1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
|
/*
** 2003 Feb 4
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree_rb.c 410099 2005-05-06 17:52:07Z staniek $
**
** This file implements an in-core database using Red-Black balanced
** binary trees.
**
** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
*/
#include "btree.h"
#include "sqliteInt.h"
#include <assert.h>
/*
** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is
** defined. This allows a lot of code to be omitted for installations
** that do not need it.
*/
#ifndef SQLITE_OMIT_INMEMORYDB
typedef struct BtRbTree BtRbTree;
typedef struct BtRbNode BtRbNode;
typedef struct BtRollbackOp BtRollbackOp;
typedef struct Rbtree Rbtree;
typedef struct RbtCursor RbtCursor;
/* Forward declarations */
static BtOps sqliteRbtreeOps;
static BtCursorOps sqliteRbtreeCursorOps;
/*
* During each transaction (or checkpoint), a linked-list of
* "rollback-operations" is accumulated. If the transaction is rolled back,
* then the list of operations must be executed (to restore the database to
* it's state before the transaction started). If the transaction is to be
* committed, just delete the list.
*
* Each operation is represented as follows, depending on the value of eOp:
*
* ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab.
* ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab.
* ROLLBACK_CREATE -> Need to create table iTab.
* ROLLBACK_DROP -> Need to drop table iTab.
*/
struct BtRollbackOp {
u8 eOp;
int iTab;
int nKey;
void *pKey;
int nData;
void *pData;
BtRollbackOp *pNext;
};
/*
** Legal values for BtRollbackOp.eOp:
*/
#define ROLLBACK_INSERT 1 /* Insert a record */
#define ROLLBACK_DELETE 2 /* Delete a record */
#define ROLLBACK_CREATE 3 /* Create a table */
#define ROLLBACK_DROP 4 /* Drop a table */
struct Rbtree {
BtOps *pOps; /* Function table */
int aMetaData[SQLITE_N_BTREE_META];
int next_idx; /* next available table index */
Hash tblHash; /* All created tables, by index */
u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */
u8 eTransState; /* State of this Rbtree wrt transactions */
BtRollbackOp *pTransRollback;
BtRollbackOp *pCheckRollback;
BtRollbackOp *pCheckRollbackTail;
};
/*
** Legal values for Rbtree.eTransState.
*/
#define TRANS_NONE 0 /* No transaction is in progress */
#define TRANS_INTRANSACTION 1 /* A transaction is in progress */
#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */
#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or
* transaction. */
struct RbtCursor {
BtCursorOps *pOps; /* Function table */
Rbtree *pRbtree;
BtRbTree *pTree;
int iTree; /* Index of pTree in pRbtree */
BtRbNode *pNode;
RbtCursor *pShared; /* List of all cursors on the same Rbtree */
u8 eSkip; /* Determines if next step operation is a no-op */
u8 wrFlag; /* True if this cursor is open for writing */
};
/*
** Legal values for RbtCursor.eSkip.
*/
#define SKIP_NONE 0 /* Always step the cursor */
#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */
#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
struct BtRbTree {
RbtCursor *pCursors; /* All cursors pointing to this tree */
BtRbNode *pHead; /* Head of the tree, or NULL */
};
struct BtRbNode {
int nKey;
void *pKey;
int nData;
void *pData;
u8 isBlack; /* true for a black node, 0 for a red node */
BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */
BtRbNode *pLeft; /* Nodes left child, or NULL */
BtRbNode *pRight; /* Nodes right child, or NULL */
int nBlackHeight; /* Only used during the red-black integrity check */
};
/* Forward declarations */
static int memRbtreeMoveto(
RbtCursor* pCur,
const void *pKey,
int nKey,
int *pRes
);
static int memRbtreeClearTable(Rbtree* tree, int n);
static int memRbtreeNext(RbtCursor* pCur, int *pRes);
static int memRbtreeLast(RbtCursor* pCur, int *pRes);
static int memRbtreePrevious(RbtCursor* pCur, int *pRes);
/*
** This routine checks all cursors that point to the same table
** as pCur points to. If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
** cursors point to the same table were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock
** means a cursor opened with wrFlag==0) this routine also NULLs
** out the pNode field of all other cursors.
** This is necessary because an insert
** or delete might change erase the node out from under
** another cursor.
*/
static int checkReadLocks(RbtCursor *pCur){
RbtCursor *p;
assert( pCur->wrFlag );
for(p=pCur->pTree->pCursors; p; p=p->pShared){
if( p!=pCur ){
if( p->wrFlag==0 ) return SQLITE_LOCKED;
p->pNode = 0;
}
}
return SQLITE_OK;
}
/*
* The key-compare function for the red-black trees. Returns as follows:
*
* (key1 < key2) -1
* (key1 == key2) 0
* (key1 > key2) 1
*
* Keys are compared using memcmp(). If one key is an exact prefix of the
* other, then the shorter key is less than the longer key.
*/
static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
{
int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
if( mcmp == 0){
if( nKey1 == nKey2 ) return 0;
return ((nKey1 < nKey2)?-1:1);
}
return ((mcmp>0)?1:-1);
}
/*
* Perform the LEFT-rotate transformation on node X of tree pTree. This
* transform is part of the red-black balancing code.
*
* | |
* X Y
* / \ / \
* a Y X c
* / \ / \
* b c a b
*
* BEFORE AFTER
*/
static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
{
BtRbNode *pY;
BtRbNode *pb;
pY = pX->pRight;
pb = pY->pLeft;
pY->pParent = pX->pParent;
if( pX->pParent ){
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
else pX->pParent->pRight = pY;
}
pY->pLeft = pX;
pX->pParent = pY;
pX->pRight = pb;
if( pb ) pb->pParent = pX;
if( pTree->pHead == pX ) pTree->pHead = pY;
}
/*
* Perform the RIGHT-rotate transformation on node X of tree pTree. This
* transform is part of the red-black balancing code.
*
* | |
* X Y
* / \ / \
* Y c a X
* / \ / \
* a b b c
*
* BEFORE AFTER
*/
static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
{
BtRbNode *pY;
BtRbNode *pb;
pY = pX->pLeft;
pb = pY->pRight;
pY->pParent = pX->pParent;
if( pX->pParent ){
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
else pX->pParent->pRight = pY;
}
pY->pRight = pX;
pX->pParent = pY;
pX->pLeft = pb;
if( pb ) pb->pParent = pX;
if( pTree->pHead == pX ) pTree->pHead = pY;
}
/*
* A string-manipulation helper function for check_redblack_tree(). If (orig ==
* NULL) a copy of val is returned. If (orig != NULL) then a copy of the *
* concatenation of orig and val is returned. The original orig is deleted
* (using sqliteFree()).
*/
static char *append_val(char * orig, char const * val){
char *z;
if( !orig ){
z = sqliteStrDup( val );
} else{
z = 0;
sqliteSetString(&z, orig, val, (char*)0);
sqliteFree( orig );
}
return z;
}
/*
* Append a string representation of the entire node to orig and return it.
* This is used to produce debugging information if check_redblack_tree() finds
* a problem with a red-black binary tree.
*/
static char *append_node(char * orig, BtRbNode *pNode, int indent)
{
char buf[128];
int i;
for( i=0; i<indent; i++ ){
orig = append_val(orig, " ");
}
sprintf(buf, "%p", pNode);
orig = append_val(orig, buf);
if( pNode ){
indent += 3;
if( pNode->isBlack ){
orig = append_val(orig, " B \n");
}else{
orig = append_val(orig, " R \n");
}
orig = append_node( orig, pNode->pLeft, indent );
orig = append_node( orig, pNode->pRight, indent );
}else{
orig = append_val(orig, "\n");
}
return orig;
}
/*
* Print a representation of a node to stdout. This function is only included
* so you can call it from within a debugger if things get really bad. It
* is not called from anyplace in the code.
*/
static void print_node(BtRbNode *pNode)
{
char * str = append_node(0, pNode, 0);
printf("%s", str);
/* Suppress a warning message about print_node() being unused */
(void)print_node;
}
/*
* Check the following properties of the red-black tree:
* (1) - If a node is red, both of it's children are black
* (2) - Each path from a given node to a leaf (NULL) node passes thru the
* same number of black nodes
*
* If there is a problem, append a description (using append_val() ) to *msg.
*/
static void check_redblack_tree(BtRbTree * tree, char ** msg)
{
BtRbNode *pNode;
/* 0 -> came from parent
* 1 -> came from left
* 2 -> came from right */
int prev_step = 0;
pNode = tree->pHead;
while( pNode ){
switch( prev_step ){
case 0:
if( pNode->pLeft ){
pNode = pNode->pLeft;
}else{
prev_step = 1;
}
break;
case 1:
if( pNode->pRight ){
pNode = pNode->pRight;
prev_step = 0;
}else{
prev_step = 2;
}
break;
case 2:
/* Check red-black property (1) */
if( !pNode->isBlack &&
( (pNode->pLeft && !pNode->pLeft->isBlack) ||
(pNode->pRight && !pNode->pRight->isBlack) )
){
char buf[128];
sprintf(buf, "Red node with red child at %p\n", pNode);
*msg = append_val(*msg, buf);
*msg = append_node(*msg, tree->pHead, 0);
*msg = append_val(*msg, "\n");
}
/* Check red-black property (2) */
{
int leftHeight = 0;
int rightHeight = 0;
if( pNode->pLeft ){
leftHeight += pNode->pLeft->nBlackHeight;
leftHeight += (pNode->pLeft->isBlack?1:0);
}
if( pNode->pRight ){
rightHeight += pNode->pRight->nBlackHeight;
rightHeight += (pNode->pRight->isBlack?1:0);
}
if( leftHeight != rightHeight ){
char buf[128];
sprintf(buf, "Different black-heights at %p\n", pNode);
*msg = append_val(*msg, buf);
*msg = append_node(*msg, tree->pHead, 0);
*msg = append_val(*msg, "\n");
}
pNode->nBlackHeight = leftHeight;
}
if( pNode->pParent ){
if( pNode == pNode->pParent->pLeft ) prev_step = 1;
else prev_step = 2;
}
pNode = pNode->pParent;
break;
default: assert(0);
}
}
}
/*
* Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()).
* It is possible that pX is a red node with a red parent, which is a violation
* of the red-black tree properties. This function performs rotations and
* color changes to rebalance the tree
*/
static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
{
/* In the first iteration of this loop, pX points to the red node just
* inserted in the tree. If the parent of pX exists (pX is not the root
* node) and is red, then the properties of the red-black tree are
* violated.
*
* At the start of any subsequent iterations, pX points to a red node
* with a red parent. In all other respects the tree is a legal red-black
* binary tree. */
while( pX != pTree->pHead && !pX->pParent->isBlack ){
BtRbNode *pUncle;
BtRbNode *pGrandparent;
/* Grandparent of pX must exist and must be black. */
pGrandparent = pX->pParent->pParent;
assert( pGrandparent );
assert( pGrandparent->isBlack );
/* Uncle of pX may or may not exist. */
if( pX->pParent == pGrandparent->pLeft )
pUncle = pGrandparent->pRight;
else
pUncle = pGrandparent->pLeft;
/* If the uncle of pX exists and is red, we do the following:
* | |
* G(b) G(r)
* / \ / \
* U(r) P(r) U(b) P(b)
* \ \
* X(r) X(r)
*
* BEFORE AFTER
* pX is then set to G. If the parent of G is red, then the while loop
* will run again. */
if( pUncle && !pUncle->isBlack ){
pGrandparent->isBlack = 0;
pUncle->isBlack = 1;
pX->pParent->isBlack = 1;
pX = pGrandparent;
}else{
if( pX->pParent == pGrandparent->pLeft ){
if( pX == pX->pParent->pRight ){
/* If pX is a right-child, do the following transform, essentially
* to change pX into a left-child:
* | |
* G(b) G(b)
* / \ / \
* P(r) U(b) X(r) U(b)
* \ /
* X(r) P(r) <-- new X
*
* BEFORE AFTER
*/
pX = pX->pParent;
leftRotate(pTree, pX);
}
/* Do the following transform, which balances the tree :)
* | |
* G(b) P(b)
* / \ / \
* P(r) U(b) X(r) G(r)
* / \
* X(r) U(b)
*
* BEFORE AFTER
*/
assert( pGrandparent == pX->pParent->pParent );
pGrandparent->isBlack = 0;
pX->pParent->isBlack = 1;
rightRotate( pTree, pGrandparent );
}else{
/* This code is symetric to the illustrated case above. */
if( pX == pX->pParent->pLeft ){
pX = pX->pParent;
rightRotate(pTree, pX);
}
assert( pGrandparent == pX->pParent->pParent );
pGrandparent->isBlack = 0;
pX->pParent->isBlack = 1;
leftRotate( pTree, pGrandparent );
}
}
}
pTree->pHead->isBlack = 1;
}
/*
* A child of pParent, which in turn had child pX, has just been removed from
* pTree (the figure below depicts the operation, Z is being removed). pParent
* or pX, or both may be NULL.
* | |
* P P
* / \ / \
* Z X
* / \
* X nil
*
* This function is only called if Z was black. In this case the red-black tree
* properties have been violated, and pX has an "extra black". This function
* performs rotations and color-changes to re-balance the tree.
*/
static
void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
{
BtRbNode *pSib;
/* TODO: Comment this code! */
while( pX != pTree->pHead && (!pX || pX->isBlack) ){
if( pX == pParent->pLeft ){
pSib = pParent->pRight;
if( pSib && !(pSib->isBlack) ){
pSib->isBlack = 1;
pParent->isBlack = 0;
leftRotate(pTree, pParent);
pSib = pParent->pRight;
}
if( !pSib ){
pX = pParent;
}else if(
(!pSib->pLeft || pSib->pLeft->isBlack) &&
(!pSib->pRight || pSib->pRight->isBlack) ) {
pSib->isBlack = 0;
pX = pParent;
}else{
if( (!pSib->pRight || pSib->pRight->isBlack) ){
if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
pSib->isBlack = 0;
rightRotate( pTree, pSib );
pSib = pParent->pRight;
}
pSib->isBlack = pParent->isBlack;
pParent->isBlack = 1;
if( pSib->pRight ) pSib->pRight->isBlack = 1;
leftRotate(pTree, pParent);
pX = pTree->pHead;
}
}else{
pSib = pParent->pLeft;
if( pSib && !(pSib->isBlack) ){
pSib->isBlack = 1;
pParent->isBlack = 0;
rightRotate(pTree, pParent);
pSib = pParent->pLeft;
}
if( !pSib ){
pX = pParent;
}else if(
(!pSib->pLeft || pSib->pLeft->isBlack) &&
(!pSib->pRight || pSib->pRight->isBlack) ){
pSib->isBlack = 0;
pX = pParent;
}else{
if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
if( pSib->pRight ) pSib->pRight->isBlack = 1;
pSib->isBlack = 0;
leftRotate( pTree, pSib );
pSib = pParent->pLeft;
}
pSib->isBlack = pParent->isBlack;
pParent->isBlack = 1;
if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
rightRotate(pTree, pParent);
pX = pTree->pHead;
}
}
pParent = pX->pParent;
}
if( pX ) pX->isBlack = 1;
}
/*
* Create table n in tree pRbtree. Table n must not exist.
*/
static void btreeCreateTable(Rbtree* pRbtree, int n)
{
BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
}
/*
* Log a single "rollback-op" for the given Rbtree. See comments for struct
* BtRollbackOp.
*/
static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
{
assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
pRbtree->eTransState == TRANS_INTRANSACTION );
if( pRbtree->eTransState == TRANS_INTRANSACTION ){
pRollbackOp->pNext = pRbtree->pTransRollback;
pRbtree->pTransRollback = pRollbackOp;
}
if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
if( !pRbtree->pCheckRollback ){
pRbtree->pCheckRollbackTail = pRollbackOp;
}
pRollbackOp->pNext = pRbtree->pCheckRollback;
pRbtree->pCheckRollback = pRollbackOp;
}
}
int sqliteRbtreeOpen(
const char *zFilename,
int mode,
int nPg,
Btree **ppBtree
){
Rbtree **ppRbtree = (Rbtree**)ppBtree;
*ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
if( sqlite_malloc_failed ) goto open_no_mem;
sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);
/* Create a binary tree for the SQLITE_MASTER table at location 2 */
btreeCreateTable(*ppRbtree, 2);
if( sqlite_malloc_failed ) goto open_no_mem;
(*ppRbtree)->next_idx = 3;
(*ppRbtree)->pOps = &sqliteRbtreeOps;
/* Set file type to 4; this is so that "attach ':memory:' as ...." does not
** think that the database in uninitialised and refuse to attach
*/
(*ppRbtree)->aMetaData[2] = 4;
return SQLITE_OK;
open_no_mem:
*ppBtree = 0;
return SQLITE_NOMEM;
}
/*
* Create a new table in the supplied Rbtree. Set *n to the new table number.
* Return SQLITE_OK if the operation is a success.
*/
static int memRbtreeCreateTable(Rbtree* tree, int* n)
{
assert( tree->eTransState != TRANS_NONE );
*n = tree->next_idx++;
btreeCreateTable(tree, *n);
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
/* Set up the rollback structure (if we are not doing this as part of a
* rollback) */
if( tree->eTransState != TRANS_ROLLBACK ){
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
if( pRollbackOp==0 ) return SQLITE_NOMEM;
pRollbackOp->eOp = ROLLBACK_DROP;
pRollbackOp->iTab = *n;
btreeLogRollbackOp(tree, pRollbackOp);
}
return SQLITE_OK;
}
/*
* Delete table n from the supplied Rbtree.
*/
static int memRbtreeDropTable(Rbtree* tree, int n)
{
BtRbTree *pTree;
assert( tree->eTransState != TRANS_NONE );
memRbtreeClearTable(tree, n);
pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
assert(pTree);
assert( pTree->pCursors==0 );
sqliteFree(pTree);
if( tree->eTransState != TRANS_ROLLBACK ){
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
if( pRollbackOp==0 ) return SQLITE_NOMEM;
pRollbackOp->eOp = ROLLBACK_CREATE;
pRollbackOp->iTab = n;
btreeLogRollbackOp(tree, pRollbackOp);
}
return SQLITE_OK;
}
static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
int nIgnore, int *pRes)
{
assert(pCur);
if( !pCur->pNode ) {
*pRes = -1;
} else {
if( (pCur->pNode->nKey - nIgnore) < 0 ){
*pRes = -1;
}else{
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore,
pKey, nKey);
}
}
return SQLITE_OK;
}
/*
* Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
* parameter indicates that the cursor is open for writing.
*
* Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
*/
static int memRbtreeCursor(
Rbtree* tree,
int iTable,
int wrFlag,
RbtCursor **ppCur
){
RbtCursor *pCur;
assert(tree);
pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable);
assert( pCur->pTree );
pCur->pRbtree = tree;
pCur->iTree = iTable;
pCur->pOps = &sqliteRbtreeCursorOps;
pCur->wrFlag = wrFlag;
pCur->pShared = pCur->pTree->pCursors;
pCur->pTree->pCursors = pCur;
assert( (*ppCur)->pTree );
return SQLITE_OK;
}
/*
* Insert a new record into the Rbtree. The key is given by (pKey,nKey)
* and the data is given by (pData,nData). The cursor is used only to
* define what database the record should be inserted into. The cursor
* is left pointing at the new record.
*
* If the key exists already in the tree, just replace the data.
*/
static int memRbtreeInsert(
RbtCursor* pCur,
const void *pKey,
int nKey,
const void *pDataInput,
int nData
){
void * pData;
int match;
/* It is illegal to call sqliteRbtreeInsert() if we are
** not in a transaction */
assert( pCur->pRbtree->eTransState != TRANS_NONE );
/* Make sure some other cursor isn't trying to read this same table */
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
/* Take a copy of the input data now, in case we need it for the
* replace case */
pData = sqliteMallocRaw(nData);
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
memcpy(pData, pDataInput, nData);
/* Move the cursor to a node near the key to be inserted. If the key already
* exists in the table, then (match == 0). In this case we can just replace
* the data associated with the entry, we don't need to manipulate the tree.
*
* If there is no exact match, then the cursor points at what would be either
* the predecessor (match == -1) or successor (match == 1) of the
* searched-for key, were it to be inserted. The new node becomes a child of
* this node.
*
* The new node is initially red.
*/
memRbtreeMoveto( pCur, pKey, nKey, &match);
if( match ){
BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
if( pNode==0 ) return SQLITE_NOMEM;
pNode->nKey = nKey;
pNode->pKey = sqliteMallocRaw(nKey);
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
memcpy(pNode->pKey, pKey, nKey);
pNode->nData = nData;
pNode->pData = pData;
if( pCur->pNode ){
switch( match ){
case -1:
assert( !pCur->pNode->pRight );
pNode->pParent = pCur->pNode;
pCur->pNode->pRight = pNode;
break;
case 1:
assert( !pCur->pNode->pLeft );
pNode->pParent = pCur->pNode;
pCur->pNode->pLeft = pNode;
break;
default:
assert(0);
}
}else{
pCur->pTree->pHead = pNode;
}
/* Point the cursor at the node just inserted, as per SQLite requirements */
pCur->pNode = pNode;
/* A new node has just been inserted, so run the balancing code */
do_insert_balancing(pCur->pTree, pNode);
/* Set up a rollback-op in case we have to roll this operation back */
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
if( pOp==0 ) return SQLITE_NOMEM;
pOp->eOp = ROLLBACK_DELETE;
pOp->iTab = pCur->iTree;
pOp->nKey = pNode->nKey;
pOp->pKey = sqliteMallocRaw( pOp->nKey );
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
btreeLogRollbackOp(pCur->pRbtree, pOp);
}
}else{
/* No need to insert a new node in the tree, as the key already exists.
* Just clobber the current nodes data. */
/* Set up a rollback-op in case we have to roll this operation back */
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
if( pOp==0 ) return SQLITE_NOMEM;
pOp->iTab = pCur->iTree;
pOp->nKey = pCur->pNode->nKey;
pOp->pKey = sqliteMallocRaw( pOp->nKey );
if( sqlite_malloc_failed ) return SQLITE_NOMEM;
memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
pOp->nData = pCur->pNode->nData;
pOp->pData = pCur->pNode->pData;
pOp->eOp = ROLLBACK_INSERT;
btreeLogRollbackOp(pCur->pRbtree, pOp);
}else{
sqliteFree( pCur->pNode->pData );
}
/* Actually clobber the nodes data */
pCur->pNode->pData = pData;
pCur->pNode->nData = nData;
}
return SQLITE_OK;
}
/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
*/
static int memRbtreeMoveto(
RbtCursor* pCur,
const void *pKey,
int nKey,
int *pRes
){
BtRbNode *pTmp = 0;
pCur->pNode = pCur->pTree->pHead;
*pRes = -1;
while( pCur->pNode && *pRes ) {
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
pTmp = pCur->pNode;
switch( *pRes ){
case 1: /* cursor > key */
pCur->pNode = pCur->pNode->pLeft;
break;
case -1: /* cursor < key */
pCur->pNode = pCur->pNode->pRight;
break;
}
}
/* If (pCur->pNode == NULL), then we have failed to find a match. Set
* pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
* last node traversed in the search. In either case the relation ship
* between pTmp and the searched for key is already stored in *pRes. pTmp is
* either the successor or predecessor of the key we tried to move to. */
if( !pCur->pNode ) pCur->pNode = pTmp;
pCur->eSkip = SKIP_NONE;
return SQLITE_OK;
}
/*
** Delete the entry that the cursor is pointing to.
**
** The cursor is left pointing at either the next or the previous
** entry. If the cursor is left pointing to the next entry, then
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
** sqliteRbtreeNext() to be a no-op. That way, you can always call
** sqliteRbtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry. Similarly,
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
** the entry prior to the deleted entry so that a subsequent call to
** sqliteRbtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
static int memRbtreeDelete(RbtCursor* pCur)
{
BtRbNode *pZ; /* The one being deleted */
BtRbNode *pChild; /* The child of the spliced out node */
/* It is illegal to call sqliteRbtreeDelete() if we are
** not in a transaction */
assert( pCur->pRbtree->eTransState != TRANS_NONE );
/* Make sure some other cursor isn't trying to read this same table */
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
pZ = pCur->pNode;
if( !pZ ){
return SQLITE_OK;
}
/* If we are not currently doing a rollback, set up a rollback op for this
* deletion */
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
if( pOp==0 ) return SQLITE_NOMEM;
pOp->iTab = pCur->iTree;
pOp->nKey = pZ->nKey;
pOp->pKey = pZ->pKey;
pOp->nData = pZ->nData;
pOp->pData = pZ->pData;
pOp->eOp = ROLLBACK_INSERT;
btreeLogRollbackOp(pCur->pRbtree, pOp);
}
/* First do a standard binary-tree delete (node pZ is to be deleted). How
* to do this depends on how many children pZ has:
*
* If pZ has no children or one child, then splice out pZ. If pZ has two
* children, splice out the successor of pZ and replace the key and data of
* pZ with the key and data of the spliced out successor. */
if( pZ->pLeft && pZ->pRight ){
BtRbNode *pTmp;
int dummy;
pCur->eSkip = SKIP_NONE;
memRbtreeNext(pCur, &dummy);
assert( dummy == 0 );
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
sqliteFree(pZ->pKey);
sqliteFree(pZ->pData);
}
pZ->pData = pCur->pNode->pData;
pZ->nData = pCur->pNode->nData;
pZ->pKey = pCur->pNode->pKey;
pZ->nKey = pCur->pNode->nKey;
pTmp = pZ;
pZ = pCur->pNode;
pCur->pNode = pTmp;
pCur->eSkip = SKIP_NEXT;
}else{
int res;
pCur->eSkip = SKIP_NONE;
memRbtreeNext(pCur, &res);
pCur->eSkip = SKIP_NEXT;
if( res ){
memRbtreeLast(pCur, &res);
memRbtreePrevious(pCur, &res);
pCur->eSkip = SKIP_PREV;
}
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
sqliteFree(pZ->pKey);
sqliteFree(pZ->pData);
}
}
/* pZ now points at the node to be spliced out. This block does the
* splicing. */
{
BtRbNode **ppParentSlot = 0;
assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
if( pZ->pParent ){
assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
ppParentSlot = ((pZ == pZ->pParent->pLeft)
?&pZ->pParent->pLeft:&pZ->pParent->pRight);
*ppParentSlot = pChild;
}else{
pCur->pTree->pHead = pChild;
}
if( pChild ) pChild->pParent = pZ->pParent;
}
/* pZ now points at the spliced out node. pChild is the only child of pZ, or
* NULL if pZ has no children. If pZ is black, and not the tree root, then we
* will have violated the "same number of black nodes in every path to a
* leaf" property of the red-black tree. The code in do_delete_balancing()
* repairs this. */
if( pZ->isBlack ){
do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
}
sqliteFree(pZ);
return SQLITE_OK;
}
/*
* Empty table n of the Rbtree.
*/
static int memRbtreeClearTable(Rbtree* tree, int n)
{
BtRbTree *pTree;
BtRbNode *pNode;
pTree = sqliteHashFind(&tree->tblHash, 0, n);
assert(pTree);
pNode = pTree->pHead;
while( pNode ){
if( pNode->pLeft ){
pNode = pNode->pLeft;
}
else if( pNode->pRight ){
pNode = pNode->pRight;
}
else {
BtRbNode *pTmp = pNode->pParent;
if( tree->eTransState == TRANS_ROLLBACK ){
sqliteFree( pNode->pKey );
sqliteFree( pNode->pData );
}else{
BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
if( pRollbackOp==0 ) return SQLITE_NOMEM;
pRollbackOp->eOp = ROLLBACK_INSERT;
pRollbackOp->iTab = n;
pRollbackOp->nKey = pNode->nKey;
pRollbackOp->pKey = pNode->pKey;
pRollbackOp->nData = pNode->nData;
pRollbackOp->pData = pNode->pData;
btreeLogRollbackOp(tree, pRollbackOp);
}
sqliteFree( pNode );
if( pTmp ){
if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
}
pNode = pTmp;
}
}
pTree->pHead = 0;
return SQLITE_OK;
}
static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
{
if( pCur->pTree->pHead ){
pCur->pNode = pCur->pTree->pHead;
while( pCur->pNode->pLeft ){
pCur->pNode = pCur->pNode->pLeft;
}
}
if( pCur->pNode ){
*pRes = 0;
}else{
*pRes = 1;
}
pCur->eSkip = SKIP_NONE;
return SQLITE_OK;
}
static int memRbtreeLast(RbtCursor* pCur, int *pRes)
{
if( pCur->pTree->pHead ){
pCur->pNode = pCur->pTree->pHead;
while( pCur->pNode->pRight ){
pCur->pNode = pCur->pNode->pRight;
}
}
if( pCur->pNode ){
*pRes = 0;
}else{
*pRes = 1;
}
pCur->eSkip = SKIP_NONE;
return SQLITE_OK;
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int memRbtreeNext(RbtCursor* pCur, int *pRes)
{
if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
if( pCur->pNode->pRight ){
pCur->pNode = pCur->pNode->pRight;
while( pCur->pNode->pLeft )
pCur->pNode = pCur->pNode->pLeft;
}else{
BtRbNode * pX = pCur->pNode;
pCur->pNode = pX->pParent;
while( pCur->pNode && (pCur->pNode->pRight == pX) ){
pX = pCur->pNode;
pCur->pNode = pX->pParent;
}
}
}
pCur->eSkip = SKIP_NONE;
if( !pCur->pNode ){
*pRes = 1;
}else{
*pRes = 0;
}
return SQLITE_OK;
}
static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
{
if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
if( pCur->pNode->pLeft ){
pCur->pNode = pCur->pNode->pLeft;
while( pCur->pNode->pRight )
pCur->pNode = pCur->pNode->pRight;
}else{
BtRbNode * pX = pCur->pNode;
pCur->pNode = pX->pParent;
while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
pX = pCur->pNode;
pCur->pNode = pX->pParent;
}
}
}
pCur->eSkip = SKIP_NONE;
if( !pCur->pNode ){
*pRes = 1;
}else{
*pRes = 0;
}
return SQLITE_OK;
}
static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
{
if( pCur->pNode ){
*pSize = pCur->pNode->nKey;
}else{
*pSize = 0;
}
return SQLITE_OK;
}
static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
{
if( !pCur->pNode ) return 0;
if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
}else{
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
amt = pCur->pNode->nKey-offset;
}
return amt;
}
static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
{
if( pCur->pNode ){
*pSize = pCur->pNode->nData;
}else{
*pSize = 0;
}
return SQLITE_OK;
}
static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
{
if( !pCur->pNode ) return 0;
if( (amt + offset) <= pCur->pNode->nData ){
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
}else{
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
amt = pCur->pNode->nData-offset;
}
return amt;
}
static int memRbtreeCloseCursor(RbtCursor* pCur)
{
if( pCur->pTree->pCursors==pCur ){
pCur->pTree->pCursors = pCur->pShared;
}else{
RbtCursor *p = pCur->pTree->pCursors;
while( p && p->pShared!=pCur ){ p = p->pShared; }
assert( p!=0 );
if( p ){
p->pShared = pCur->pShared;
}
}
sqliteFree(pCur);
return SQLITE_OK;
}
static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
{
memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
return SQLITE_OK;
}
static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
{
memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
return SQLITE_OK;
}
/*
* Check that each table in the Rbtree meets the requirements for a red-black
* binary tree. If an error is found, return an explanation of the problem in
* memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
*/
static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
{
char * msg = 0;
HashElem *p;
for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
BtRbTree *pTree = sqliteHashData(p);
check_redblack_tree(pTree, &msg);
}
return msg;
}
static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
{
return SQLITE_OK;
}
static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
return SQLITE_OK;
}
static int memRbtreeBeginTrans(Rbtree* tree)
{
if( tree->eTransState != TRANS_NONE )
return SQLITE_ERROR;
assert( tree->pTransRollback == 0 );
tree->eTransState = TRANS_INTRANSACTION;
return SQLITE_OK;
}
/*
** Delete a linked list of BtRollbackOp structures.
*/
static void deleteRollbackList(BtRollbackOp *pOp){
while( pOp ){
BtRollbackOp *pTmp = pOp->pNext;
sqliteFree(pOp->pData);
sqliteFree(pOp->pKey);
sqliteFree(pOp);
pOp = pTmp;
}
}
static int memRbtreeCommit(Rbtree* tree){
/* Just delete pTransRollback and pCheckRollback */
deleteRollbackList(tree->pCheckRollback);
deleteRollbackList(tree->pTransRollback);
tree->pTransRollback = 0;
tree->pCheckRollback = 0;
tree->pCheckRollbackTail = 0;
tree->eTransState = TRANS_NONE;
return SQLITE_OK;
}
/*
* Close the supplied Rbtree. Delete everything associated with it.
*/
static int memRbtreeClose(Rbtree* tree)
{
HashElem *p;
memRbtreeCommit(tree);
while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
tree->eTransState = TRANS_ROLLBACK;
memRbtreeDropTable(tree, sqliteHashKeysize(p));
}
sqliteHashClear(&tree->tblHash);
sqliteFree(tree);
return SQLITE_OK;
}
/*
* Execute and delete the supplied rollback-list on pRbtree.
*/
static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
{
BtRollbackOp *pTmp;
RbtCursor cur;
int res;
cur.pRbtree = pRbtree;
cur.wrFlag = 1;
while( pList ){
switch( pList->eOp ){
case ROLLBACK_INSERT:
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
assert(cur.pTree);
cur.iTree = pList->iTab;
cur.eSkip = SKIP_NONE;
memRbtreeInsert( &cur, pList->pKey,
pList->nKey, pList->pData, pList->nData );
break;
case ROLLBACK_DELETE:
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
assert(cur.pTree);
cur.iTree = pList->iTab;
cur.eSkip = SKIP_NONE;
memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
assert(res == 0);
memRbtreeDelete( &cur );
break;
case ROLLBACK_CREATE:
btreeCreateTable(pRbtree, pList->iTab);
break;
case ROLLBACK_DROP:
memRbtreeDropTable(pRbtree, pList->iTab);
break;
default:
assert(0);
}
sqliteFree(pList->pKey);
sqliteFree(pList->pData);
pTmp = pList->pNext;
sqliteFree(pList);
pList = pTmp;
}
}
static int memRbtreeRollback(Rbtree* tree)
{
tree->eTransState = TRANS_ROLLBACK;
execute_rollback_list(tree, tree->pCheckRollback);
execute_rollback_list(tree, tree->pTransRollback);
tree->pTransRollback = 0;
tree->pCheckRollback = 0;
tree->pCheckRollbackTail = 0;
tree->eTransState = TRANS_NONE;
return SQLITE_OK;
}
static int memRbtreeBeginCkpt(Rbtree* tree)
{
if( tree->eTransState != TRANS_INTRANSACTION )
return SQLITE_ERROR;
assert( tree->pCheckRollback == 0 );
assert( tree->pCheckRollbackTail == 0 );
tree->eTransState = TRANS_INCHECKPOINT;
return SQLITE_OK;
}
static int memRbtreeCommitCkpt(Rbtree* tree)
{
if( tree->eTransState == TRANS_INCHECKPOINT ){
if( tree->pCheckRollback ){
tree->pCheckRollbackTail->pNext = tree->pTransRollback;
tree->pTransRollback = tree->pCheckRollback;
tree->pCheckRollback = 0;
tree->pCheckRollbackTail = 0;
}
tree->eTransState = TRANS_INTRANSACTION;
}
return SQLITE_OK;
}
static int memRbtreeRollbackCkpt(Rbtree* tree)
{
if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
tree->eTransState = TRANS_ROLLBACK;
execute_rollback_list(tree, tree->pCheckRollback);
tree->pCheckRollback = 0;
tree->pCheckRollbackTail = 0;
tree->eTransState = TRANS_INTRANSACTION;
return SQLITE_OK;
}
#ifdef SQLITE_TEST
static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
{
assert(!"Cannot call sqliteRbtreePageDump");
return SQLITE_OK;
}
static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
{
assert(!"Cannot call sqliteRbtreeCursorDump");
return SQLITE_OK;
}
#endif
static struct Pager *memRbtreePager(Rbtree* tree)
{
return 0;
}
/*
** Return the full pathname of the underlying database file.
*/
static const char *memRbtreeGetFilename(Rbtree *pBt){
return 0; /* A NULL return indicates there is no underlying file */
}
/*
** The copy file function is not implemented for the in-memory database
*/
static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
return SQLITE_INTERNAL; /* Not implemented */
}
static BtOps sqliteRbtreeOps = {
(int(*)(Btree*)) memRbtreeClose,
(int(*)(Btree*,int)) memRbtreeSetCacheSize,
(int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
(int(*)(Btree*)) memRbtreeBeginTrans,
(int(*)(Btree*)) memRbtreeCommit,
(int(*)(Btree*)) memRbtreeRollback,
(int(*)(Btree*)) memRbtreeBeginCkpt,
(int(*)(Btree*)) memRbtreeCommitCkpt,
(int(*)(Btree*)) memRbtreeRollbackCkpt,
(int(*)(Btree*,int*)) memRbtreeCreateTable,
(int(*)(Btree*,int*)) memRbtreeCreateTable,
(int(*)(Btree*,int)) memRbtreeDropTable,
(int(*)(Btree*,int)) memRbtreeClearTable,
(int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
(int(*)(Btree*,int*)) memRbtreeGetMeta,
(int(*)(Btree*,int*)) memRbtreeUpdateMeta,
(char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
(const char*(*)(Btree*)) memRbtreeGetFilename,
(int(*)(Btree*,Btree*)) memRbtreeCopyFile,
(struct Pager*(*)(Btree*)) memRbtreePager,
#ifdef SQLITE_TEST
(int(*)(Btree*,int,int)) memRbtreePageDump,
#endif
};
static BtCursorOps sqliteRbtreeCursorOps = {
(int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
(int(*)(BtCursor*)) memRbtreeDelete,
(int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
(int(*)(BtCursor*,int*)) memRbtreeFirst,
(int(*)(BtCursor*,int*)) memRbtreeLast,
(int(*)(BtCursor*,int*)) memRbtreeNext,
(int(*)(BtCursor*,int*)) memRbtreePrevious,
(int(*)(BtCursor*,int*)) memRbtreeKeySize,
(int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
(int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
(int(*)(BtCursor*,int*)) memRbtreeDataSize,
(int(*)(BtCursor*,int,int,char*)) memRbtreeData,
(int(*)(BtCursor*)) memRbtreeCloseCursor,
#ifdef SQLITE_TEST
(int(*)(BtCursor*,int*)) memRbtreeCursorDump,
#endif
};
#endif /* SQLITE_OMIT_INMEMORYDB */
|