + angle),my+r*sin((n +0.5) * 2.0 * M_PI / N + angle));
   }

   return starCoordinatesArray;
}
</programlisting>

<para>
The <methodname>createOptionWidget()</methodname> method is called to create
the option widget that &chalk; will show in the tab. Since there is a tool per
input device per view, the state of a tool can be kept in the tool. This
method is only called once: the option widget is stored and retrieved the next
time the tool is activated.
</para>

<programlisting>
QWidget* KisToolStar::createOptionWidget(QWidget* parent)
{
   QWidget *widget = KisToolShape::createOptionWidget(parent);

   m_optWidget = new WdgToolStar(widget);
   TQ_CHECK_PTR(m_optWidget);

   m_optWidget->ratioSpinBox->setValue(m_innerOuterRatio);

   QGridLayout *optionLayout = new QGridLayout(widget, 1, 1);
   super::addOptionWidgetLayout(optionLayout);

   optionLayout->addWidget(m_optWidget, 0, 0);

   return widget;
}
</programlisting>

<sect3 id="developers-plugins-tools-conclusions">
<title>Tool Conclusions</title>

<para>
Tools are relatively simple plugins to create. You need to combine the
<classname>KisTool</classname> and <classname>KisCanvasObserver</classname>
interfaces in order to effectively create a tool. 
</para>

</sect3>

</sect2>

<sect2 id="developers-plugins-paintoperations">
<title>Paint operations</title>

<para>
PaintOps are one of the more innovative types of plugins in Chalk (together
with pluggable colorspaces). A paint operation defines how tools change the
pixels they touch. Airbrush, aliased pencil or antialiased pixel brush: these
are all paint operations. But you could &mdash; with a lot of work &mdash;
create a paintop that reads Corel Painter XML brush definitions and uses those
to determine how painting is done.
</para><para>
Paint operations are instantiated when a paint tool receives a
<literal>mouseDown</literal> event and are deleted when the mouseUp event is
received by a paint tool. In between, the paintop can keep track of previous
positions and other data, such as pressure levels if the user uses a tablet.
</para><para>
The basic operation of a paint operation is to change pixels at the cursor
position of a paint tool. That can be done only once, or the paint op can
demand to be run at regular intervals, using a timer. The first would be
useful for a pencil-type paint op, the second, of course,  for an
airbrush-type paintop.
</para><para>
Paintops can have a small configuration widget which is placed in a toolbar.
Thus, paintop configuration widgets need to have a horizontal layout of
widgets that are not higher than a toolbar button. Otherwise, &chalk; will
look very funny.
</para><para>
Let’s look at a simple paintop plugin, one that shows a little bit of
programmatic intelligence. First, in the header file, there’s a factory
defined. This factory creates a paintop when the active tool needs one:
</para>

<programlisting>
public:
   KisSmearyOpFactory() {}
   virtual ~KisSmearyOpFactory() {}

   virtual KisPaintOp * createOp(const KisPaintOpSettings *settings, KisPainter * painter);
   virtual KisID id() { return KisID("paintSmeary", i18n("Smeary Brush")); }
   virtual bool userVisible(KisColorSpace * ) { return false; }
   virtual QString pixmap() { return ""; }

};
</programlisting>

<para>
The factory also contains the <classname>KisID</classname> with the public and
private name for the paintop &mdash; make sure your paintop’s private name
does not clash with another paintop! &mdash; and may optionally return a
pixmap. &chalk; can then show the pixmap together with the name for visual
identifcation of your paintop. For instance, a painter’s knife paintop would
have the image of such an implement.
</para><para>
The implementation of a paintop is very straightforward:
</para>

<programlisting>
KisSmearyOp::KisSmearyOp(KisPainter * painter)
   : KisPaintOp(painter)
{
}

KisSmearyOp::~KisSmearyOp()
{
}
void KisSmearyOp::paintAt(const KisPoint &amp;pos, const KisPaintInformation&amp; info)
{
</programlisting>

<para>
The <methodname>paintAt()</methodname> method really is where it’s at, with
paintops. This method receives two parameters: the current position (which is
in floats, not in whole pixels) and a
<classname>KisPaintInformation</classname> object. which contains the
pressure, x and y tilt, and movement vector, and may in the future be extended
with other information.
</para>

<programlisting>
   if (!m_painter->device()) return;

   KisBrush *brush = m_painter->brush();
</programlisting>

<para>
A <classname>KisBrush</classname> is the representation of a Gimp brush file:
that is a mask, either a single mask or a series of masks. Actually, we don’t
use the brush here, except to determine the <quote>hotspot</quote> under the
cursor.
</para>

<programlisting>
   Q_ASSERT(brush);

   if (!brush) return;

   if (! brush->canPaintFor(info) )
       return;

   KisPaintDeviceSP device = m_painter->device();
   KisColorSpace * colorSpace = device->colorSpace();
   KisColor kc = m_painter->paintColor();
   kc.convertTo(colorSpace);

   KisPoint hotSpot = brush->hotSpot(info);
   KisPoint pt = pos - hotSpot;

   // Split the coordinates into integer plus fractional parts. The integer
   // is where the dab will be positioned and the fractional part determines
   // the sub-pixel positioning.
   TQ_INT32 x, y;
   double xFraction, yFraction;

   splitCoordinate(pt.x(), &amp;x, &amp;xFraction);
   splitCoordinate(pt.y(), &amp;y, &amp;yFraction);

   KisPaintDeviceSP dab = new KisPaintDevice(colorSpace, "smeary dab");
   TQ_CHECK_PTR(dab);
</programlisting>

<para>
We don’t change the pixels of a paint device directly: instead we create a
small paint device, a dab, and composite that onto the current paint device.
</para>

<programlisting>
   m_painter->setPressure(info.pressure);
</programlisting>

<para>
As the comments say, the next bit code does some programmatic work to create
the actual dab. In this case, we draw a number of lines. When I am done with
this paintop, the length, position and thickness of the lines will be
dependent on pressure and paint load, and we’ll have create a stiff, smeary
oilpaint brush. But I haven’t had time to finish this yet.
</para>

<programlisting>
   // Compute the position of the tufts. The tufts are arranged in a line
   // perpendicular to the motion of the brush, i.e, the straight line between
   // the current position and the previous position.
   // The tufts are spread out through the pressure

   KisPoint previousPoint = info.movement.toKisPoint();
   KisVector2D brushVector(-previousPoint.y(), previousPoint.x());
   KisVector2D currentPointVector = KisVector2D(pos);
   brushVector.normalize();

   KisVector2D vl, vr;

   for (int i = 0; i &lt; (NUMBER_OF_TUFTS / 2); ++i) {
       // Compute the positions on the new vector.
       vl = currentPointVector + i * brushVector;
       KisPoint pl = vl.toKisPoint();
       dab->setPixel(pl.roundX(), pl.roundY(), kc);

       vr = currentPointVector - i * brushVector;
       KisPoint pr = vr.toKisPoint();
       dab->setPixel(pr.roundX(), pr.roundY(), kc);
   }

   vr = vr - vl;
   vr.normalize();
</programlisting>

<para>
Finally we blt the dab onto the original paint device and tell the painter
that we’ve dirtied a small rectangle of the paint device.
</para>

<programlisting>
   if (m_source->hasSelection()) {
       m_painter->bltSelection(x - 32, y - 32, m_painter->compositeOp(), dab.data(),
                               m_source->selection(), m_painter->opacity(), x - 32, y -32, 64, 64);
   }
   else {
       m_painter->bitBlt(x - 32, y - 32, m_painter->compositeOp(), dab.data(), m_painter->opacity(), x - 32, y -32, 64, 64);
   }

   m_painter->addDirtyRect(QRect(x -32, y -32, 64, 64));
}


KisPaintOp * KisSmearyOpFactory::createOp(const KisPaintOpSettings */*settings*/, KisPainter * painter)
{
   KisPaintOp * op = new KisSmearyOp(painter);
   TQ_CHECK_PTR(op);
   return op;
}
</programlisting>

<para>
That’s all: paintops are easy and fun!
</para>

</sect2>

<sect2 id="developers-plugins-viewplugins">
<title>View plugins</title>

<para>
View plugins are the weirdest of the bunch: a view plugin is an ordinary KPart
that can provide a bit of user interface and some functionality. For instance,
the histogram tab is a view plugin, as is the rotate dialog.
</para>

</sect2>

<sect2 id="developers-plugins-importexport">
<title>Import/Export filters</title>

<para>
&chalk; works with the ordinary &koffice; file filter architecture. There is a
tutorial, a bit old, but still useful, at: <ulink
url="http://koffice.org/developer/filters/oldfaq.php" />. It is probably best
to cooperate with the &chalk; team when developing file filters and do the
development in the &koffice; filter tree. Note that you can test your filters
without running &chalk; using the <command>koconverter</command> utility.
</para><para>
Filters have two sides: importing and exporting. These are usually two
different plugins that may share some code.
</para><para>
The important <filename>Makefile.am</filename> entries are:
</para>

<programlisting>
service_DATA = chalk_XXX_import.desktop chalk_XXX_export.desktop
servicedir = $(kde_servicesdir)
kdelnk_DATA = chalk_XXX.desktop
kdelnkdir = $(kde_appsdir)/Office
libchalkXXXimport_la_SOURCES = XXXimport.cpp
libchalkXXXexport_la_SOURCES = XXXexport.cpp
METASOURCES = AUTO
</programlisting>

<para>
Whether you are building an import filter or an export filter, your work always
boils down to implementing the following function:
</para>

<programlisting>
virtual KoFilter::ConversionStatus convert(const QCString&amp; from, const QCString&amp; to);
</programlisting>

<para>
It is the settings in the <literal role="extension">.desktop</literal> files
that determine which way a filter converts:
</para><para>
Import:
</para>

<programlisting>
X-TDE-Export=application/x-chalk
X-TDE-Import=image/x-xcf-gimp
X-TDE-Weight=1
X-TDE-Library=libchalkXXXimport
ServiceTypes=KOfficeFilter
</programlisting>

<para>
Export:
</para>

<programlisting>
X-TDE-Export=image/x-xcf-gimp
X-TDE-Import=application/x-chalk
ServiceTypes=KOfficeFilter
Type=Service
X-TDE-Weight=1
X-TDE-Library=libchalkXXXexport
</programlisting>

<para>
And yes, the mimetype chosen for the example is a hint. Please, pretty please,
implement an xcf filter?
</para>

<sect3 id="plugins-developers-importexport-import">
<title>Import</title>

<para>
The big problem with import filters is of course your code to read the data on
disk. The boilerplate for calling that code is fairly simple:
</para>

<note><para>Note: we really, really should find a way to enable &chalk; to keep
a file open and only read data on a as-needed basis, instead of copying the
entire contents to the internal paint device representation. But that would
mean datamanager backends that know about tiff files and so on, and is not
currently implemented. It would be ideal if some file filters could implement
a class provisionally named <classname>KisFileDataManager</classname>, create
an object of that instance with the current file and pass that to KisDoc.  But
&chalk; handles storage per layer, not per document, so this would be a hard
refactor to do.</para></note>

<programlisting>
KoFilter::ConversionStatus XXXImport::convert(const QCString&amp;, const QCString&amp; to)
{
   if (to != "application/x-chalk") <co id="import1" />
       return KoFilter::BadMimeType;

   KisDoc * doc = dynamic_cast&lt;KisDoc*&gt;(m_chain -> outputDocument()); <co id="import2" />
   KisView * view = static_cast&lt;KisView*&gt;(doc -> views().getFirst()); <co id="import3" />
   
   QString filename = m_chain -> inputFile(); <co id="import4" />
   
   if (!doc)
       return KoFilter::CreationError;

   doc -> prepareForImport(); <co id="import5" />

   if (!filename.isEmpty()) {
   
       KURL url(filename);

       if (url.isEmpty())
           return KoFilter::FileNotFound;
           
       KisImageXXXConverter ib(doc, doc -> undoAdapter()); <co id="import6" />

       if (view != 0)
           view -> canvasSubject() ->  progressDisplay() -> setSubject(&amp;ib, false, true);

       switch (ib.buildImage(url)) <co id="import7" /> {
           case KisImageBuilder_RESULT_UNSUPPORTED:
               return KoFilter::NotImplemented;
               break;
           case KisImageBuilder_RESULT_INVALID_ARG:
               return KoFilter::BadMimeType;
               break;
           case KisImageBuilder_RESULT_NO_URI:
           case KisImageBuilder_RESULT_NOT_LOCAL:
               return KoFilter::FileNotFound;
               break;
           case KisImageBuilder_RESULT_BAD_FETCH:
           case KisImageBuilder_RESULT_EMPTY:
               return KoFilter::ParsingError;                
               break;
           case KisImageBuilder_RESULT_FAILURE:
               return KoFilter::InternalError;
               break;
           case KisImageBuilder_RESULT_OK:
               doc -> setCurrentImage( ib.image()); <co id="import8" />
               return KoFilter::OK;
           default:
               break;
       }

   }
   return KoFilter::StorageCreationError;
}
</programlisting>

<calloutlist>
<callout arearefs="import1"><para>This is supposed to be an importfilter, so
if it is not called to convert to a &chalk; image, then something is
wrong.</para></callout>
<callout arearefs="import2"><para>The filter chain already has created an
output document for us. We need to cast it to <classname>KisDocM</classname>,
because &chalk; documents need special treatment. It would not, actually, be
all that bad an idea to check whether the result of the cast is not 0, because
if it is, importing will fail.</para></callout>
<callout arearefs="import3"><para>If we call this filter from the GUI, we try
to get the view. If there is a view, the conversion code can try to update the
progressbar.</para></callout>
<callout arearefs="import4"><para>The filter has the filename for our input
file for us.</para></callout>
<callout arearefs="import5"><para><classname>KisDoc</classname> needs to be
prepared for import. Certain settings are initialized and undo is disabled.
Otherwise you could undo the adding of layers performed by the import filter
and that is weird behaviour.</para></callout>
<callout arearefs="import6"><para>I have chosed to implement the actual
importing code in a separate class that I instantiate here. You can also put
all your code right in this method, but that would be a bit
messy.</para></callout>
<callout arearefs="import7"><para>My importer returns a statuscode that I
can then use to set the status of the import filter. &koffice; takes care of
showing error messages.</para></callout>
<callout arearefs="import8"><para>If creating the
<classname>KisImage</classname> has succeeded we set the document's current
image to our newly created image. Then we are done: <literal>return
KoFilter::OK;</literal>.</para></callout>
</calloutlist>

</sect3>

</sect2>

</sect1>