1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
|
/*
** 2004 April 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c 548347 2006-06-05 10:53:00Z staniek $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
** "Sorting And Searching", pages 473-480. Addison-Wesley
** Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
** ----------------------------------------------------------------
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
** ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0). All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1). All of the keys
** on Ptr(N+1) and its subpages have values greater than Key(N). And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate
** BTrees. Each BTree is identified by the index of its root page. The
** key and data for any entry are combined to form the "payload". A
** fixed amount of payload can be carried directly on the database
** page. If the payload is larger than the preset amount then surplus
** bytes are stored on overflow pages. The payload for an entry
** and the preceding pointer are combined to form a "Cell". Each
** page has a small header which contains the Ptr(N+1) pointer and other
** information such as the size of key and data.
**
** FORMAT DETAILS
**
** The file is divided into pages. The first page is called page 1,
** the second is page 2, and so forth. A page number of zero indicates
** "no such page". The page size can be anything between 512 and 65536.
** Each page can be either a btree page, a freelist page or an overflow
** page.
**
** The first page is always a btree page. The first 100 bytes of the first
** page contain a special header (the "file header") that describes the file.
** The format of the file header is as follows:
**
** OFFSET SIZE DESCRIPTION
** 0 16 Header string: "SQLite format 3\000"
** 16 2 Page size in bytes.
** 18 1 File format write version
** 19 1 File format read version
** 20 1 Bytes of unused space at the end of each page
** 21 1 Max embedded payload fraction
** 22 1 Min embedded payload fraction
** 23 1 Min leaf payload fraction
** 24 4 File change counter
** 28 4 Reserved for future use
** 32 4 First freelist page
** 36 4 Number of freelist pages in the file
** 40 60 15 4-byte meta values passed to higher layers
**
** All of the integer values are big-endian (most significant byte first).
**
** The file change counter is incremented when the database is changed more
** than once within the same second. This counter, together with the
** modification time of the file, allows other processes to know
** when the file has changed and thus when they need to flush their
** cache.
**
** The max embedded payload fraction is the amount of the total usable
** space in a page that can be consumed by a single cell for standard
** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
** is to limit the maximum cell size so that at least 4 cells will fit
** on one page. Thus the default max embedded payload fraction is 64.
**
** If the payload for a cell is larger than the max payload, then extra
** payload is spilled to overflow pages. Once an overflow page is allocated,
** as many bytes as possible are moved into the overflow pages without letting
** the cell size drop below the min embedded payload fraction.
**
** The min leaf payload fraction is like the min embedded payload fraction
** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
** not specified in the header.
**
** Each btree pages is divided into three sections: The header, the
** cell pointer array, and the cell area area. Page 1 also has a 100-byte
** file header that occurs before the page header.
**
** |----------------|
** | file header | 100 bytes. Page 1 only.
** |----------------|
** | page header | 8 bytes for leaves. 12 bytes for interior nodes
** |----------------|
** | cell pointer | | 2 bytes per cell. Sorted order.
** | array | | Grows downward
** | | v
** |----------------|
** | unallocated |
** | space |
** |----------------| ^ Grows upwards
** | cell content | | Arbitrary order interspersed with freeblocks.
** | area | | and free space fragments.
** |----------------|
**
** The page headers looks like this:
**
** OFFSET SIZE DESCRIPTION
** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
** 1 2 byte offset to the first freeblock
** 3 2 number of cells on this page
** 5 2 first byte of the cell content area
** 7 1 number of fragmented free bytes
** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
**
** The flags define the format of this btree page. The leaf flag means that
** this page has no children. The zerodata flag means that this page carries
** only keys and no data. The intkey flag means that the key is a integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area. The cell pointers occur in sorted order. The system strives
** to keep free space after the last cell pointer so that new cells can
** be easily added without having to defragment the page.
**
** Cell content is stored at the very end of the page and grows toward the
** beginning of the page.
**
** Unused space within the cell content area is collected into a linked list of
** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
** to the first freeblock is given in the header. Freeblocks occur in
** increasing order. Because a freeblock must be at least 4 bytes in size,
** any group of 3 or fewer unused bytes in the cell content area cannot
** exist on the freeblock chain. A group of 3 or fewer free bytes is called
** a fragment. The total number of bytes in all fragments is recorded.
** in the page header at offset 7.
**
** SIZE DESCRIPTION
** 2 Byte offset of the next freeblock
** 2 Bytes in this freeblock
**
** Cells are of variable length. Cells are stored in the cell content area at
** the end of the page. Pointers to the cells are in the cell pointer array
** that immediately follows the page header. Cells is not necessarily
** contiguous or in order, but cell pointers are contiguous and in order.
**
** Cell content makes use of variable length integers. A variable
** length integer is 1 to 9 bytes where the lower 7 bits of each
** byte are used. The integer consists of all bytes that have bit 8 set and
** the first byte with bit 8 clear. The most significant byte of the integer
** appears first. A variable-length integer may not be more than 9 bytes long.
** As a special case, all 8 bytes of the 9th byte are used as data. This
** allows a 64-bit integer to be encoded in 9 bytes.
**
** 0x00 becomes 0x00000000
** 0x7f becomes 0x0000007f
** 0x81 0x00 becomes 0x00000080
** 0x82 0x00 becomes 0x00000100
** 0x80 0x7f becomes 0x0000007f
** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
**
** Variable length integers are used for rowids and to hold the number of
** bytes of key and data in a btree cell.
**
** The content of a cell looks like this:
**
** SIZE DESCRIPTION
** 4 Page number of the left child. Omitted if leaf flag is set.
** var Number of bytes of data. Omitted if the zerodata flag is set.
** var Number of bytes of key. Or the key itself if intkey flag is set.
** * Payload
** 4 First page of the overflow chain. Omitted if no overflow
**
** Overflow pages form a linked list. Each page except the last is completely
** filled with data (pagesize - 4 bytes). The last page can have as little
** as 1 byte of data.
**
** SIZE DESCRIPTION
** 4 Page number of next overflow page
** * Data
**
** Freelist pages come in two subtypes: trunk pages and leaf pages. The
** file header points to first in a linked list of trunk page. Each trunk
** page points to multiple leaf pages. The content of a leaf page is
** unspecified. A trunk page looks like this:
**
** SIZE DESCRIPTION
** 4 Page number of next trunk page
** 4 Number of leaf pointers on this page
** * zero or more pages numbers of leaves
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include "os.h"
#include <assert.h>
/* Round up a number to the next larger multiple of 8. This is used
** to force 8-byte alignment on 64-bit architectures.
*/
#define ROUND8(x) ((x+7)&~7)
/* The following value is the maximum cell size assuming a maximum page
** size give above.
*/
#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
/* The maximum number of cells on a single page of the database. This
** assumes a minimum cell size of 3 bytes. Such small cells will be
** exceedingly rare, but they are possible.
*/
#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
/* Forward declarations */
typedef struct MemPage MemPage;
/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
**
** You can change this value at compile-time by specifying a
** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
** header must be exactly 16 bytes including the zero-terminator so
** the string itself should be 15 characters long. If you change
** the header, then your custom library will not be able to read
** databases generated by the standard tools and the standard tools
** will not be able to read databases created by your custom library.
*/
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
# define SQLITE_FILE_HEADER "SQLite format 3"
#endif
static const char zMagicHeader[] = SQLITE_FILE_HEADER;
/*
** Page type flags. An ORed combination of these flags appear as the
** first byte of every BTree page.
*/
#define PTF_INTKEY 0x01
#define PTF_ZERODATA 0x02
#define PTF_LEAFDATA 0x04
#define PTF_LEAF 0x08
/*
** As each page of the file is loaded into memory, an instance of the following
** structure is appended and initialized to zero. This structure stores
** information about the page that is decoded from the raw file page.
**
** The pParent field points back to the parent page. This allows us to
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
u8 isInit; /* True if previously initialized. MUST BE FIRST! */
u8 idxShift; /* True if Cell indices have changed */
u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
u8 intKey; /* True if intkey flag is set */
u8 leaf; /* True if leaf flag is set */
u8 zeroData; /* True if table stores keys only */
u8 leafData; /* True if tables stores data on leaves only */
u8 hasData; /* True if this page stores data */
u8 hdrOffset; /* 100 for page 1. 0 otherwise */
u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
u16 cellOffset; /* Index in aData of first cell pointer */
u16 idxParent; /* Index in parent of this node */
u16 nFree; /* Number of free bytes on the page */
u16 nCell; /* Number of cells on this page, local and ovfl */
struct _OvflCell { /* Cells that will not fit on aData[] */
u8 *pCell; /* Pointers to the body of the overflow cell */
u16 idx; /* Insert this cell before idx-th non-overflow cell */
} aOvfl[5];
struct Btree *pBt; /* Pointer back to BTree structure */
u8 *aData; /* Pointer back to the start of the page */
Pgno pgno; /* Page number for this page */
MemPage *pParent; /* The parent of this page. NULL for root */
};
/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE sizeof(MemPage)
/*
** Everything we need to know about an open database
*/
struct Btree {
Pager *pPager; /* The page cache */
BtCursor *pCursor; /* A list of all open cursors */
MemPage *pPage1; /* First page of the database */
u8 inTrans; /* True if a transaction is in progress */
u8 inStmt; /* True if we are in a statement subtransaction */
u8 readOnly; /* True if the underlying file is readonly */
u8 maxEmbedFrac; /* Maximum payload as % of total page size */
u8 minEmbedFrac; /* Minimum payload as % of total page size */
u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
u8 pageSizeFixed; /* True if the page size can no longer be changed */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 autoVacuum; /* True if database supports auto-vacuum */
#endif
u16 pageSize; /* Total number of bytes on a page */
u16 usableSize; /* Number of usable bytes on each page */
int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
int minLocal; /* Minimum local payload in non-LEAFDATA tables */
int maxLeaf; /* Maximum local payload in a LEAFDATA table */
int minLeaf; /* Minimum local payload in a LEAFDATA table */
BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
};
typedef Btree Bt;
/*
** Btree.inTrans may take one of the following values.
*/
#define TRANS_NONE 0
#define TRANS_READ 1
#define TRANS_WRITE 2
/*
** An instance of the following structure is used to hold information
** about a cell. The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo {
u8 *pCell; /* Pointer to the start of cell content */
i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
u32 nData; /* Number of bytes of data */
u16 nHeader; /* Size of the cell content header in bytes */
u16 nLocal; /* Amount of payload held locally */
u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
u16 nSize; /* Size of the cell content on the main b-tree page */
};
/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
*/
struct BtCursor {
Btree *pBt; /* The Btree to which this cursor belongs */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
void *pArg; /* First arg to xCompare() */
Pgno pgnoRoot; /* The root page of this tree */
MemPage *pPage; /* Page that contains the entry */
int idx; /* Index of the entry in pPage->aCell[] */
CellInfo info; /* A parse of the cell we are pointing at */
u8 wrFlag; /* True if writable */
u8 isValid; /* TRUE if points to a valid entry */
};
/*
** The TRACE macro will print high-level status information about the
** btree operation when the global variable sqlite3_btree_trace is
** enabled.
*/
#if SQLITE_TEST
# define TRACE(X) if( sqlite3_btree_trace )\
{ sqlite3DebugPrintf X; fflush(stdout); }
#else
# define TRACE(X)
#endif
int sqlite3_btree_trace=0; /* True to enable tracing */
/*
** Forward declaration
*/
static int checkReadLocks(Btree*,Pgno,BtCursor*);
/*
** Read or write a two- and four-byte big-endian integer values.
*/
static u32 get2byte(unsigned char *p){
return (p[0]<<8) | p[1];
}
static u32 get4byte(unsigned char *p){
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
}
static void put2byte(unsigned char *p, u32 v){
p[0] = v>>8;
p[1] = v;
}
static void put4byte(unsigned char *p, u32 v){
p[0] = v>>24;
p[1] = v>>16;
p[2] = v>>8;
p[3] = v;
}
/*
** Routines to read and write variable-length integers. These used to
** be defined locally, but now we use the varint routines in the util.c
** file.
*/
#define getVarint sqlite3GetVarint
#define getVarint32 sqlite3GetVarint32
#define putVarint sqlite3PutVarint
/* The database page the PENDING_BYTE occupies. This page is never used.
** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
** should possibly be consolidated (presumably in pager.h).
*/
#define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** These macros define the location of the pointer-map entry for a
** database page. The first argument to each is the number of usable
** bytes on each page of the database (often 1024). The second is the
** page number to look up in the pointer map.
**
** PTRMAP_PAGENO returns the database page number of the pointer-map
** page that stores the required pointer. PTRMAP_PTROFFSET returns
** the offset of the requested map entry.
**
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
** this test.
*/
#define PTRMAP_PAGENO(pgsz, pgno) (((pgno-2)/(pgsz/5+1))*(pgsz/5+1)+2)
#define PTRMAP_PTROFFSET(pgsz, pgno) (((pgno-2)%(pgsz/5+1)-1)*5)
#define PTRMAP_ISPAGE(pgsz, pgno) (PTRMAP_PAGENO(pgsz,pgno)==pgno)
/*
** The pointer map is a lookup table that identifies the parent page for
** each child page in the database file. The parent page is the page that
** contains a pointer to the child. Every page in the database contains
** 0 or 1 parent pages. (In this context 'database page' refers
** to any page that is not part of the pointer map itself.) Each pointer map
** entry consists of a single byte 'type' and a 4 byte parent page number.
** The PTRMAP_XXX identifiers below are the valid types.
**
** The purpose of the pointer map is to facility moving pages from one
** position in the file to another as part of autovacuum. When a page
** is moved, the pointer in its parent must be updated to point to the
** new location. The pointer map is used to locate the parent page quickly.
**
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
** used in this case.
**
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
** is not used in this case.
**
** PTRMAP_OVERFLOW1: The database page is the first page in a list of
** overflow pages. The page number identifies the page that
** contains the cell with a pointer to this overflow page.
**
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
** overflow pages. The page-number identifies the previous
** page in the overflow page list.
**
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
** identifies the parent page in the btree.
*/
#define PTRMAP_ROOTPAGE 1
#define PTRMAP_FREEPAGE 2
#define PTRMAP_OVERFLOW1 3
#define PTRMAP_OVERFLOW2 4
#define PTRMAP_BTREE 5
/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapPut(Btree *pBt, Pgno key, u8 eType, Pgno parent){
u8 *pPtrmap; /* The pointer map page */
Pgno iPtrmap; /* The pointer map page number */
int offset; /* Offset in pointer map page */
int rc;
assert( pBt->autoVacuum );
if( key==0 ){
return SQLITE_CORRUPT_BKPT;
}
iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key);
rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
if( rc!=SQLITE_OK ){
return rc;
}
offset = PTRMAP_PTROFFSET(pBt->usableSize, key);
if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
rc = sqlite3pager_write(pPtrmap);
if( rc==SQLITE_OK ){
pPtrmap[offset] = eType;
put4byte(&pPtrmap[offset+1], parent);
}
}
sqlite3pager_unref(pPtrmap);
return rc;
}
/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(Btree *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
int iPtrmap; /* Pointer map page index */
u8 *pPtrmap; /* Pointer map page data */
int offset; /* Offset of entry in pointer map */
int rc;
iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key);
rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
if( rc!=0 ){
return rc;
}
offset = PTRMAP_PTROFFSET(pBt->usableSize, key);
if( pEType ) *pEType = pPtrmap[offset];
if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
sqlite3pager_unref(pPtrmap);
if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_AUTOVACUUM */
/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
static u8 *findCell(MemPage *pPage, int iCell){
u8 *data = pPage->aData;
assert( iCell>=0 );
assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
return data + get2byte(&data[pPage->cellOffset+2*iCell]);
}
/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells. See insert
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
int i;
for(i=pPage->nOverflow-1; i>=0; i--){
int k;
struct _OvflCell *pOvfl;
pOvfl = &pPage->aOvfl[i];
k = pOvfl->idx;
if( k<=iCell ){
if( k==iCell ){
return pOvfl->pCell;
}
iCell--;
}
}
return findCell(pPage, iCell);
}
/*
** Parse a cell content block and fill in the CellInfo structure. There
** are two versions of this function. parseCell() takes a cell index
** as the second argument and parseCellPtr() takes a pointer to the
** body of the cell as its second argument.
*/
static void parseCellPtr(
MemPage *pPage, /* Page containing the cell */
u8 *pCell, /* Pointer to the cell text. */
CellInfo *pInfo /* Fill in this structure */
){
int n; /* Number bytes in cell content header */
u32 nPayload; /* Number of bytes of cell payload */
pInfo->pCell = pCell;
assert( pPage->leaf==0 || pPage->leaf==1 );
n = pPage->childPtrSize;
assert( n==4-4*pPage->leaf );
if( pPage->hasData ){
n += getVarint32(&pCell[n], &nPayload);
}else{
nPayload = 0;
}
n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
pInfo->nHeader = n;
pInfo->nData = nPayload;
if( !pPage->intKey ){
nPayload += pInfo->nKey;
}
if( nPayload<=pPage->maxLocal ){
/* This is the (easy) common case where the entire payload fits
** on the local page. No overflow is required.
*/
int nSize; /* Total size of cell content in bytes */
pInfo->nLocal = nPayload;
pInfo->iOverflow = 0;
nSize = nPayload + n;
if( nSize<4 ){
nSize = 4; /* Minimum cell size is 4 */
}
pInfo->nSize = nSize;
}else{
/* If the payload will not fit completely on the local page, we have
** to decide how much to store locally and how much to spill onto
** overflow pages. The strategy is to minimize the amount of unused
** space on overflow pages while keeping the amount of local storage
** in between minLocal and maxLocal.
**
** Warning: changing the way overflow payload is distributed in any
** way will result in an incompatible file format.
*/
int minLocal; /* Minimum amount of payload held locally */
int maxLocal; /* Maximum amount of payload held locally */
int surplus; /* Overflow payload available for local storage */
minLocal = pPage->minLocal;
maxLocal = pPage->maxLocal;
surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
if( surplus <= maxLocal ){
pInfo->nLocal = surplus;
}else{
pInfo->nLocal = minLocal;
}
pInfo->iOverflow = pInfo->nLocal + n;
pInfo->nSize = pInfo->iOverflow + 4;
}
}
static void parseCell(
MemPage *pPage, /* Page containing the cell */
int iCell, /* The cell index. First cell is 0 */
CellInfo *pInfo /* Fill in this structure */
){
parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
}
/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page. The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
#ifndef NDEBUG
static int cellSize(MemPage *pPage, int iCell){
CellInfo info;
parseCell(pPage, iCell, &info);
return info.nSize;
}
#endif
static int cellSizePtr(MemPage *pPage, u8 *pCell){
CellInfo info;
parseCellPtr(pPage, pCell, &info);
return info.nSize;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
if( pCell ){
CellInfo info;
parseCellPtr(pPage, pCell, &info);
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
Pgno ovfl = get4byte(&pCell[info.iOverflow]);
return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
}
}
return SQLITE_OK;
}
/*
** If the cell with index iCell on page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static int ptrmapPutOvfl(MemPage *pPage, int iCell){
u8 *pCell;
pCell = findOverflowCell(pPage, iCell);
return ptrmapPutOvflPtr(pPage, pCell);
}
#endif
/*
** Do sanity checking on a page. Throw an exception if anything is
** not right.
**
** This routine is used for internal error checking only. It is omitted
** from most builds.
*/
#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
static void _pageIntegrity(MemPage *pPage){
int usableSize;
u8 *data;
int i, j, idx, c, pc, hdr, nFree;
int cellOffset;
int nCell, cellLimit;
u8 *used;
used = sqliteMallocRaw( pPage->pBt->pageSize );
if( used==0 ) return;
usableSize = pPage->pBt->usableSize;
assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
hdr = pPage->hdrOffset;
assert( hdr==(pPage->pgno==1 ? 100 : 0) );
assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
c = pPage->aData[hdr];
if( pPage->isInit ){
assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
assert( pPage->hasData ==
!(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf );
assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) );
}
data = pPage->aData;
memset(used, 0, usableSize);
for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
nFree = 0;
pc = get2byte(&data[hdr+1]);
while( pc ){
int size;
assert( pc>0 && pc<usableSize-4 );
size = get2byte(&data[pc+2]);
assert( pc+size<=usableSize );
nFree += size;
for(i=pc; i<pc+size; i++){
assert( used[i]==0 );
used[i] = 1;
}
pc = get2byte(&data[pc]);
}
idx = 0;
nCell = get2byte(&data[hdr+3]);
cellLimit = get2byte(&data[hdr+5]);
assert( pPage->isInit==0
|| pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) );
cellOffset = pPage->cellOffset;
for(i=0; i<nCell; i++){
int size;
pc = get2byte(&data[cellOffset+2*i]);
assert( pc>0 && pc<usableSize-4 );
size = cellSize(pPage, &data[pc]);
assert( pc+size<=usableSize );
for(j=pc; j<pc+size; j++){
assert( used[j]==0 );
used[j] = 1;
}
}
for(i=cellOffset+2*nCell; i<cellimit; i++){
assert( used[i]==0 );
used[i] = 1;
}
nFree = 0;
for(i=0; i<usableSize; i++){
assert( used[i]<=1 );
if( used[i]==0 ) nFree++;
}
assert( nFree==data[hdr+7] );
sqliteFree(used);
}
#define pageIntegrity(X) _pageIntegrity(X)
#else
# define pageIntegrity(X)
#endif
/*
** Defragment the page given. All Cells are moved to the
** beginning of the page and all free space is collected
** into one big FreeBlk at the end of the page.
*/
static int defragmentPage(MemPage *pPage){
int i; /* Loop counter */
int pc; /* Address of a i-th cell */
int addr; /* Offset of first byte after cell pointer array */
int hdr; /* Offset to the page header */
int size; /* Size of a cell */
int usableSize; /* Number of usable bytes on a page */
int cellOffset; /* Offset to the cell pointer array */
int brk; /* Offset to the cell content area */
int nCell; /* Number of cells on the page */
unsigned char *data; /* The page data */
unsigned char *temp; /* Temp area for cell content */
assert( sqlite3pager_iswriteable(pPage->aData) );
assert( pPage->pBt!=0 );
assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
assert( pPage->nOverflow==0 );
temp = sqliteMalloc( pPage->pBt->pageSize );
if( temp==0 ) return SQLITE_NOMEM;
data = pPage->aData;
hdr = pPage->hdrOffset;
cellOffset = pPage->cellOffset;
nCell = pPage->nCell;
assert( nCell==get2byte(&data[hdr+3]) );
usableSize = pPage->pBt->usableSize;
brk = get2byte(&data[hdr+5]);
memcpy(&temp[brk], &data[brk], usableSize - brk);
brk = usableSize;
for(i=0; i<nCell; i++){
u8 *pAddr; /* The i-th cell pointer */
pAddr = &data[cellOffset + i*2];
pc = get2byte(pAddr);
assert( pc<pPage->pBt->usableSize );
size = cellSizePtr(pPage, &temp[pc]);
brk -= size;
memcpy(&data[brk], &temp[pc], size);
put2byte(pAddr, brk);
}
assert( brk>=cellOffset+2*nCell );
put2byte(&data[hdr+5], brk);
data[hdr+1] = 0;
data[hdr+2] = 0;
data[hdr+7] = 0;
addr = cellOffset+2*nCell;
memset(&data[addr], 0, brk-addr);
sqliteFree(temp);
return SQLITE_OK;
}
/*
** Allocate nByte bytes of space on a page.
**
** Return the index into pPage->aData[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before
** allocating the new chunk.
*/
static int allocateSpace(MemPage *pPage, int nByte){
int addr, pc, hdr;
int size;
int nFrag;
int top;
int nCell;
int cellOffset;
unsigned char *data;
data = pPage->aData;
assert( sqlite3pager_iswriteable(data) );
assert( pPage->pBt );
if( nByte<4 ) nByte = 4;
if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
pPage->nFree -= nByte;
hdr = pPage->hdrOffset;
nFrag = data[hdr+7];
if( nFrag<60 ){
/* Search the freelist looking for a slot big enough to satisfy the
** space request. */
addr = hdr+1;
while( (pc = get2byte(&data[addr]))>0 ){
size = get2byte(&data[pc+2]);
if( size>=nByte ){
if( size<nByte+4 ){
memcpy(&data[addr], &data[pc], 2);
data[hdr+7] = nFrag + size - nByte;
return pc;
}else{
put2byte(&data[pc+2], size-nByte);
return pc + size - nByte;
}
}
addr = pc;
}
}
/* Allocate memory from the gap in between the cell pointer array
** and the cell content area.
*/
top = get2byte(&data[hdr+5]);
nCell = get2byte(&data[hdr+3]);
cellOffset = pPage->cellOffset;
if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
if( defragmentPage(pPage) ) return 0;
top = get2byte(&data[hdr+5]);
}
top -= nByte;
assert( cellOffset + 2*nCell <= top );
put2byte(&data[hdr+5], top);
return top;
}
/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size" bytes.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
int addr, pbegin, hdr;
unsigned char *data = pPage->aData;
assert( pPage->pBt!=0 );
assert( sqlite3pager_iswriteable(data) );
assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
assert( (start + size)<=pPage->pBt->usableSize );
if( size<4 ) size = 4;
/* Add the space back into the linked list of freeblocks */
hdr = pPage->hdrOffset;
addr = hdr + 1;
while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
assert( pbegin<=pPage->pBt->usableSize-4 );
assert( pbegin>addr );
addr = pbegin;
}
assert( pbegin<=pPage->pBt->usableSize-4 );
assert( pbegin>addr || pbegin==0 );
put2byte(&data[addr], start);
put2byte(&data[start], pbegin);
put2byte(&data[start+2], size);
pPage->nFree += size;
/* Coalesce adjacent free blocks */
addr = pPage->hdrOffset + 1;
while( (pbegin = get2byte(&data[addr]))>0 ){
int pnext, psize;
assert( pbegin>addr );
assert( pbegin<=pPage->pBt->usableSize-4 );
pnext = get2byte(&data[pbegin]);
psize = get2byte(&data[pbegin+2]);
if( pbegin + psize + 3 >= pnext && pnext>0 ){
int frag = pnext - (pbegin+psize);
assert( frag<=data[pPage->hdrOffset+7] );
data[pPage->hdrOffset+7] -= frag;
put2byte(&data[pbegin], get2byte(&data[pnext]));
put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
}else{
addr = pbegin;
}
}
/* If the cell content area begins with a freeblock, remove it. */
if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
int top;
pbegin = get2byte(&data[hdr+1]);
memcpy(&data[hdr+1], &data[pbegin], 2);
top = get2byte(&data[hdr+5]);
put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
}
}
/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
*/
static void decodeFlags(MemPage *pPage, int flagByte){
Btree *pBt; /* A copy of pPage->pBt */
assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
pPage->leaf = (flagByte & PTF_LEAF)!=0;
pPage->childPtrSize = 4*(pPage->leaf==0);
pBt = pPage->pBt;
if( flagByte & PTF_LEAFDATA ){
pPage->leafData = 1;
pPage->maxLocal = pBt->maxLeaf;
pPage->minLocal = pBt->minLeaf;
}else{
pPage->leafData = 0;
pPage->maxLocal = pBt->maxLocal;
pPage->minLocal = pBt->minLocal;
}
pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
}
/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized. The root of a
** BTree has no parent and so for that page, pParent==NULL.
**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
static int initPage(
MemPage *pPage, /* The page to be initialized */
MemPage *pParent /* The parent. Might be NULL */
){
int pc; /* Address of a freeblock within pPage->aData[] */
int hdr; /* Offset to beginning of page header */
u8 *data; /* Equal to pPage->aData */
Btree *pBt; /* The main btree structure */
int usableSize; /* Amount of usable space on each page */
int cellOffset; /* Offset from start of page to first cell pointer */
int nFree; /* Number of unused bytes on the page */
int top; /* First byte of the cell content area */
pBt = pPage->pBt;
assert( pBt!=0 );
assert( pParent==0 || pParent->pBt==pBt );
assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] );
if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
/* The parent page should never change unless the file is corrupt */
return SQLITE_CORRUPT_BKPT;
}
if( pPage->isInit ) return SQLITE_OK;
if( pPage->pParent==0 && pParent!=0 ){
pPage->pParent = pParent;
sqlite3pager_ref(pParent->aData);
}
hdr = pPage->hdrOffset;
data = pPage->aData;
decodeFlags(pPage, data[hdr]);
pPage->nOverflow = 0;
pPage->idxShift = 0;
usableSize = pBt->usableSize;
pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
top = get2byte(&data[hdr+5]);
pPage->nCell = get2byte(&data[hdr+3]);
if( pPage->nCell>MX_CELL(pBt) ){
/* To many cells for a single page. The page must be corrupt */
return SQLITE_CORRUPT_BKPT;
}
if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
/* All pages must have at least one cell, except for root pages */
return SQLITE_CORRUPT_BKPT;
}
/* Compute the total free space on the page */
pc = get2byte(&data[hdr+1]);
nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
while( pc>0 ){
int next, size;
if( pc>usableSize-4 ){
/* Free block is off the page */
return SQLITE_CORRUPT_BKPT;
}
next = get2byte(&data[pc]);
size = get2byte(&data[pc+2]);
if( next>0 && next<=pc+size+3 ){
/* Free blocks must be in accending order */
return SQLITE_CORRUPT_BKPT;
}
nFree += size;
pc = next;
}
pPage->nFree = nFree;
if( nFree>=usableSize ){
/* Free space cannot exceed total page size */
return SQLITE_CORRUPT_BKPT;
}
pPage->isInit = 1;
pageIntegrity(pPage);
return SQLITE_OK;
}
/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
unsigned char *data = pPage->aData;
Btree *pBt = pPage->pBt;
int hdr = pPage->hdrOffset;
int first;
assert( sqlite3pager_pagenumber(data)==pPage->pgno );
assert( &data[pBt->pageSize] == (unsigned char*)pPage );
assert( sqlite3pager_iswriteable(data) );
memset(&data[hdr], 0, pBt->usableSize - hdr);
data[hdr] = flags;
first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
memset(&data[hdr+1], 0, 4);
data[hdr+7] = 0;
put2byte(&data[hdr+5], pBt->usableSize);
pPage->nFree = pBt->usableSize - first;
decodeFlags(pPage, flags);
pPage->hdrOffset = hdr;
pPage->cellOffset = first;
pPage->nOverflow = 0;
pPage->idxShift = 0;
pPage->nCell = 0;
pPage->isInit = 1;
pageIntegrity(pPage);
}
/*
** Get a page from the pager. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
int rc;
unsigned char *aData;
MemPage *pPage;
rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
if( rc ) return rc;
pPage = (MemPage*)&aData[pBt->pageSize];
pPage->aData = aData;
pPage->pBt = pBt;
pPage->pgno = pgno;
pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
*ppPage = pPage;
return SQLITE_OK;
}
/*
** Get a page from the pager and initialize it. This routine
** is just a convenience wrapper around separate calls to
** getPage() and initPage().
*/
static int getAndInitPage(
Btree *pBt, /* The database file */
Pgno pgno, /* Number of the page to get */
MemPage **ppPage, /* Write the page pointer here */
MemPage *pParent /* Parent of the page */
){
int rc;
if( pgno==0 ){
return SQLITE_CORRUPT_BKPT;
}
rc = getPage(pBt, pgno, ppPage);
if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
rc = initPage(*ppPage, pParent);
}
return rc;
}
/*
** Release a MemPage. This should be called once for each prior
** call to getPage.
*/
static void releasePage(MemPage *pPage){
if( pPage ){
assert( pPage->aData );
assert( pPage->pBt );
assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
sqlite3pager_unref(pPage->aData);
}
}
/*
** This routine is called when the reference count for a page
** reaches zero. We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(void *pData, int pageSize){
MemPage *pPage;
assert( (pageSize & 7)==0 );
pPage = (MemPage*)&((char*)pData)[pageSize];
if( pPage->pParent ){
MemPage *pParent = pPage->pParent;
pPage->pParent = 0;
releasePage(pParent);
}
pPage->isInit = 0;
}
/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(void *pData, int pageSize){
MemPage *pPage;
assert( (pageSize & 7)==0 );
pPage = (MemPage*)&((char*)pData)[pageSize];
if( pPage->isInit ){
pPage->isInit = 0;
initPage(pPage, pPage->pParent);
}
}
/*
** Open a database file.
**
** zFilename is the name of the database file. If zFilename is NULL
** a new database with a random name is created. This randomly named
** database file will be deleted when sqlite3BtreeClose() is called.
*/
int sqlite3BtreeOpen(
const char *zFilename, /* Name of the file containing the BTree database */
Btree **ppBtree, /* Pointer to new Btree object written here */
int flags, /* Options */
int exclusiveFlag, /* as in sqlite3OsOpenReadWrite() */
int allowReadonly /* as in sqlite3OsOpenReadWrite() */
){
Btree *pBt;
int rc;
int nReserve;
unsigned char zDbHeader[100];
/*
** The following asserts make sure that structures used by the btree are
** the right size. This is to guard against size changes that result
** when compiling on a different architecture.
*/
assert( sizeof(i64)==8 );
assert( sizeof(u64)==8 );
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(Pgno)==4 );
pBt = sqliteMalloc( sizeof(*pBt) );
if( pBt==0 ){
*ppBtree = 0;
return SQLITE_NOMEM;
}
rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, flags,
exclusiveFlag, allowReadonly);
if( rc!=SQLITE_OK ){
if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
sqliteFree(pBt);
*ppBtree = 0;
return rc;
}
sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
pBt->pCursor = 0;
pBt->pPage1 = 0;
pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader);
pBt->pageSize = get2byte(&zDbHeader[16]);
if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
|| ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
pBt->maxEmbedFrac = 64; /* 25% */
pBt->minEmbedFrac = 32; /* 12.5% */
pBt->minLeafFrac = 32; /* 12.5% */
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the magic name ":memory:" will create an in-memory database, then
** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM
** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined,
** then ":memory:" is just a regular file-name. Respect the auto-vacuum
** default in this case.
*/
#ifndef SQLITE_OMIT_MEMORYDB
if( zFilename && strcmp(zFilename,":memory:") ){
#else
if( zFilename ){
#endif
pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM;
}
#endif
nReserve = 0;
}else{
nReserve = zDbHeader[20];
pBt->maxEmbedFrac = zDbHeader[21];
pBt->minEmbedFrac = zDbHeader[22];
pBt->minLeafFrac = zDbHeader[23];
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
#endif
}
pBt->usableSize = pBt->pageSize - nReserve;
assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize);
*ppBtree = pBt;
return SQLITE_OK;
}
/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *pBt){
while( pBt->pCursor ){
sqlite3BtreeCloseCursor(pBt->pCursor);
}
sqlite3pager_close(pBt->pPager);
sqliteFree(pBt);
return SQLITE_OK;
}
/*
** Change the busy handler callback function.
*/
int sqlite3BtreeSetBusyHandler(Btree *pBt, BusyHandler *pHandler){
pBt->pBusyHandler = pHandler;
sqlite3pager_set_busyhandler(pBt->pPager, pHandler);
return SQLITE_OK;
}
/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage. If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing. Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes. But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
sqlite3pager_set_cachesize(pBt->pPager, mxPage);
return SQLITE_OK;
}
/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures. Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage) Level 2 is the default. There
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
sqlite3pager_set_safety_level(pBt->pPager, level);
return SQLITE_OK;
}
#endif
/*
** Return TRUE if the given btree is set to safety level 1. In other
** words, return TRUE if no sync() occurs on the disk files.
*/
int sqlite3BtreeSyncDisabled(Btree *pBt){
assert( pBt && pBt->pPager );
return sqlite3pager_nosync(pBt->pPager);
}
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Change the default pages size and the number of reserved bytes per page.
**
** The page size must be a power of 2 between 512 and 65536. If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
*/
int sqlite3BtreeSetPageSize(Btree *pBt, int pageSize, int nReserve){
if( pBt->pageSizeFixed ){
return SQLITE_READONLY;
}
if( nReserve<0 ){
nReserve = pBt->pageSize - pBt->usableSize;
}
if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
((pageSize-1)&pageSize)==0 ){
assert( (pageSize & 7)==0 );
pBt->pageSize = sqlite3pager_set_pagesize(pBt->pPager, pageSize);
}
pBt->usableSize = pBt->pageSize - nReserve;
return SQLITE_OK;
}
/*
** Return the currently defined page size
*/
int sqlite3BtreeGetPageSize(Btree *pBt){
return pBt->pageSize;
}
int sqlite3BtreeGetReserve(Btree *pBt){
return pBt->pageSize - pBt->usableSize;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite3BtreeSetAutoVacuum(Btree *pBt, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
return SQLITE_READONLY;
#else
if( pBt->pageSizeFixed ){
return SQLITE_READONLY;
}
pBt->autoVacuum = (autoVacuum?1:0);
return SQLITE_OK;
#endif
}
/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is
** enabled 1 is returned. Otherwise 0.
*/
int sqlite3BtreeGetAutoVacuum(Btree *pBt){
#ifdef SQLITE_OMIT_AUTOVACUUM
return 0;
#else
return pBt->autoVacuum;
#endif
}
/*
** Get a reference to pPage1 of the database file. This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success. If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
** is returned if we run out of memory. SQLITE_PROTOCOL is returned
** if there is a locking protocol violation.
*/
static int lockBtree(Btree *pBt){
int rc, pageSize;
MemPage *pPage1;
if( pBt->pPage1 ) return SQLITE_OK;
rc = getPage(pBt, 1, &pPage1);
if( rc!=SQLITE_OK ) return rc;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
rc = SQLITE_NOTADB;
if( sqlite3pager_pagecount(pBt->pPager)>0 ){
u8 *page1 = pPage1->aData;
if( memcmp(page1, zMagicHeader, 16)!=0 ){
goto page1_init_failed;
}
if( page1[18]>1 || page1[19]>1 ){
goto page1_init_failed;
}
pageSize = get2byte(&page1[16]);
if( ((pageSize-1)&pageSize)!=0 ){
goto page1_init_failed;
}
assert( (pageSize & 7)==0 );
pBt->pageSize = pageSize;
pBt->usableSize = pageSize - page1[20];
if( pBt->usableSize<500 ){
goto page1_init_failed;
}
pBt->maxEmbedFrac = page1[21];
pBt->minEmbedFrac = page1[22];
pBt->minLeafFrac = page1[23];
#ifndef SQLITE_OMIT_AUTOVACUUM
pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
#endif
}
/* maxLocal is the maximum amount of payload to store locally for
** a cell. Make sure it is small enough so that at least minFanout
** cells can will fit on one page. We assume a 10-byte page header.
** Besides the payload, the cell must store:
** 2-byte pointer to the cell
** 4-byte child pointer
** 9-byte nKey value
** 4-byte nData value
** 4-byte overflow page pointer
** So a cell consists of a 2-byte poiner, a header which is as much as
** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
** page pointer.
*/
pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
pBt->maxLeaf = pBt->usableSize - 35;
pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
goto page1_init_failed;
}
assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
pBt->pPage1 = pPage1;
return SQLITE_OK;
page1_init_failed:
releasePage(pPage1);
pBt->pPage1 = 0;
return rc;
}
/*
** This routine works like lockBtree() except that it also invokes the
** busy callback if there is lock contention.
*/
static int lockBtreeWithRetry(Btree *pBt){
int rc = SQLITE_OK;
if( pBt->inTrans==TRANS_NONE ){
rc = sqlite3BtreeBeginTrans(pBt, 0);
pBt->inTrans = TRANS_NONE;
}
return rc;
}
/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(Btree *pBt){
if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
if( pBt->pPage1->aData==0 ){
MemPage *pPage = pBt->pPage1;
pPage->aData = &((char*)pPage)[-pBt->pageSize];
pPage->pBt = pBt;
pPage->pgno = 1;
}
releasePage(pBt->pPage1);
pBt->pPage1 = 0;
pBt->inStmt = 0;
}
}
/*
** Create a new database by initializing the first page of the
** file.
*/
static int newDatabase(Btree *pBt){
MemPage *pP1;
unsigned char *data;
int rc;
if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
pP1 = pBt->pPage1;
assert( pP1!=0 );
data = pP1->aData;
rc = sqlite3pager_write(data);
if( rc ) return rc;
memcpy(data, zMagicHeader, sizeof(zMagicHeader));
assert( sizeof(zMagicHeader)==16 );
put2byte(&data[16], pBt->pageSize);
data[18] = 1;
data[19] = 1;
data[20] = pBt->pageSize - pBt->usableSize;
data[21] = pBt->maxEmbedFrac;
data[22] = pBt->minEmbedFrac;
data[23] = pBt->minLeafFrac;
memset(&data[24], 0, 100-24);
zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
pBt->pageSizeFixed = 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
put4byte(&data[36 + 4*4], 1);
}
#endif
return SQLITE_OK;
}
/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction. If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database. A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any
** changes to the database. None of the following routines
** will work unless a transaction is started first:
**
** sqlite3BtreeCreateTable()
** sqlite3BtreeCreateIndex()
** sqlite3BtreeClearTable()
** sqlite3BtreeDropTable()
** sqlite3BtreeInsert()
** sqlite3BtreeDelete()
** sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one. But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B. A has a read lock and B has
** a reserved lock. B tries to promote to exclusive but is blocked because
** of A's read lock. A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress. By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag){
int rc = SQLITE_OK;
/* If the btree is already in a write-transaction, or it
** is already in a read-transaction and a read-transaction
** is requested, this is a no-op.
*/
if( pBt->inTrans==TRANS_WRITE || (pBt->inTrans==TRANS_READ && !wrflag) ){
return SQLITE_OK;
}
/* Write transactions are not possible on a read-only database */
if( pBt->readOnly && wrflag ){
return SQLITE_READONLY;
}
do {
if( pBt->pPage1==0 ){
rc = lockBtree(pBt);
}
if( rc==SQLITE_OK && wrflag ){
rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1);
if( rc==SQLITE_OK ){
rc = newDatabase(pBt);
}
}
if( rc==SQLITE_OK ){
pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
if( wrflag ) pBt->inStmt = 0;
}else{
unlockBtreeIfUnused(pBt);
}
}while( rc==SQLITE_BUSY && pBt->inTrans==TRANS_NONE &&
sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
return rc;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
int i; /* Counter variable */
int nCell; /* Number of cells in page pPage */
int rc = SQLITE_OK; /* Return code */
Btree *pBt = pPage->pBt;
int isInitOrig = pPage->isInit;
Pgno pgno = pPage->pgno;
initPage(pPage, 0);
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
rc = ptrmapPutOvflPtr(pPage, pCell);
if( rc!=SQLITE_OK ){
goto set_child_ptrmaps_out;
}
if( !pPage->leaf ){
Pgno childPgno = get4byte(pCell);
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
}
}
if( !pPage->leaf ){
Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
}
set_child_ptrmaps_out:
pPage->isInit = isInitOrig;
return rc;
}
/*
** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
** page, is a pointer to page iFrom. Modify this pointer so that it points to
** iTo. Parameter eType describes the type of pointer to be modified, as
** follows:
**
** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
** page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
** page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
** overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
if( eType==PTRMAP_OVERFLOW2 ){
/* The pointer is always the first 4 bytes of the page in this case. */
if( get4byte(pPage->aData)!=iFrom ){
return SQLITE_CORRUPT_BKPT;
}
put4byte(pPage->aData, iTo);
}else{
int isInitOrig = pPage->isInit;
int i;
int nCell;
initPage(pPage, 0);
nCell = pPage->nCell;
for(i=0; i<nCell; i++){
u8 *pCell = findCell(pPage, i);
if( eType==PTRMAP_OVERFLOW1 ){
CellInfo info;
parseCellPtr(pPage, pCell, &info);
if( info.iOverflow ){
if( iFrom==get4byte(&pCell[info.iOverflow]) ){
put4byte(&pCell[info.iOverflow], iTo);
break;
}
}
}else{
if( get4byte(pCell)==iFrom ){
put4byte(pCell, iTo);
break;
}
}
}
if( i==nCell ){
if( eType!=PTRMAP_BTREE ||
get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
return SQLITE_CORRUPT_BKPT;
}
put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
}
pPage->isInit = isInitOrig;
}
return SQLITE_OK;
}
/*
** Move the open database page pDbPage to location iFreePage in the
** database. The pDbPage reference remains valid.
*/
static int relocatePage(
Btree *pBt, /* Btree */
MemPage *pDbPage, /* Open page to move */
u8 eType, /* Pointer map 'type' entry for pDbPage */
Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
Pgno iFreePage /* The location to move pDbPage to */
){
MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
Pgno iDbPage = pDbPage->pgno;
Pager *pPager = pBt->pPager;
int rc;
assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
/* Move page iDbPage from it's current location to page number iFreePage */
TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
iDbPage, iFreePage, iPtrPage, eType));
rc = sqlite3pager_movepage(pPager, pDbPage->aData, iFreePage);
if( rc!=SQLITE_OK ){
return rc;
}
pDbPage->pgno = iFreePage;
/* If pDbPage was a btree-page, then it may have child pages and/or cells
** that point to overflow pages. The pointer map entries for all these
** pages need to be changed.
**
** If pDbPage is an overflow page, then the first 4 bytes may store a
** pointer to a subsequent overflow page. If this is the case, then
** the pointer map needs to be updated for the subsequent overflow page.
*/
if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
rc = setChildPtrmaps(pDbPage);
if( rc!=SQLITE_OK ){
return rc;
}
}else{
Pgno nextOvfl = get4byte(pDbPage->aData);
if( nextOvfl!=0 ){
rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
if( rc!=SQLITE_OK ){
return rc;
}
}
}
/* Fix the database pointer on page iPtrPage that pointed at iDbPage so
** that it points at iFreePage. Also fix the pointer map entry for
** iPtrPage.
*/
if( eType!=PTRMAP_ROOTPAGE ){
rc = getPage(pBt, iPtrPage, &pPtrPage);
if( rc!=SQLITE_OK ){
return rc;
}
rc = sqlite3pager_write(pPtrPage->aData);
if( rc!=SQLITE_OK ){
releasePage(pPtrPage);
return rc;
}
rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
releasePage(pPtrPage);
if( rc==SQLITE_OK ){
rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
}
}
return rc;
}
/* Forward declaration required by autoVacuumCommit(). */
static int allocatePage(Btree *, MemPage **, Pgno *, Pgno, u8);
/*
** This routine is called prior to sqlite3pager_commit when a transaction
** is commited for an auto-vacuum database.
*/
static int autoVacuumCommit(Btree *pBt, Pgno *nTrunc){
Pager *pPager = pBt->pPager;
Pgno nFreeList; /* Number of pages remaining on the free-list. */
int nPtrMap; /* Number of pointer-map pages deallocated */
Pgno origSize; /* Pages in the database file */
Pgno finSize; /* Pages in the database file after truncation */
int rc; /* Return code */
u8 eType;
int pgsz = pBt->pageSize; /* Page size for this database */
Pgno iDbPage; /* The database page to move */
MemPage *pDbMemPage = 0; /* "" */
Pgno iPtrPage; /* The page that contains a pointer to iDbPage */
Pgno iFreePage; /* The free-list page to move iDbPage to */
MemPage *pFreeMemPage = 0; /* "" */
#ifndef NDEBUG
int nRef = *sqlite3pager_stats(pPager);
#endif
assert( pBt->autoVacuum );
if( PTRMAP_ISPAGE(pgsz, sqlite3pager_pagecount(pPager)) ){
return SQLITE_CORRUPT_BKPT;
}
/* Figure out how many free-pages are in the database. If there are no
** free pages, then auto-vacuum is a no-op.
*/
nFreeList = get4byte(&pBt->pPage1->aData[36]);
if( nFreeList==0 ){
*nTrunc = 0;
return SQLITE_OK;
}
origSize = sqlite3pager_pagecount(pPager);
nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pgsz, origSize)+pgsz/5)/(pgsz/5);
finSize = origSize - nFreeList - nPtrMap;
if( origSize>=PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){
finSize--;
if( PTRMAP_ISPAGE(pBt->usableSize, finSize) ){
finSize--;
}
}
TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize));
/* Variable 'finSize' will be the size of the file in pages after
** the auto-vacuum has completed (the current file size minus the number
** of pages on the free list). Loop through the pages that lie beyond
** this mark, and if they are not already on the free list, move them
** to a free page earlier in the file (somewhere before finSize).
*/
for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){
/* If iDbPage is a pointer map page, or the pending-byte page, skip it. */
if( PTRMAP_ISPAGE(pgsz, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){
continue;
}
rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage);
if( rc!=SQLITE_OK ) goto autovacuum_out;
if( eType==PTRMAP_ROOTPAGE ){
rc = SQLITE_CORRUPT_BKPT;
goto autovacuum_out;
}
/* If iDbPage is free, do not swap it. */
if( eType==PTRMAP_FREEPAGE ){
continue;
}
rc = getPage(pBt, iDbPage, &pDbMemPage);
if( rc!=SQLITE_OK ) goto autovacuum_out;
/* Find the next page in the free-list that is not already at the end
** of the file. A page can be pulled off the free list using the
** allocatePage() routine.
*/
do{
if( pFreeMemPage ){
releasePage(pFreeMemPage);
pFreeMemPage = 0;
}
rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0);
if( rc!=SQLITE_OK ){
releasePage(pDbMemPage);
goto autovacuum_out;
}
assert( iFreePage<=origSize );
}while( iFreePage>finSize );
releasePage(pFreeMemPage);
pFreeMemPage = 0;
rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage);
releasePage(pDbMemPage);
if( rc!=SQLITE_OK ) goto autovacuum_out;
}
/* The entire free-list has been swapped to the end of the file. So
** truncate the database file to finSize pages and consider the
** free-list empty.
*/
rc = sqlite3pager_write(pBt->pPage1->aData);
if( rc!=SQLITE_OK ) goto autovacuum_out;
put4byte(&pBt->pPage1->aData[32], 0);
put4byte(&pBt->pPage1->aData[36], 0);
if( rc!=SQLITE_OK ) goto autovacuum_out;
*nTrunc = finSize;
autovacuum_out:
assert( nRef==*sqlite3pager_stats(pPager) );
if( rc!=SQLITE_OK ){
sqlite3pager_rollback(pPager);
}
return rc;
}
#endif
/*
** Commit the transaction currently in progress.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeCommit(Btree *pBt){
int rc = SQLITE_OK;
if( pBt->inTrans==TRANS_WRITE ){
rc = sqlite3pager_commit(pBt->pPager);
}
pBt->inTrans = TRANS_NONE;
pBt->inStmt = 0;
unlockBtreeIfUnused(pBt);
return rc;
}
#ifndef NDEBUG
/*
** Return the number of write-cursors open on this handle. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
*/
static int countWriteCursors(Btree *pBt){
BtCursor *pCur;
int r = 0;
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->wrFlag ) r++;
}
return r;
}
#endif
#ifdef SQLITE_TEST
/*
** Print debugging information about all cursors to standard output.
*/
void sqlite3BtreeCursorList(Btree *pBt){
BtCursor *pCur;
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
MemPage *pPage = pCur->pPage;
char *zMode = pCur->wrFlag ? "rw" : "ro";
sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
pCur, pCur->pgnoRoot, zMode,
pPage ? pPage->pgno : 0, pCur->idx,
pCur->isValid ? "" : " eof"
);
}
}
#endif
/*
** Rollback the transaction in progress. All cursors will be
** invalided by this operation. Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *pBt){
int rc = SQLITE_OK;
MemPage *pPage1;
if( pBt->inTrans==TRANS_WRITE ){
rc = sqlite3pager_rollback(pBt->pPager);
/* The rollback may have destroyed the pPage1->aData value. So
** call getPage() on page 1 again to make sure pPage1->aData is
** set correctly. */
if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
releasePage(pPage1);
}
assert( countWriteCursors(pBt)==0 );
}
pBt->inTrans = TRANS_NONE;
pBt->inStmt = 0;
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Start a statement subtransaction. The subtransaction can
** can be rolled back independently of the main transaction.
** You must start a transaction before starting a subtransaction.
** The subtransaction is ended automatically if the main transaction
** commits or rolls back.
**
** Only one subtransaction may be active at a time. It is an error to try
** to start a new subtransaction if another subtransaction is already active.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block. If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
*/
int sqlite3BtreeBeginStmt(Btree *pBt){
int rc;
if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
pBt->inStmt = 1;
return rc;
}
/*
** Commit the statment subtransaction currently in progress. If no
** subtransaction is active, this is a no-op.
*/
int sqlite3BtreeCommitStmt(Btree *pBt){
int rc;
if( pBt->inStmt && !pBt->readOnly ){
rc = sqlite3pager_stmt_commit(pBt->pPager);
}else{
rc = SQLITE_OK;
}
pBt->inStmt = 0;
return rc;
}
/*
** Rollback the active statement subtransaction. If no subtransaction
** is active this routine is a no-op.
**
** All cursors will be invalidated by this operation. Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
int sqlite3BtreeRollbackStmt(Btree *pBt){
int rc;
if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
rc = sqlite3pager_stmt_rollback(pBt->pPager);
assert( countWriteCursors(pBt)==0 );
pBt->inStmt = 0;
return rc;
}
/*
** Default key comparison function to be used if no comparison function
** is specified on the sqlite3BtreeCursor() call.
*/
static int dfltCompare(
void *NotUsed, /* User data is not used */
int n1, const void *p1, /* First key to compare */
int n2, const void *p2 /* Second key to compare */
){
int c;
c = memcmp(p1, p2, n1<n2 ? n1 : n2);
if( c==0 ){
c = n1 - n2;
}
return c;
}
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. The act of acquiring a cursor gets a read lock on
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met. These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1: The cursor must have been opened with wrFlag==1
**
** 2: No other cursors may be open with wrFlag==0 on the same table
**
** 3: The database must be writable (not on read-only media)
**
** 4: There must be an active transaction.
**
** Condition 2 warrants further discussion. If any cursor is opened
** on a table with wrFlag==0, that prevents all other cursors from
** writing to that table. This is a kind of "read-lock". When a cursor
** is opened with wrFlag==0 it is guaranteed that the table will not
** change as long as the cursor is open. This allows the cursor to
** do a sequential scan of the table without having to worry about
** entries being inserted or deleted during the scan. Cursors should
** be opened with wrFlag==0 only if this read-lock property is needed.
** That is to say, cursors should be opened with wrFlag==0 only if they
** intend to use the sqlite3BtreeNext() system call. All other cursors
** should be opened with wrFlag==1 even if they never really intend
** to write.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
**
** The comparison function must be logically the same for every cursor
** on a particular table. Changing the comparison function will result
** in incorrect operations. If the comparison function is NULL, a
** default comparison function is used. The comparison function is
** always ignored for INTKEY tables.
*/
int sqlite3BtreeCursor(
Btree *pBt, /* The btree */
int iTable, /* Root page of table to open */
int wrFlag, /* 1 to write. 0 read-only */
int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
void *pArg, /* First arg to xCompare() */
BtCursor **ppCur /* Write new cursor here */
){
int rc;
BtCursor *pCur;
*ppCur = 0;
if( wrFlag ){
if( pBt->readOnly ){
return SQLITE_READONLY;
}
if( checkReadLocks(pBt, iTable, 0) ){
return SQLITE_LOCKED;
}
}
if( pBt->pPage1==0 ){
rc = lockBtreeWithRetry(pBt);
if( rc!=SQLITE_OK ){
return rc;
}
}
pCur = sqliteMallocRaw( sizeof(*pCur) );
if( pCur==0 ){
rc = SQLITE_NOMEM;
goto create_cursor_exception;
}
pCur->pgnoRoot = (Pgno)iTable;
pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */
if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
rc = SQLITE_EMPTY;
goto create_cursor_exception;
}
rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
pCur->xCompare = xCmp ? xCmp : dfltCompare;
pCur->pArg = pArg;
pCur->pBt = pBt;
pCur->wrFlag = wrFlag;
pCur->idx = 0;
memset(&pCur->info, 0, sizeof(pCur->info));
pCur->pNext = pBt->pCursor;
if( pCur->pNext ){
pCur->pNext->pPrev = pCur;
}
pCur->pPrev = 0;
pBt->pCursor = pCur;
pCur->isValid = 0;
*ppCur = pCur;
return SQLITE_OK;
create_cursor_exception:
if( pCur ){
releasePage(pCur->pPage);
sqliteFree(pCur);
}
unlockBtreeIfUnused(pBt);
return rc;
}
#if 0 /* Not Used */
/*
** Change the value of the comparison function used by a cursor.
*/
void sqlite3BtreeSetCompare(
BtCursor *pCur, /* The cursor to whose comparison function is changed */
int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
void *pArg /* First argument to xCmp() */
){
pCur->xCompare = xCmp ? xCmp : dfltCompare;
pCur->pArg = pArg;
}
#endif
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
Btree *pBt = pCur->pBt;
if( pCur->pPrev ){
pCur->pPrev->pNext = pCur->pNext;
}else{
pBt->pCursor = pCur->pNext;
}
if( pCur->pNext ){
pCur->pNext->pPrev = pCur->pPrev;
}
releasePage(pCur->pPage);
unlockBtreeIfUnused(pBt);
sqliteFree(pCur);
return SQLITE_OK;
}
/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
memcpy(pTempCur, pCur, sizeof(*pCur));
pTempCur->pNext = 0;
pTempCur->pPrev = 0;
if( pTempCur->pPage ){
sqlite3pager_ref(pTempCur->pPage->aData);
}
}
/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
static void releaseTempCursor(BtCursor *pCur){
if( pCur->pPage ){
sqlite3pager_unref(pCur->pPage->aData);
}
}
/*
** Make sure the BtCursor.info field of the given cursor is valid.
** If it is not already valid, call parseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to parseCell().
*/
static void getCellInfo(BtCursor *pCur){
if( pCur->info.nSize==0 ){
parseCell(pCur->pPage, pCur->idx, &pCur->info);
}else{
#ifndef NDEBUG
CellInfo info;
memset(&info, 0, sizeof(info));
parseCell(pCur->pPage, pCur->idx, &info);
assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
#endif
}
}
/*
** Set *pSize to the size of the buffer needed to hold the value of
** the key for the current entry. If the cursor is not pointing
** to a valid entry, *pSize is set to 0.
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
if( !pCur->isValid ){
*pSize = 0;
}else{
getCellInfo(pCur);
*pSize = pCur->info.nKey;
}
return SQLITE_OK;
}
/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
if( !pCur->isValid ){
/* Not pointing at a valid entry - set *pSize to 0. */
*pSize = 0;
}else{
getCellInfo(pCur);
*pSize = pCur->info.nData;
}
return SQLITE_OK;
}
/*
** Read payload information from the entry that the pCur cursor is
** pointing to. Begin reading the payload at "offset" and read
** a total of "amt" bytes. Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area. Data might appear
** on the main page or be scattered out on multiple overflow pages.
*/
static int getPayload(
BtCursor *pCur, /* Cursor pointing to entry to read from */
int offset, /* Begin reading this far into payload */
int amt, /* Read this many bytes */
unsigned char *pBuf, /* Write the bytes into this buffer */
int skipKey /* offset begins at data if this is true */
){
unsigned char *aPayload;
Pgno nextPage;
int rc;
MemPage *pPage;
Btree *pBt;
int ovflSize;
u32 nKey;
assert( pCur!=0 && pCur->pPage!=0 );
assert( pCur->isValid );
pBt = pCur->pBt;
pPage = pCur->pPage;
pageIntegrity(pPage);
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
getCellInfo(pCur);
aPayload = pCur->info.pCell;
aPayload += pCur->info.nHeader;
if( pPage->intKey ){
nKey = 0;
}else{
nKey = pCur->info.nKey;
}
assert( offset>=0 );
if( skipKey ){
offset += nKey;
}
if( offset+amt > nKey+pCur->info.nData ){
return SQLITE_ERROR;
}
if( offset<pCur->info.nLocal ){
int a = amt;
if( a+offset>pCur->info.nLocal ){
a = pCur->info.nLocal - offset;
}
memcpy(pBuf, &aPayload[offset], a);
if( a==amt ){
return SQLITE_OK;
}
offset = 0;
pBuf += a;
amt -= a;
}else{
offset -= pCur->info.nLocal;
}
ovflSize = pBt->usableSize - 4;
if( amt>0 ){
nextPage = get4byte(&aPayload[pCur->info.nLocal]);
while( amt>0 && nextPage ){
rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
if( rc!=0 ){
return rc;
}
nextPage = get4byte(aPayload);
if( offset<ovflSize ){
int a = amt;
if( a + offset > ovflSize ){
a = ovflSize - offset;
}
memcpy(pBuf, &aPayload[offset+4], a);
offset = 0;
amt -= a;
pBuf += a;
}else{
offset -= ovflSize;
}
sqlite3pager_unref(aPayload);
}
}
if( amt>0 ){
return SQLITE_CORRUPT_BKPT;
}
return SQLITE_OK;
}
/*
** Read part of the key associated with cursor pCur. Exactly
** "amt" bytes will be transfered into pBuf[]. The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
assert( pCur->isValid );
assert( pCur->pPage!=0 );
if( pCur->pPage->intKey ){
return SQLITE_CORRUPT_BKPT;
}
assert( pCur->pPage->intKey==0 );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}
/*
** Read part of the data associated with cursor pCur. Exactly
** "amt" bytes will be transfered into pBuf[]. The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong. An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
assert( pCur->isValid );
assert( pCur->pPage!=0 );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
return getPayload(pCur, offset, amt, pBuf, 1);
}
/*
** Return a pointer to payload information from the entry that the
** pCur cursor is pointing to. The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1. The number of bytes of available key/data is written
** into *pAmt. If *pAmt==0, then the value returned will not be
** a valid pointer.
**
** This routine is an optimization. It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages. When that is so, this routine can be used to access the
** key and data without making a copy. If the key and/or data spills
** onto overflow pages, then getPayload() must be used to reassembly
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database. The data might change or move the next time
** any btree routine is called.
*/
static const unsigned char *fetchPayload(
BtCursor *pCur, /* Cursor pointing to entry to read from */
int *pAmt, /* Write the number of available bytes here */
int skipKey /* read beginning at data if this is true */
){
unsigned char *aPayload;
MemPage *pPage;
u32 nKey;
int nLocal;
assert( pCur!=0 && pCur->pPage!=0 );
assert( pCur->isValid );
pPage = pCur->pPage;
pageIntegrity(pPage);
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
getCellInfo(pCur);
aPayload = pCur->info.pCell;
aPayload += pCur->info.nHeader;
if( pPage->intKey ){
nKey = 0;
}else{
nKey = pCur->info.nKey;
}
if( skipKey ){
aPayload += nKey;
nLocal = pCur->info.nLocal - nKey;
}else{
nLocal = pCur->info.nLocal;
if( nLocal>nKey ){
nLocal = nKey;
}
}
*pAmt = nLocal;
return aPayload;
}
/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page. Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral. The key/data may move
** or be destroyed on the next call to any Btree routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
return (const void*)fetchPayload(pCur, pAmt, 0);
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
return (const void*)fetchPayload(pCur, pAmt, 1);
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
int rc;
MemPage *pNewPage;
MemPage *pOldPage;
Btree *pBt = pCur->pBt;
assert( pCur->isValid );
rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
if( rc ) return rc;
pageIntegrity(pNewPage);
pNewPage->idxParent = pCur->idx;
pOldPage = pCur->pPage;
pOldPage->idxShift = 0;
releasePage(pOldPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
pCur->info.nSize = 0;
if( pNewPage->nCell<1 ){
return SQLITE_CORRUPT_BKPT;
}
return SQLITE_OK;
}
/*
** Return true if the page is the virtual root of its table.
**
** The virtual root page is the root page for most tables. But
** for the table rooted on page 1, sometime the real root page
** is empty except for the right-pointer. In such cases the
** virtual root page is the page that the right-pointer of page
** 1 is pointing to.
*/
static int isRootPage(MemPage *pPage){
MemPage *pParent = pPage->pParent;
if( pParent==0 ) return 1;
if( pParent->pgno>1 ) return 0;
if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
return 0;
}
/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from. If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
MemPage *pParent;
MemPage *pPage;
int idxParent;
assert( pCur->isValid );
pPage = pCur->pPage;
assert( pPage!=0 );
assert( !isRootPage(pPage) );
pageIntegrity(pPage);
pParent = pPage->pParent;
assert( pParent!=0 );
pageIntegrity(pParent);
idxParent = pPage->idxParent;
sqlite3pager_ref(pParent->aData);
releasePage(pPage);
pCur->pPage = pParent;
pCur->info.nSize = 0;
assert( pParent->idxShift==0 );
pCur->idx = idxParent;
}
/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
MemPage *pRoot;
int rc;
Btree *pBt = pCur->pBt;
rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
if( rc ){
pCur->isValid = 0;
return rc;
}
releasePage(pCur->pPage);
pageIntegrity(pRoot);
pCur->pPage = pRoot;
pCur->idx = 0;
pCur->info.nSize = 0;
if( pRoot->nCell==0 && !pRoot->leaf ){
Pgno subpage;
assert( pRoot->pgno==1 );
subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
assert( subpage>0 );
pCur->isValid = 1;
rc = moveToChild(pCur, subpage);
}
pCur->isValid = pCur->pPage->nCell>0;
return rc;
}
/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
Pgno pgno;
int rc;
MemPage *pPage;
assert( pCur->isValid );
while( !(pPage = pCur->pPage)->leaf ){
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
pgno = get4byte(findCell(pPage, pCur->idx));
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
return SQLITE_OK;
}
/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing. Notice the difference
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
Pgno pgno;
int rc;
MemPage *pPage;
assert( pCur->isValid );
while( !(pPage = pCur->pPage)->leaf ){
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
pCur->idx = pPage->nCell;
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
pCur->idx = pPage->nCell - 1;
pCur->info.nSize = 0;
return SQLITE_OK;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
int rc;
rc = moveToRoot(pCur);
if( rc ) return rc;
if( pCur->isValid==0 ){
assert( pCur->pPage->nCell==0 );
*pRes = 1;
return SQLITE_OK;
}
assert( pCur->pPage->nCell>0 );
*pRes = 0;
rc = moveToLeftmost(pCur);
return rc;
}
/* Move the cursor to the last entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
int rc;
rc = moveToRoot(pCur);
if( rc ) return rc;
if( pCur->isValid==0 ){
assert( pCur->pPage->nCell==0 );
*pRes = 1;
return SQLITE_OK;
}
assert( pCur->isValid );
*pRes = 0;
rc = moveToRightmost(pCur);
return rc;
}
/* Move the cursor so that it points to an entry near pKey/nKey.
** Return a success code.
**
** For INTKEY tables, only the nKey parameter is used. pKey is
** ignored. For other tables, nKey is the number of bytes of data
** in nKey. The comparison function specified when the cursor was
** created is used to compare keys.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is written to *pRes if pRes!=NULL. The meaning of
** this value is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
*/
int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
int rc;
rc = moveToRoot(pCur);
if( rc ) return rc;
assert( pCur->pPage );
assert( pCur->pPage->isInit );
if( pCur->isValid==0 ){
*pRes = -1;
assert( pCur->pPage->nCell==0 );
return SQLITE_OK;
}
for(;;){
int lwr, upr;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
int c = -1; /* pRes return if table is empty must be -1 */
lwr = 0;
upr = pPage->nCell-1;
if( !pPage->intKey && pKey==0 ){
return SQLITE_CORRUPT_BKPT;
}
pageIntegrity(pPage);
while( lwr<=upr ){
void *pCellKey;
i64 nCellKey;
pCur->idx = (lwr+upr)/2;
pCur->info.nSize = 0;
sqlite3BtreeKeySize(pCur, &nCellKey);
if( pPage->intKey ){
if( nCellKey<nKey ){
c = -1;
}else if( nCellKey>nKey ){
c = +1;
}else{
c = 0;
}
}else{
int available;
pCellKey = (void *)fetchPayload(pCur, &available, 0);
if( available>=nCellKey ){
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
}else{
pCellKey = sqliteMallocRaw( nCellKey );
if( pCellKey==0 ) return SQLITE_NOMEM;
rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
sqliteFree(pCellKey);
if( rc ) return rc;
}
}
if( c==0 ){
if( pPage->leafData && !pPage->leaf ){
lwr = pCur->idx;
upr = lwr - 1;
break;
}else{
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
}
if( c<0 ){
lwr = pCur->idx+1;
}else{
upr = pCur->idx-1;
}
}
assert( lwr==upr+1 );
assert( pPage->isInit );
if( pPage->leaf ){
chldPg = 0;
}else if( lwr>=pPage->nCell ){
chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
}else{
chldPg = get4byte(findCell(pPage, lwr));
}
if( chldPg==0 ){
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
if( pRes ) *pRes = c;
return SQLITE_OK;
}
pCur->idx = lwr;
pCur->info.nSize = 0;
rc = moveToChild(pCur, chldPg);
if( rc ){
return rc;
}
}
/* NOT REACHED */
}
/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry. TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
return pCur->isValid==0;
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
int rc;
MemPage *pPage = pCur->pPage;
assert( pRes!=0 );
if( pCur->isValid==0 ){
*pRes = 1;
return SQLITE_OK;
}
assert( pPage->isInit );
assert( pCur->idx<pPage->nCell );
pCur->idx++;
pCur->info.nSize = 0;
if( pCur->idx>=pPage->nCell ){
if( !pPage->leaf ){
rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
if( rc ) return rc;
rc = moveToLeftmost(pCur);
*pRes = 0;
return rc;
}
do{
if( isRootPage(pPage) ){
*pRes = 1;
pCur->isValid = 0;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}while( pCur->idx>=pPage->nCell );
*pRes = 0;
if( pPage->leafData ){
rc = sqlite3BtreeNext(pCur, pRes);
}else{
rc = SQLITE_OK;
}
return rc;
}
*pRes = 0;
if( pPage->leaf ){
return SQLITE_OK;
}
rc = moveToLeftmost(pCur);
return rc;
}
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
int rc;
Pgno pgno;
MemPage *pPage;
if( pCur->isValid==0 ){
*pRes = 1;
return SQLITE_OK;
}
pPage = pCur->pPage;
assert( pPage->isInit );
assert( pCur->idx>=0 );
if( !pPage->leaf ){
pgno = get4byte( findCell(pPage, pCur->idx) );
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
rc = moveToRightmost(pCur);
}else{
while( pCur->idx==0 ){
if( isRootPage(pPage) ){
pCur->isValid = 0;
*pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}
pCur->idx--;
pCur->info.nSize = 0;
if( pPage->leafData && !pPage->leaf ){
rc = sqlite3BtreePrevious(pCur, pRes);
}else{
rc = SQLITE_OK;
}
}
*pRes = 0;
return rc;
}
/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty. (In other words, sqlite3pager_write()
** has already been called on the new page.) The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3pager_unref() on the new page when it is done.
**
** SQLITE_OK is returned on success. Any other return value indicates
** an error. *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
** locate a page close to the page number "nearby". This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the "exact" parameter is not 0, and the page-number nearby exists
** anywhere on the free-list, then it is guarenteed to be returned. This
** is only used by auto-vacuum databases when allocating a new table.
*/
static int allocatePage(
Btree *pBt,
MemPage **ppPage,
Pgno *pPgno,
Pgno nearby,
u8 exact
){
MemPage *pPage1;
int rc;
int n; /* Number of pages on the freelist */
int k; /* Number of leaves on the trunk of the freelist */
pPage1 = pBt->pPage1;
n = get4byte(&pPage1->aData[36]);
if( n>0 ){
/* There are pages on the freelist. Reuse one of those pages. */
MemPage *pTrunk = 0;
Pgno iTrunk;
MemPage *pPrevTrunk = 0;
u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
/* If the 'exact' parameter was true and a query of the pointer-map
** shows that the page 'nearby' is somewhere on the free-list, then
** the entire-list will be searched for that page.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
if( exact ){
u8 eType;
assert( nearby>0 );
assert( pBt->autoVacuum );
rc = ptrmapGet(pBt, nearby, &eType, 0);
if( rc ) return rc;
if( eType==PTRMAP_FREEPAGE ){
searchList = 1;
}
*pPgno = nearby;
}
#endif
/* Decrement the free-list count by 1. Set iTrunk to the index of the
** first free-list trunk page. iPrevTrunk is initially 1.
*/
rc = sqlite3pager_write(pPage1->aData);
if( rc ) return rc;
put4byte(&pPage1->aData[36], n-1);
/* The code within this loop is run only once if the 'searchList' variable
** is not true. Otherwise, it runs once for each trunk-page on the
** free-list until the page 'nearby' is located.
*/
do {
pPrevTrunk = pTrunk;
if( pPrevTrunk ){
iTrunk = get4byte(&pPrevTrunk->aData[0]);
}else{
iTrunk = get4byte(&pPage1->aData[32]);
}
rc = getPage(pBt, iTrunk, &pTrunk);
if( rc ){
releasePage(pPrevTrunk);
return rc;
}
/* TODO: This should move to after the loop? */
rc = sqlite3pager_write(pTrunk->aData);
if( rc ){
releasePage(pTrunk);
releasePage(pPrevTrunk);
return rc;
}
k = get4byte(&pTrunk->aData[4]);
if( k==0 && !searchList ){
/* The trunk has no leaves and the list is not being searched.
** So extract the trunk page itself and use it as the newly
** allocated page */
assert( pPrevTrunk==0 );
*pPgno = iTrunk;
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
*ppPage = pTrunk;
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
}else if( k>pBt->usableSize/4 - 8 ){
/* Value of k is out of range. Database corruption */
return SQLITE_CORRUPT_BKPT;
#ifndef SQLITE_OMIT_AUTOVACUUM
}else if( searchList && nearby==iTrunk ){
/* The list is being searched and this trunk page is the page
** to allocate, regardless of whether it has leaves.
*/
assert( *pPgno==iTrunk );
*ppPage = pTrunk;
searchList = 0;
if( k==0 ){
if( !pPrevTrunk ){
memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
}else{
memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
}
}else{
/* The trunk page is required by the caller but it contains
** pointers to free-list leaves. The first leaf becomes a trunk
** page in this case.
*/
MemPage *pNewTrunk;
Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
rc = getPage(pBt, iNewTrunk, &pNewTrunk);
if( rc!=SQLITE_OK ){
releasePage(pTrunk);
releasePage(pPrevTrunk);
return rc;
}
rc = sqlite3pager_write(pNewTrunk->aData);
if( rc!=SQLITE_OK ){
releasePage(pNewTrunk);
releasePage(pTrunk);
releasePage(pPrevTrunk);
return rc;
}
memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
put4byte(&pNewTrunk->aData[4], k-1);
memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
if( !pPrevTrunk ){
put4byte(&pPage1->aData[32], iNewTrunk);
}else{
put4byte(&pPrevTrunk->aData[0], iNewTrunk);
}
releasePage(pNewTrunk);
}
pTrunk = 0;
TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
}else{
/* Extract a leaf from the trunk */
int closest;
Pgno iPage;
unsigned char *aData = pTrunk->aData;
if( nearby>0 ){
int i, dist;
closest = 0;
dist = get4byte(&aData[8]) - nearby;
if( dist<0 ) dist = -dist;
for(i=1; i<k; i++){
int d2 = get4byte(&aData[8+i*4]) - nearby;
if( d2<0 ) d2 = -d2;
if( d2<dist ){
closest = i;
dist = d2;
}
}
}else{
closest = 0;
}
iPage = get4byte(&aData[8+closest*4]);
if( !searchList || iPage==nearby ){
*pPgno = iPage;
if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){
/* Free page off the end of the file */
return SQLITE_CORRUPT_BKPT;
}
TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
": %d more free pages\n",
*pPgno, closest+1, k, pTrunk->pgno, n-1));
if( closest<k-1 ){
memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
}
put4byte(&aData[4], k-1);
rc = getPage(pBt, *pPgno, ppPage);
if( rc==SQLITE_OK ){
sqlite3pager_dont_rollback((*ppPage)->aData);
rc = sqlite3pager_write((*ppPage)->aData);
if( rc!=SQLITE_OK ){
releasePage(*ppPage);
}
}
searchList = 0;
}
}
releasePage(pPrevTrunk);
}while( searchList );
releasePage(pTrunk);
}else{
/* There are no pages on the freelist, so create a new page at the
** end of the file */
*pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt->usableSize, *pPgno) ){
/* If *pPgno refers to a pointer-map page, allocate two new pages
** at the end of the file instead of one. The first allocated page
** becomes a new pointer-map page, the second is used by the caller.
*/
TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
(*pPgno)++;
}
#endif
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
rc = getPage(pBt, *pPgno, ppPage);
if( rc ) return rc;
rc = sqlite3pager_write((*ppPage)->aData);
if( rc!=SQLITE_OK ){
releasePage(*ppPage);
}
TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
}
assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
return rc;
}
/*
** Add a page of the database file to the freelist.
**
** sqlite3pager_unref() is NOT called for pPage.
*/
static int freePage(MemPage *pPage){
Btree *pBt = pPage->pBt;
MemPage *pPage1 = pBt->pPage1;
int rc, n, k;
/* Prepare the page for freeing */
assert( pPage->pgno>1 );
pPage->isInit = 0;
releasePage(pPage->pParent);
pPage->pParent = 0;
/* Increment the free page count on pPage1 */
rc = sqlite3pager_write(pPage1->aData);
if( rc ) return rc;
n = get4byte(&pPage1->aData[36]);
put4byte(&pPage1->aData[36], n+1);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, write an entry in the pointer-map
** to indicate that the page is free.
*/
if( pBt->autoVacuum ){
rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
if( rc ) return rc;
}
#endif
if( n==0 ){
/* This is the first free page */
rc = sqlite3pager_write(pPage->aData);
if( rc ) return rc;
memset(pPage->aData, 0, 8);
put4byte(&pPage1->aData[32], pPage->pgno);
TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
}else{
/* Other free pages already exist. Retrive the first trunk page
** of the freelist and find out how many leaves it has. */
MemPage *pTrunk;
rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
if( rc ) return rc;
k = get4byte(&pTrunk->aData[4]);
if( k>=pBt->usableSize/4 - 8 ){
/* The trunk is full. Turn the page being freed into a new
** trunk page with no leaves. */
rc = sqlite3pager_write(pPage->aData);
if( rc ) return rc;
put4byte(pPage->aData, pTrunk->pgno);
put4byte(&pPage->aData[4], 0);
put4byte(&pPage1->aData[32], pPage->pgno);
TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
pPage->pgno, pTrunk->pgno));
}else{
/* Add the newly freed page as a leaf on the current trunk */
rc = sqlite3pager_write(pTrunk->aData);
if( rc ) return rc;
put4byte(&pTrunk->aData[4], k+1);
put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
}
releasePage(pTrunk);
}
return rc;
}
/*
** Free any overflow pages associated with the given Cell.
*/
static int clearCell(MemPage *pPage, unsigned char *pCell){
Btree *pBt = pPage->pBt;
CellInfo info;
Pgno ovflPgno;
int rc;
parseCellPtr(pPage, pCell, &info);
if( info.iOverflow==0 ){
return SQLITE_OK; /* No overflow pages. Return without doing anything */
}
ovflPgno = get4byte(&pCell[info.iOverflow]);
while( ovflPgno!=0 ){
MemPage *pOvfl;
if( ovflPgno>sqlite3pager_pagecount(pBt->pPager) ){
return SQLITE_CORRUPT_BKPT;
}
rc = getPage(pBt, ovflPgno, &pOvfl);
if( rc ) return rc;
ovflPgno = get4byte(pOvfl->aData);
rc = freePage(pOvfl);
sqlite3pager_unref(pOvfl->aData);
if( rc ) return rc;
}
return SQLITE_OK;
}
/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[]. Overflow pages are
** allocated and filled in as necessary. The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area. pCell might point to some temporary storage. The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
MemPage *pPage, /* The page that contains the cell */
unsigned char *pCell, /* Complete text of the cell */
const void *pKey, i64 nKey, /* The key */
const void *pData,int nData, /* The data */
int *pnSize /* Write cell size here */
){
int nPayload;
const u8 *pSrc;
int nSrc, n, rc;
int spaceLeft;
MemPage *pOvfl = 0;
MemPage *pToRelease = 0;
unsigned char *pPrior;
unsigned char *pPayload;
Btree *pBt = pPage->pBt;
Pgno pgnoOvfl = 0;
int nHeader;
CellInfo info;
/* Fill in the header. */
nHeader = 0;
if( !pPage->leaf ){
nHeader += 4;
}
if( pPage->hasData ){
nHeader += putVarint(&pCell[nHeader], nData);
}else{
nData = 0;
}
nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
parseCellPtr(pPage, pCell, &info);
assert( info.nHeader==nHeader );
assert( info.nKey==nKey );
assert( info.nData==nData );
/* Fill in the payload */
nPayload = nData;
if( pPage->intKey ){
pSrc = pData;
nSrc = nData;
nData = 0;
}else{
nPayload += nKey;
pSrc = pKey;
nSrc = nKey;
}
*pnSize = info.nSize;
spaceLeft = info.nLocal;
pPayload = &pCell[nHeader];
pPrior = &pCell[info.iOverflow];
while( nPayload>0 ){
if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
#endif
rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If the database supports auto-vacuum, and the second or subsequent
** overflow page is being allocated, add an entry to the pointer-map
** for that page now. The entry for the first overflow page will be
** added later, by the insertCell() routine.
*/
if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){
rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap);
}
#endif
if( rc ){
releasePage(pToRelease);
/* clearCell(pPage, pCell); */
return rc;
}
put4byte(pPrior, pgnoOvfl);
releasePage(pToRelease);
pToRelease = pOvfl;
pPrior = pOvfl->aData;
put4byte(pPrior, 0);
pPayload = &pOvfl->aData[4];
spaceLeft = pBt->usableSize - 4;
}
n = nPayload;
if( n>spaceLeft ) n = spaceLeft;
if( n>nSrc ) n = nSrc;
memcpy(pPayload, pSrc, n);
nPayload -= n;
pPayload += n;
pSrc += n;
nSrc -= n;
spaceLeft -= n;
if( nSrc==0 ){
nSrc = nData;
pSrc = pData;
}
}
releasePage(pToRelease);
return SQLITE_OK;
}
/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static int reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
MemPage *pThis;
unsigned char *aData;
if( pgno==0 ) return SQLITE_OK;
assert( pBt->pPager!=0 );
aData = sqlite3pager_lookup(pBt->pPager, pgno);
if( aData ){
pThis = (MemPage*)&aData[pBt->pageSize];
assert( pThis->aData==aData );
if( pThis->isInit ){
if( pThis->pParent!=pNewParent ){
if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
pThis->pParent = pNewParent;
if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
}
pThis->idxParent = idx;
}
sqlite3pager_unref(aData);
}
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
}
#endif
return SQLITE_OK;
}
/*
** Change the pParent pointer of all children of pPage to point back
** to pPage.
**
** In other words, for every child of pPage, invoke reparentPage()
** to make sure that each child knows that pPage is its parent.
**
** This routine gets called after you memcpy() one page into
** another.
*/
static int reparentChildPages(MemPage *pPage){
int i;
Btree *pBt = pPage->pBt;
int rc = SQLITE_OK;
if( pPage->leaf ) return SQLITE_OK;
for(i=0; i<pPage->nCell; i++){
u8 *pCell = findCell(pPage, i);
if( !pPage->leaf ){
rc = reparentPage(pBt, get4byte(pCell), pPage, i);
if( rc!=SQLITE_OK ) return rc;
}
}
if( !pPage->leaf ){
rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
pPage, i);
pPage->idxShift = 0;
}
return rc;
}
/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz){
int i; /* Loop counter */
int pc; /* Offset to cell content of cell being deleted */
u8 *data; /* pPage->aData */
u8 *ptr; /* Used to move bytes around within data[] */
assert( idx>=0 && idx<pPage->nCell );
assert( sz==cellSize(pPage, idx) );
assert( sqlite3pager_iswriteable(pPage->aData) );
data = pPage->aData;
ptr = &data[pPage->cellOffset + 2*idx];
pc = get2byte(ptr);
assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
freeSpace(pPage, pc, sz);
for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
ptr[0] = ptr[2];
ptr[1] = ptr[3];
}
pPage->nCell--;
put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
pPage->nFree += 2;
pPage->idxShift = 1;
}
/*
** Insert a new cell on pPage at cell index "i". pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there. If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null. Regardless of pTemp, allocate a new entry
** in pPage->aOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index.
** Allocating a new entry in pPage->aCell[] implies that
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location
** (but pCell+nSkip is always valid).
*/
static int insertCell(
MemPage *pPage, /* Page into which we are copying */
int i, /* New cell becomes the i-th cell of the page */
u8 *pCell, /* Content of the new cell */
int sz, /* Bytes of content in pCell */
u8 *pTemp, /* Temp storage space for pCell, if needed */
u8 nSkip /* Do not write the first nSkip bytes of the cell */
){
int idx; /* Where to write new cell content in data[] */
int j; /* Loop counter */
int top; /* First byte of content for any cell in data[] */
int end; /* First byte past the last cell pointer in data[] */
int ins; /* Index in data[] where new cell pointer is inserted */
int hdr; /* Offset into data[] of the page header */
int cellOffset; /* Address of first cell pointer in data[] */
u8 *data; /* The content of the whole page */
u8 *ptr; /* Used for moving information around in data[] */
assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
assert( sz==cellSizePtr(pPage, pCell) );
assert( sqlite3pager_iswriteable(pPage->aData) );
if( pPage->nOverflow || sz+2>pPage->nFree ){
if( pTemp ){
memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
pCell = pTemp;
}
j = pPage->nOverflow++;
assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
pPage->aOvfl[j].pCell = pCell;
pPage->aOvfl[j].idx = i;
pPage->nFree = 0;
}else{
data = pPage->aData;
hdr = pPage->hdrOffset;
top = get2byte(&data[hdr+5]);
cellOffset = pPage->cellOffset;
end = cellOffset + 2*pPage->nCell + 2;
ins = cellOffset + 2*i;
if( end > top - sz ){
int rc = defragmentPage(pPage);
if( rc!=SQLITE_OK ) return rc;
top = get2byte(&data[hdr+5]);
assert( end + sz <= top );
}
idx = allocateSpace(pPage, sz);
assert( idx>0 );
assert( end <= get2byte(&data[hdr+5]) );
pPage->nCell++;
pPage->nFree -= 2;
memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
ptr[0] = ptr[-2];
ptr[1] = ptr[-1];
}
put2byte(&data[ins], idx);
put2byte(&data[hdr+3], pPage->nCell);
pPage->idxShift = 1;
pageIntegrity(pPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pPage->pBt->autoVacuum ){
/* The cell may contain a pointer to an overflow page. If so, write
** the entry for the overflow page into the pointer map.
*/
CellInfo info;
parseCellPtr(pPage, pCell, &info);
if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
if( rc!=SQLITE_OK ) return rc;
}
}
#endif
}
return SQLITE_OK;
}
/*
** Add a list of cells to a page. The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void assemblePage(
MemPage *pPage, /* The page to be assemblied */
int nCell, /* The number of cells to add to this page */
u8 **apCell, /* Pointers to cell bodies */
int *aSize /* Sizes of the cells */
){
int i; /* Loop counter */
int totalSize; /* Total size of all cells */
int hdr; /* Index of page header */
int cellptr; /* Address of next cell pointer */
int cellbody; /* Address of next cell body */
u8 *data; /* Data for the page */
assert( pPage->nOverflow==0 );
totalSize = 0;
for(i=0; i<nCell; i++){
totalSize += aSize[i];
}
assert( totalSize+2*nCell<=pPage->nFree );
assert( pPage->nCell==0 );
cellptr = pPage->cellOffset;
data = pPage->aData;
hdr = pPage->hdrOffset;
put2byte(&data[hdr+3], nCell);
if( nCell ){
cellbody = allocateSpace(pPage, totalSize);
assert( cellbody>0 );
assert( pPage->nFree >= 2*nCell );
pPage->nFree -= 2*nCell;
for(i=0; i<nCell; i++){
put2byte(&data[cellptr], cellbody);
memcpy(&data[cellbody], apCell[i], aSize[i]);
cellptr += 2;
cellbody += aSize[i];
}
assert( cellbody==pPage->pBt->usableSize );
}
pPage->nCell = nCell;
}
/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation. NN is the number of neighbors on either side
** of the page that participate in the balancing operation. NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course). Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB (NN*2+1) /* Total pages involved in the balance */
/* Forward reference */
static int balance(MemPage*, int);
#ifndef SQLITE_OMIT_TQUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page. This leaves the right side of the tree somewhat
** unbalanced. But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up. On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent. pPage must have a single overflow entry
** which is also the right-most entry on the page.
*/
static int balance_quick(MemPage *pPage, MemPage *pParent){
int rc;
MemPage *pNew;
Pgno pgnoNew;
u8 *pCell;
int szCell;
CellInfo info;
Btree *pBt = pPage->pBt;
int parentIdx = pParent->nCell; /* pParent new divider cell index */
int parentSize; /* Size of new divider cell */
u8 parentCell[64]; /* Space for the new divider cell */
/* Allocate a new page. Insert the overflow cell from pPage
** into it. Then remove the overflow cell from pPage.
*/
rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0);
if( rc!=SQLITE_OK ){
return rc;
}
pCell = pPage->aOvfl[0].pCell;
szCell = cellSizePtr(pPage, pCell);
zeroPage(pNew, pPage->aData[0]);
assemblePage(pNew, 1, &pCell, &szCell);
pPage->nOverflow = 0;
/* Set the parent of the newly allocated page to pParent. */
pNew->pParent = pParent;
sqlite3pager_ref(pParent->aData);
/* pPage is currently the right-child of pParent. Change this
** so that the right-child is the new page allocated above and
** pPage is the next-to-right child.
*/
assert( pPage->nCell>0 );
parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info);
rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize);
if( rc!=SQLITE_OK ){
return rc;
}
assert( parentSize<64 );
rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
if( rc!=SQLITE_OK ){
return rc;
}
put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map
** with entries for the new page, and any pointer from the
** cell on the page to an overflow page.
*/
if( pBt->autoVacuum ){
rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
if( rc!=SQLITE_OK ){
return rc;
}
rc = ptrmapPutOvfl(pNew, 0);
if( rc!=SQLITE_OK ){
return rc;
}
}
#endif
/* Release the reference to the new page and balance the parent page,
** in case the divider cell inserted caused it to become overfull.
*/
releasePage(pNew);
return balance(pParent, 0);
}
#endif /* SQLITE_OMIT_TQUICKBALANCE */
/*
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
** if the database supports auto-vacuum or not. Because it is used
** within an expression that is an argument to another macro
** (sqliteMallocRaw), it is not possible to use conditional compilation.
** So, this macro is defined instead.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define ISAUTOVACUUM (pBt->autoVacuum)
#else
#define ISAUTOVACUUM 0
#endif
/*
** This routine redistributes Cells on pPage and up to NN*2 siblings
** of pPage so that all pages have about the same amount of free space.
** Usually NN siblings on either side of pPage is used in the balancing,
** though more siblings might come from one side if pPage is the first
** or last child of its parent. If pPage has fewer than 2*NN siblings
** (something which can only happen if pPage is the root page or a
** child of root) then all available siblings participate in the balancing.
**
** The number of siblings of pPage might be increased or decreased by one or
** two in an effort to keep pages nearly full but not over full. The root page
** is special and is allowed to be nearly empty. If pPage is
** the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or completely empty.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->aData[]. This can happen
** if the page is overfull. Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->aData[].
**
** In the course of balancing the siblings of pPage, the parent of pPage
** might become overfull or underfull. If that happens, then this routine
** is called recursively on the parent.
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
*/
static int balance_nonroot(MemPage *pPage){
MemPage *pParent; /* The parent of pPage */
Btree *pBt; /* The whole database */
int nCell = 0; /* Number of cells in apCell[] */
int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
int nOld; /* Number of pages in apOld[] */
int nNew; /* Number of pages in apNew[] */
int nDiv; /* Number of cells in apDiv[] */
int i, j, k; /* Loop counters */
int idx; /* Index of pPage in pParent->aCell[] */
int nxDiv; /* Next divider slot in pParent->aCell[] */
int rc; /* The return code */
int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
int usableSpace; /* Bytes in pPage beyond the header */
int pageFlags; /* Value of pPage->aData[0] */
int subtotal; /* Subtotal of bytes in cells on one page */
int iSpace = 0; /* First unused byte of aSpace[] */
MemPage *apOld[NB]; /* pPage and up to two siblings */
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
int idxDiv[NB]; /* Indices of divider cells in pParent */
u8 *apDiv[NB]; /* Divider cells in pParent */
int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
int szNew[NB+2]; /* Combined size of cells place on i-th page */
u8 **apCell = 0; /* All cells begin balanced */
int *szCell; /* Local size of all cells in apCell[] */
u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
u8 *aSpace; /* Space to hold copies of dividers cells */
#ifndef SQLITE_OMIT_AUTOVACUUM
u8 *aFrom = 0;
#endif
/*
** Find the parent page.
*/
assert( pPage->isInit );
assert( sqlite3pager_iswriteable(pPage->aData) );
pBt = pPage->pBt;
pParent = pPage->pParent;
sqlite3pager_write(pParent->aData);
assert( pParent );
TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#ifndef SQLITE_OMIT_TQUICKBALANCE
/*
** A special case: If a new entry has just been inserted into a
** table (that is, a btree with integer keys and all data at the leaves)
** and the new entry is the right-most entry in the tree (it has the
** largest key) then use the special balance_quick() routine for
** balancing. balance_quick() is much faster and results in a tighter
** packing of data in the common case.
*/
if( pPage->leaf &&
pPage->intKey &&
pPage->leafData &&
pPage->nOverflow==1 &&
pPage->aOvfl[0].idx==pPage->nCell &&
pPage->pParent->pgno!=1 &&
get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
){
/*
** TODO: Check the siblings to the left of pPage. It may be that
** they are not full and no new page is required.
*/
return balance_quick(pPage, pParent);
}
#endif
/*
** Find the cell in the parent page whose left child points back
** to pPage. The "idx" variable is the index of that cell. If pPage
** is the rightmost child of pParent then set idx to pParent->nCell
*/
if( pParent->idxShift ){
Pgno pgno;
pgno = pPage->pgno;
assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
for(idx=0; idx<pParent->nCell; idx++){
if( get4byte(findCell(pParent, idx))==pgno ){
break;
}
}
assert( idx<pParent->nCell
|| get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
}else{
idx = pPage->idxParent;
}
/*
** Initialize variables so that it will be safe to jump
** directly to balance_cleanup at any moment.
*/
nOld = nNew = 0;
sqlite3pager_ref(pParent->aData);
/*
** Find sibling pages to pPage and the cells in pParent that divide
** the siblings. An attempt is made to find NN siblings on either
** side of pPage. More siblings are taken from one side, however, if
** pPage there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
*/
nxDiv = idx - NN;
if( nxDiv + NB > pParent->nCell ){
nxDiv = pParent->nCell - NB + 1;
}
if( nxDiv<0 ){
nxDiv = 0;
}
nDiv = 0;
for(i=0, k=nxDiv; i<NB; i++, k++){
if( k<pParent->nCell ){
idxDiv[i] = k;
apDiv[i] = findCell(pParent, k);
nDiv++;
assert( !pParent->leaf );
pgnoOld[i] = get4byte(apDiv[i]);
}else if( k==pParent->nCell ){
pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
}else{
break;
}
rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
if( rc ) goto balance_cleanup;
apOld[i]->idxParent = k;
apCopy[i] = 0;
assert( i==nOld );
nOld++;
nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
}
/* Make nMaxCells a multiple of 2 in order to preserve 8-byte
** alignment */
nMaxCells = (nMaxCells + 1)&~1;
/*
** Allocate space for memory structures
*/
apCell = sqliteMallocRaw(
nMaxCells*sizeof(u8*) /* apCell */
+ nMaxCells*sizeof(int) /* szCell */
+ ROUND8(sizeof(MemPage))*NB /* aCopy */
+ pBt->pageSize*(5+NB) /* aSpace */
+ (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
);
if( apCell==0 ){
rc = SQLITE_NOMEM;
goto balance_cleanup;
}
szCell = (int*)&apCell[nMaxCells];
aCopy[0] = (u8*)&szCell[nMaxCells];
assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
for(i=1; i<NB; i++){
aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
}
aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
aFrom = &aSpace[5*pBt->pageSize];
}
#endif
/*
** Make copies of the content of pPage and its siblings into aOld[].
** The rest of this function will use data from the copies rather
** that the original pages since the original pages will be in the
** process of being overwritten.
*/
for(i=0; i<nOld; i++){
MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize];
p->aData = &((u8*)p)[-pBt->pageSize];
memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
/* The memcpy() above changes the value of p->aData so we have to
** set it again. */
p->aData = &((u8*)p)[-pBt->pageSize];
}
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
** into space obtained form aSpace[] and remove the the divider Cells
** from pParent.
**
** If the siblings are on leaf pages, then the child pointers of the
** divider cells are stripped from the cells before they are copied
** into aSpace[]. In this way, all cells in apCell[] are without
** child pointers. If siblings are not leaves, then all cell in
** apCell[] include child pointers. Either way, all cells in apCell[]
** are alike.
**
** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
** leafData: 1 if pPage holds key+data and pParent holds only keys.
*/
nCell = 0;
leafCorrection = pPage->leaf*4;
leafData = pPage->leafData && pPage->leaf;
for(i=0; i<nOld; i++){
MemPage *pOld = apCopy[i];
int limit = pOld->nCell+pOld->nOverflow;
for(j=0; j<limit; j++){
assert( nCell<nMaxCells );
apCell[nCell] = findOverflowCell(pOld, j);
szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
int a;
aFrom[nCell] = i;
for(a=0; a<pOld->nOverflow; a++){
if( pOld->aOvfl[a].pCell==apCell[nCell] ){
aFrom[nCell] = 0xFF;
break;
}
}
}
#endif
nCell++;
}
if( i<nOld-1 ){
int sz = cellSizePtr(pParent, apDiv[i]);
if( leafData ){
/* With the LEAFDATA flag, pParent cells hold only INTKEYs that
** are duplicates of keys on the child pages. We need to remove
** the divider cells from pParent, but the dividers cells are not
** added to apCell[] because they are duplicates of child cells.
*/
dropCell(pParent, nxDiv, sz);
}else{
u8 *pTemp;
assert( nCell<nMaxCells );
szCell[nCell] = sz;
pTemp = &aSpace[iSpace];
iSpace += sz;
assert( iSpace<=pBt->pageSize*5 );
memcpy(pTemp, apDiv[i], sz);
apCell[nCell] = pTemp+leafCorrection;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
aFrom[nCell] = 0xFF;
}
#endif
dropCell(pParent, nxDiv, sz);
szCell[nCell] -= leafCorrection;
assert( get4byte(pTemp)==pgnoOld[i] );
if( !pOld->leaf ){
assert( leafCorrection==0 );
/* The right pointer of the child page pOld becomes the left
** pointer of the divider cell */
memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
}else{
assert( leafCorrection==4 );
}
nCell++;
}
}
}
/*
** Figure out the number of pages needed to hold all nCell cells.
** Store this number in "k". Also compute szNew[] which is the total
** size of all cells on the i-th page and cntNew[] which is the index
** in apCell[] of the cell that divides page i from page i+1.
** cntNew[k] should equal nCell.
**
** Values computed by this block:
**
** k: The total number of sibling pages
** szNew[i]: Spaced used on the i-th sibling page.
** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
** the right of the i-th sibling page.
** usableSpace: Number of bytes of space available on each sibling.
**
*/
usableSpace = pBt->usableSize - 12 + leafCorrection;
for(subtotal=k=i=0; i<nCell; i++){
assert( i<nMaxCells );
subtotal += szCell[i] + 2;
if( subtotal > usableSpace ){
szNew[k] = subtotal - szCell[i];
cntNew[k] = i;
if( leafData ){ i--; }
subtotal = 0;
k++;
}
}
szNew[k] = subtotal;
cntNew[k] = nCell;
k++;
/*
** The packing computed by the previous block is biased toward the siblings
** on the left side. The left siblings are always nearly full, while the
** right-most sibling might be nearly empty. This block of code attempts
** to adjust the packing of siblings to get a better balance.
**
** This adjustment is more than an optimization. The packing above might
** be so out of balance as to be illegal. For example, the right-most
** sibling might be completely empty. This adjustment is not optional.
*/
for(i=k-1; i>0; i--){
int szRight = szNew[i]; /* Size of sibling on the right */
int szLeft = szNew[i-1]; /* Size of sibling on the left */
int r; /* Index of right-most cell in left sibling */
int d; /* Index of first cell to the left of right sibling */
r = cntNew[i-1] - 1;
d = r + 1 - leafData;
assert( d<nMaxCells );
assert( r<nMaxCells );
while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
szRight += szCell[d] + 2;
szLeft -= szCell[r] + 2;
cntNew[i-1]--;
r = cntNew[i-1] - 1;
d = r + 1 - leafData;
}
szNew[i] = szRight;
szNew[i-1] = szLeft;
}
/* Either we found one or more cells (cntnew[0])>0) or we are the
** a virtual root page. A virtual root page is when the real root
** page is page 1 and we are the only child of that page.
*/
assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
/*
** Allocate k new pages. Reuse old pages where possible.
*/
assert( pPage->pgno>1 );
pageFlags = pPage->aData[0];
for(i=0; i<k; i++){
MemPage *pNew;
if( i<nOld ){
pNew = apNew[i] = apOld[i];
pgnoNew[i] = pgnoOld[i];
apOld[i] = 0;
rc = sqlite3pager_write(pNew->aData);
if( rc ) goto balance_cleanup;
}else{
rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
if( rc ) goto balance_cleanup;
apNew[i] = pNew;
}
nNew++;
zeroPage(pNew, pageFlags);
}
/* Free any old pages that were not reused as new pages.
*/
while( i<nOld ){
rc = freePage(apOld[i]);
if( rc ) goto balance_cleanup;
releasePage(apOld[i]);
apOld[i] = 0;
i++;
}
/*
** Put the new pages in accending order. This helps to
** keep entries in the disk file in order so that a scan
** of the table is a linear scan through the file. That
** in turn helps the operating system to deliver pages
** from the disk more rapidly.
**
** An O(n^2) insertion sort algorithm is used, but since
** n is never more than NB (a small constant), that should
** not be a problem.
**
** When NB==3, this one optimization makes the database
** about 25% faster for large insertions and deletions.
*/
for(i=0; i<k-1; i++){
int minV = pgnoNew[i];
int minI = i;
for(j=i+1; j<k; j++){
if( pgnoNew[j]<(unsigned)minV ){
minI = j;
minV = pgnoNew[j];
}
}
if( minI>i ){
int t;
MemPage *pT;
t = pgnoNew[i];
pT = apNew[i];
pgnoNew[i] = pgnoNew[minI];
apNew[i] = apNew[minI];
pgnoNew[minI] = t;
apNew[minI] = pT;
}
}
TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
pgnoOld[0],
nOld>=2 ? pgnoOld[1] : 0,
nOld>=3 ? pgnoOld[2] : 0,
pgnoNew[0], szNew[0],
nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
/*
** Evenly distribute the data in apCell[] across the new pages.
** Insert divider cells into pParent as necessary.
*/
j = 0;
for(i=0; i<nNew; i++){
/* Assemble the new sibling page. */
MemPage *pNew = apNew[i];
assert( j<nMaxCells );
assert( pNew->pgno==pgnoNew[i] );
assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
assert( pNew->nOverflow==0 );
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, update the pointer map entries
** that point to the siblings that were rearranged. These can be: left
** children of cells, the right-child of the page, or overflow pages
** pointed to by cells.
*/
if( pBt->autoVacuum ){
for(k=j; k<cntNew[i]; k++){
assert( k<nMaxCells );
if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
rc = ptrmapPutOvfl(pNew, k-j);
if( rc!=SQLITE_OK ){
goto balance_cleanup;
}
}
}
}
#endif
j = cntNew[i];
/* If the sibling page assembled above was not the right-most sibling,
** insert a divider cell into the parent page.
*/
if( i<nNew-1 && j<nCell ){
u8 *pCell;
u8 *pTemp;
int sz;
assert( j<nMaxCells );
pCell = apCell[j];
sz = szCell[j] + leafCorrection;
if( !pNew->leaf ){
memcpy(&pNew->aData[8], pCell, 4);
pTemp = 0;
}else if( leafData ){
/* If the tree is a leaf-data tree, and the siblings are leaves,
** then there is no divider cell in apCell[]. Instead, the divider
** cell consists of the integer key for the right-most cell of
** the sibling-page assembled above only.
*/
CellInfo info;
j--;
parseCellPtr(pNew, apCell[j], &info);
pCell = &aSpace[iSpace];
fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
iSpace += sz;
assert( iSpace<=pBt->pageSize*5 );
pTemp = 0;
}else{
pCell -= 4;
pTemp = &aSpace[iSpace];
iSpace += sz;
assert( iSpace<=pBt->pageSize*5 );
}
rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
if( rc!=SQLITE_OK ) goto balance_cleanup;
put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
#ifndef SQLITE_OMIT_AUTOVACUUM
/* If this is an auto-vacuum database, and not a leaf-data tree,
** then update the pointer map with an entry for the overflow page
** that the cell just inserted points to (if any).
*/
if( pBt->autoVacuum && !leafData ){
rc = ptrmapPutOvfl(pParent, nxDiv);
if( rc!=SQLITE_OK ){
goto balance_cleanup;
}
}
#endif
j++;
nxDiv++;
}
}
assert( j==nCell );
if( (pageFlags & PTF_LEAF)==0 ){
memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
}
if( nxDiv==pParent->nCell+pParent->nOverflow ){
/* Right-most sibling is the right-most child of pParent */
put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
}else{
/* Right-most sibling is the left child of the first entry in pParent
** past the right-most divider entry */
put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
}
/*
** Reparent children of all cells.
*/
for(i=0; i<nNew; i++){
rc = reparentChildPages(apNew[i]);
if( rc!=SQLITE_OK ) goto balance_cleanup;
}
rc = reparentChildPages(pParent);
if( rc!=SQLITE_OK ) goto balance_cleanup;
/*
** Balance the parent page. Note that the current page (pPage) might
** have been added to the freelist so it might no longer be initialized.
** But the parent page will always be initialized.
*/
assert( pParent->isInit );
/* assert( pPage->isInit ); // No! pPage might have been added to freelist */
/* pageIntegrity(pPage); // No! pPage might have been added to freelist */
rc = balance(pParent, 0);
/*
** Cleanup before returning.
*/
balance_cleanup:
sqliteFree(apCell);
for(i=0; i<nOld; i++){
releasePage(apOld[i]);
}
for(i=0; i<nNew; i++){
releasePage(apNew[i]);
}
releasePage(pParent);
TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
pPage->pgno, nOld, nNew, nCell));
return rc;
}
/*
** This routine is called for the root page of a btree when the root
** page contains no cells. This is an opportunity to make the tree
** shallower by one level.
*/
static int balance_shallower(MemPage *pPage){
MemPage *pChild; /* The only child page of pPage */
Pgno pgnoChild; /* Page number for pChild */
int rc = SQLITE_OK; /* Return code from subprocedures */
Btree *pBt; /* The main BTree structure */
int mxCellPerPage; /* Maximum number of cells per page */
u8 **apCell; /* All cells from pages being balanced */
int *szCell; /* Local size of all cells */
assert( pPage->pParent==0 );
assert( pPage->nCell==0 );
pBt = pPage->pBt;
mxCellPerPage = MX_CELL(pBt);
apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
if( apCell==0 ) return SQLITE_NOMEM;
szCell = (int*)&apCell[mxCellPerPage];
if( pPage->leaf ){
/* The table is completely empty */
TRACE(("BALANCE: empty table %d\n", pPage->pgno));
}else{
/* The root page is empty but has one child. Transfer the
** information from that one child into the root page if it
** will fit. This reduces the depth of the tree by one.
**
** If the root page is page 1, it has less space available than
** its child (due to the 100 byte header that occurs at the beginning
** of the database fle), so it might not be able to hold all of the
** information currently contained in the child. If this is the
** case, then do not do the transfer. Leave page 1 empty except
** for the right-pointer to the child page. The child page becomes
** the virtual root of the tree.
*/
pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
assert( pgnoChild>0 );
assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) );
rc = getPage(pPage->pBt, pgnoChild, &pChild);
if( rc ) goto end_shallow_balance;
if( pPage->pgno==1 ){
rc = initPage(pChild, pPage);
if( rc ) goto end_shallow_balance;
assert( pChild->nOverflow==0 );
if( pChild->nFree>=100 ){
/* The child information will fit on the root page, so do the
** copy */
int i;
zeroPage(pPage, pChild->aData[0]);
for(i=0; i<pChild->nCell; i++){
apCell[i] = findCell(pChild,i);
szCell[i] = cellSizePtr(pChild, apCell[i]);
}
assemblePage(pPage, pChild->nCell, apCell, szCell);
/* Copy the right-pointer of the child to the parent. */
put4byte(&pPage->aData[pPage->hdrOffset+8],
get4byte(&pChild->aData[pChild->hdrOffset+8]));
freePage(pChild);
TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
}else{
/* The child has more information that will fit on the root.
** The tree is already balanced. Do nothing. */
TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
}
}else{
memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
pPage->isInit = 0;
pPage->pParent = 0;
rc = initPage(pPage, 0);
assert( rc==SQLITE_OK );
freePage(pChild);
TRACE(("BALANCE: transfer child %d into root %d\n",
pChild->pgno, pPage->pgno));
}
rc = reparentChildPages(pPage);
assert( pPage->nOverflow==0 );
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
int i;
for(i=0; i<pPage->nCell; i++){
rc = ptrmapPutOvfl(pPage, i);
if( rc!=SQLITE_OK ){
goto end_shallow_balance;
}
}
}
#endif
if( rc!=SQLITE_OK ) goto end_shallow_balance;
releasePage(pChild);
}
end_shallow_balance:
sqliteFree(apCell);
return rc;
}
/*
** The root page is overfull
**
** When this happens, Create a new child page and copy the
** contents of the root into the child. Then make the root
** page an empty page with rightChild pointing to the new
** child. Finally, call balance_internal() on the new child
** to cause it to split.
*/
static int balance_deeper(MemPage *pPage){
int rc; /* Return value from subprocedures */
MemPage *pChild; /* Pointer to a new child page */
Pgno pgnoChild; /* Page number of the new child page */
Btree *pBt; /* The BTree */
int usableSize; /* Total usable size of a page */
u8 *data; /* Content of the parent page */
u8 *cdata; /* Content of the child page */
int hdr; /* Offset to page header in parent */
int brk; /* Offset to content of first cell in parent */
assert( pPage->pParent==0 );
assert( pPage->nOverflow>0 );
pBt = pPage->pBt;
rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
if( rc ) return rc;
assert( sqlite3pager_iswriteable(pChild->aData) );
usableSize = pBt->usableSize;
data = pPage->aData;
hdr = pPage->hdrOffset;
brk = get2byte(&data[hdr+5]);
cdata = pChild->aData;
memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
memcpy(&cdata[brk], &data[brk], usableSize-brk);
assert( pChild->isInit==0 );
rc = initPage(pChild, pPage);
if( rc ) goto balancedeeper_out;
memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
pChild->nOverflow = pPage->nOverflow;
if( pChild->nOverflow ){
pChild->nFree = 0;
}
assert( pChild->nCell==pPage->nCell );
zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
int i;
rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
if( rc ) goto balancedeeper_out;
for(i=0; i<pChild->nCell; i++){
rc = ptrmapPutOvfl(pChild, i);
if( rc!=SQLITE_OK ){
return rc;
}
}
}
#endif
rc = balance_nonroot(pChild);
balancedeeper_out:
releasePage(pChild);
return rc;
}
/*
** Decide if the page pPage needs to be balanced. If balancing is
** required, call the appropriate balancing routine.
*/
static int balance(MemPage *pPage, int insert){
int rc = SQLITE_OK;
if( pPage->pParent==0 ){
if( pPage->nOverflow>0 ){
rc = balance_deeper(pPage);
}
if( rc==SQLITE_OK && pPage->nCell==0 ){
rc = balance_shallower(pPage);
}
}else{
if( pPage->nOverflow>0 ||
(!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
rc = balance_nonroot(pPage);
}
}
return rc;
}
/*
** This routine checks all cursors that point to table pgnoRoot.
** If any of those cursors other than pExclude were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
** cursors that point to pgnoRoot were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock
** means a cursor opened with wrFlag==0) this routine also moves
** all cursors other than pExclude so that they are pointing to the
** first Cell on root page. This is necessary because an insert
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(Btree *pBt, Pgno pgnoRoot, BtCursor *pExclude){
BtCursor *p;
for(p=pBt->pCursor; p; p=p->pNext){
if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue;
if( p->wrFlag==0 ) return SQLITE_LOCKED;
if( p->pPage->pgno!=p->pgnoRoot ){
moveToRoot(p);
}
}
return SQLITE_OK;
}
/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
** and the data is given by (pData,nData). The cursor is used only to
** define what table the record should be inserted into. The cursor
** is left pointing at a random location.
**
** For an INTKEY table, only the nKey value of the key is used. pKey is
** ignored. For a ZERODATA table, the pData and nData are both ignored.
*/
int sqlite3BtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const void *pKey, i64 nKey, /* The key of the new record */
const void *pData, int nData /* The data of the new record */
){
int rc;
int loc;
int szNew;
MemPage *pPage;
Btree *pBt = pCur->pBt;
unsigned char *oldCell;
unsigned char *newCell = 0;
if( pBt->inTrans!=TRANS_WRITE ){
/* Must start a transaction before doing an insert */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Cursor not open for writing */
}
if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
if( rc ) return rc;
pPage = pCur->pPage;
assert( pPage->intKey || nKey>=0 );
assert( pPage->leaf || !pPage->leafData );
TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
pCur->pgnoRoot, nKey, nData, pPage->pgno,
loc==0 ? "overwrite" : "new entry"));
assert( pPage->isInit );
rc = sqlite3pager_write(pPage->aData);
if( rc ) return rc;
newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
if( newCell==0 ) return SQLITE_NOMEM;
rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
if( rc ) goto end_insert;
assert( szNew==cellSizePtr(pPage, newCell) );
assert( szNew<=MX_CELL_SIZE(pBt) );
if( loc==0 && pCur->isValid ){
int szOld;
assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
oldCell = findCell(pPage, pCur->idx);
if( !pPage->leaf ){
memcpy(newCell, oldCell, 4);
}
szOld = cellSizePtr(pPage, oldCell);
rc = clearCell(pPage, oldCell);
if( rc ) goto end_insert;
dropCell(pPage, pCur->idx, szOld);
}else if( loc<0 && pPage->nCell>0 ){
assert( pPage->leaf );
pCur->idx++;
pCur->info.nSize = 0;
}else{
assert( pPage->leaf );
}
rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
if( rc!=SQLITE_OK ) goto end_insert;
rc = balance(pPage, 1);
/* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
/* fflush(stdout); */
if( rc==SQLITE_OK ){
moveToRoot(pCur);
}
end_insert:
sqliteFree(newCell);
return rc;
}
/*
** Delete the entry that the cursor is pointing to. The cursor
** is left pointing at a random location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
MemPage *pPage = pCur->pPage;
unsigned char *pCell;
int rc;
Pgno pgnoChild = 0;
Btree *pBt = pCur->pBt;
assert( pPage->isInit );
if( pBt->inTrans!=TRANS_WRITE ){
/* Must start a transaction before doing a delete */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( pCur->idx >= pPage->nCell ){
return SQLITE_ERROR; /* The cursor is not pointing to anything */
}
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Did not open this cursor for writing */
}
if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = sqlite3pager_write(pPage->aData);
if( rc ) return rc;
/* Locate the cell within it's page and leave pCell pointing to the
** data. The clearCell() call frees any overflow pages associated with the
** cell. The cell itself is still intact.
*/
pCell = findCell(pPage, pCur->idx);
if( !pPage->leaf ){
pgnoChild = get4byte(pCell);
}
rc = clearCell(pPage, pCell);
if( rc ) return rc;
if( !pPage->leaf ){
/*
** The entry we are about to delete is not a leaf so if we do not
** do something we will leave a hole on an internal page.
** We have to fill the hole by moving in a cell from a leaf. The
** next Cell after the one to be deleted is guaranteed to exist and
** to be a leaf so we can use it.
*/
BtCursor leafCur;
unsigned char *pNext;
int szNext;
int notUsed;
unsigned char *tempCell = 0;
assert( !pPage->leafData );
getTempCursor(pCur, &leafCur);
rc = sqlite3BtreeNext(&leafCur, ¬Used);
if( rc!=SQLITE_OK ){
if( rc!=SQLITE_NOMEM ){
rc = SQLITE_CORRUPT_BKPT;
}
}
if( rc==SQLITE_OK ){
rc = sqlite3pager_write(leafCur.pPage->aData);
}
if( rc==SQLITE_OK ){
TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
pNext = findCell(leafCur.pPage, leafCur.idx);
szNext = cellSizePtr(leafCur.pPage, pNext);
assert( MX_CELL_SIZE(pBt)>=szNext+4 );
tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
if( tempCell==0 ){
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
}
if( rc==SQLITE_OK ){
put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
rc = balance(pPage, 0);
}
if( rc==SQLITE_OK ){
dropCell(leafCur.pPage, leafCur.idx, szNext);
rc = balance(leafCur.pPage, 0);
}
sqliteFree(tempCell);
releaseTempCursor(&leafCur);
}else{
TRACE(("DELETE: table=%d delete from leaf %d\n",
pCur->pgnoRoot, pPage->pgno));
dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
rc = balance(pPage, 0);
}
if( rc==SQLITE_OK ){
moveToRoot(pCur);
}
return rc;
}
/*
** Create a new BTree table. Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter. Only the
** following values of flags are currently in use. Other values for
** flags might not work:
**
** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
** BTREE_ZERODATA Used for SQL indices
*/
int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
if( pBt->inTrans!=TRANS_WRITE ){
/* Must start a transaction first */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
/* It is illegal to create a table if any cursors are open on the
** database. This is because in auto-vacuum mode the backend may
** need to move a database page to make room for the new root-page.
** If an open cursor was using the page a problem would occur.
*/
if( pBt->pCursor ){
return SQLITE_LOCKED;
}
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if( rc ) return rc;
#else
if( pBt->autoVacuum ){
Pgno pgnoMove; /* Move a page here to make room for the root-page */
MemPage *pPageMove; /* The page to move to. */
/* Read the value of meta[3] from the database to determine where the
** root page of the new table should go. meta[3] is the largest root-page
** created so far, so the new root-page is (meta[3]+1).
*/
rc = sqlite3BtreeGetMeta(pBt, 4, &pgnoRoot);
if( rc!=SQLITE_OK ) return rc;
pgnoRoot++;
/* The new root-page may not be allocated on a pointer-map page, or the
** PENDING_BYTE page.
*/
if( pgnoRoot==PTRMAP_PAGENO(pBt->usableSize, pgnoRoot) ||
pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
pgnoRoot++;
}
assert( pgnoRoot>=3 );
/* Allocate a page. The page that currently resides at pgnoRoot will
** be moved to the allocated page (unless the allocated page happens
** to reside at pgnoRoot).
*/
rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
if( rc!=SQLITE_OK ){
return rc;
}
if( pgnoMove!=pgnoRoot ){
u8 eType;
Pgno iPtrPage;
releasePage(pPageMove);
rc = getPage(pBt, pgnoRoot, &pRoot);
if( rc!=SQLITE_OK ){
return rc;
}
rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
releasePage(pRoot);
return rc;
}
assert( eType!=PTRMAP_ROOTPAGE );
assert( eType!=PTRMAP_FREEPAGE );
rc = sqlite3pager_write(pRoot->aData);
if( rc!=SQLITE_OK ){
releasePage(pRoot);
return rc;
}
rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
releasePage(pRoot);
if( rc!=SQLITE_OK ){
return rc;
}
rc = getPage(pBt, pgnoRoot, &pRoot);
if( rc!=SQLITE_OK ){
return rc;
}
rc = sqlite3pager_write(pRoot->aData);
if( rc!=SQLITE_OK ){
releasePage(pRoot);
return rc;
}
}else{
pRoot = pPageMove;
}
/* Update the pointer-map and meta-data with the new root-page number. */
rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
if( rc ){
releasePage(pRoot);
return rc;
}
rc = sqlite3BtreeUpdateMeta(pBt, 4, pgnoRoot);
if( rc ){
releasePage(pRoot);
return rc;
}
}else{
rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
if( rc ) return rc;
}
#endif
assert( sqlite3pager_iswriteable(pRoot->aData) );
zeroPage(pRoot, flags | PTF_LEAF);
sqlite3pager_unref(pRoot->aData);
*piTable = (int)pgnoRoot;
return SQLITE_OK;
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
*/
static int clearDatabasePage(
Btree *pBt, /* The BTree that contains the table */
Pgno pgno, /* Page number to clear */
MemPage *pParent, /* Parent page. NULL for the root */
int freePageFlag /* Deallocate page if true */
){
MemPage *pPage = 0;
int rc;
unsigned char *pCell;
int i;
if( pgno>sqlite3pager_pagecount(pBt->pPager) ){
return SQLITE_CORRUPT_BKPT;
}
rc = getAndInitPage(pBt, pgno, &pPage, pParent);
if( rc ) goto cleardatabasepage_out;
rc = sqlite3pager_write(pPage->aData);
if( rc ) goto cleardatabasepage_out;
for(i=0; i<pPage->nCell; i++){
pCell = findCell(pPage, i);
if( !pPage->leaf ){
rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
if( rc ) goto cleardatabasepage_out;
}
rc = clearCell(pPage, pCell);
if( rc ) goto cleardatabasepage_out;
}
if( !pPage->leaf ){
rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
if( rc ) goto cleardatabasepage_out;
}
if( freePageFlag ){
rc = freePage(pPage);
}else{
zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
}
cleardatabasepage_out:
releasePage(pPage);
return rc;
}
/*
** Delete all information from a single table in the database. iTable is
** the page number of the root of the table. After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table. Open write cursors are moved to the
** root of the table.
*/
int sqlite3BtreeClearTable(Btree *pBt, int iTable){
int rc;
BtCursor *pCur;
if( pBt->inTrans!=TRANS_WRITE ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pgnoRoot==(Pgno)iTable ){
if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
moveToRoot(pCur);
}
}
rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
if( rc ){
sqlite3BtreeRollback(pBt);
}
return rc;
}
/*
** Erase all information in a table and add the root of the table to
** the freelist. Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable. In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right. *piMoved is set to the
** page number that used to be the last root page in the file before
** the move. If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
int sqlite3BtreeDropTable(Btree *pBt, int iTable, int *piMoved){
int rc;
MemPage *pPage = 0;
if( pBt->inTrans!=TRANS_WRITE ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
/* It is illegal to drop a table if any cursors are open on the
** database. This is because in auto-vacuum mode the backend may
** need to move another root-page to fill a gap left by the deleted
** root page. If an open cursor was using this page a problem would
** occur.
*/
if( pBt->pCursor ){
return SQLITE_LOCKED;
}
rc = getPage(pBt, (Pgno)iTable, &pPage);
if( rc ) return rc;
rc = sqlite3BtreeClearTable(pBt, iTable);
if( rc ){
releasePage(pPage);
return rc;
}
*piMoved = 0;
if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
rc = freePage(pPage);
releasePage(pPage);
#else
if( pBt->autoVacuum ){
Pgno maxRootPgno;
rc = sqlite3BtreeGetMeta(pBt, 4, &maxRootPgno);
if( rc!=SQLITE_OK ){
releasePage(pPage);
return rc;
}
if( iTable==maxRootPgno ){
/* If the table being dropped is the table with the largest root-page
** number in the database, put the root page on the free list.
*/
rc = freePage(pPage);
releasePage(pPage);
if( rc!=SQLITE_OK ){
return rc;
}
}else{
/* The table being dropped does not have the largest root-page
** number in the database. So move the page that does into the
** gap left by the deleted root-page.
*/
MemPage *pMove;
releasePage(pPage);
rc = getPage(pBt, maxRootPgno, &pMove);
if( rc!=SQLITE_OK ){
return rc;
}
rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
}
rc = getPage(pBt, maxRootPgno, &pMove);
if( rc!=SQLITE_OK ){
return rc;
}
rc = freePage(pMove);
releasePage(pMove);
if( rc!=SQLITE_OK ){
return rc;
}
*piMoved = maxRootPgno;
}
/* Set the new 'max-root-page' value in the database header. This
** is the old value less one, less one more if that happens to
** be a root-page number, less one again if that is the
** PENDING_BYTE_PAGE.
*/
maxRootPgno--;
if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
maxRootPgno--;
}
if( maxRootPgno==PTRMAP_PAGENO(pBt->usableSize, maxRootPgno) ){
maxRootPgno--;
}
assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
rc = sqlite3BtreeUpdateMeta(pBt, 4, maxRootPgno);
}else{
rc = freePage(pPage);
releasePage(pPage);
}
#endif
}else{
/* If sqlite3BtreeDropTable was called on page 1. */
zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
releasePage(pPage);
}
return rc;
}
/*
** Read the meta-information out of a database file. Meta[0]
** is the number of free pages currently in the database. Meta[1]
** through meta[15] are available for use by higher layers. Meta[0]
** is read-only, the others are read/write.
**
** The schema layer numbers meta values differently. At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible. So Cookie[0] is the same as Meta[1].
*/
int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
int rc;
unsigned char *pP1;
assert( idx>=0 && idx<=15 );
rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
if( rc ) return rc;
*pMeta = get4byte(&pP1[36 + idx*4]);
sqlite3pager_unref(pP1);
/* If autovacuumed is disabled in this build but we are trying to
** access an autovacuumed database, then make the database readonly.
*/
#ifdef SQLITE_OMIT_AUTOVACUUM
if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
#endif
return SQLITE_OK;
}
/*
** Write meta-information back into the database. Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
unsigned char *pP1;
int rc;
assert( idx>=1 && idx<=15 );
if( pBt->inTrans!=TRANS_WRITE ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( pBt->pPage1!=0 );
pP1 = pBt->pPage1->aData;
rc = sqlite3pager_write(pP1);
if( rc ) return rc;
put4byte(&pP1[36 + idx*4], iMeta);
return SQLITE_OK;
}
/*
** Return the flag byte at the beginning of the page that the cursor
** is currently pointing to.
*/
int sqlite3BtreeFlags(BtCursor *pCur){
MemPage *pPage = pCur->pPage;
return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}
#ifdef SQLITE_DEBUG
/*
** Print a disassembly of the given page on standard output. This routine
** is used for debugging and testing only.
*/
static int btreePageDump(Btree *pBt, int pgno, int recursive, MemPage *pParent){
int rc;
MemPage *pPage;
int i, j, c;
int nFree;
u16 idx;
int hdr;
int nCell;
int isInit;
unsigned char *data;
char range[20];
unsigned char payload[20];
rc = getPage(pBt, (Pgno)pgno, &pPage);
isInit = pPage->isInit;
if( pPage->isInit==0 ){
initPage(pPage, pParent);
}
if( rc ){
return rc;
}
hdr = pPage->hdrOffset;
data = pPage->aData;
c = data[hdr];
pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
pPage->zeroData = (c & PTF_ZERODATA)!=0;
pPage->leafData = (c & PTF_LEAFDATA)!=0;
pPage->leaf = (c & PTF_LEAF)!=0;
pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
nCell = get2byte(&data[hdr+3]);
sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
data[hdr], data[hdr+7],
(pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
assert( hdr == (pgno==1 ? 100 : 0) );
idx = hdr + 12 - pPage->leaf*4;
for(i=0; i<nCell; i++){
CellInfo info;
Pgno child;
unsigned char *pCell;
int sz;
int addr;
addr = get2byte(&data[idx + 2*i]);
pCell = &data[addr];
parseCellPtr(pPage, pCell, &info);
sz = info.nSize;
sprintf(range,"%d..%d", addr, addr+sz-1);
if( pPage->leaf ){
child = 0;
}else{
child = get4byte(pCell);
}
sz = info.nData;
if( !pPage->intKey ) sz += info.nKey;
if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
memcpy(payload, &pCell[info.nHeader], sz);
for(j=0; j<sz; j++){
if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
}
payload[sz] = 0;
sqlite3DebugPrintf(
"cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
i, range, child, info.nKey, info.nData, payload
);
}
if( !pPage->leaf ){
sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8]));
}
nFree = 0;
i = 0;
idx = get2byte(&data[hdr+1]);
while( idx>0 && idx<pPage->pBt->usableSize ){
int sz = get2byte(&data[idx+2]);
sprintf(range,"%d..%d", idx, idx+sz-1);
nFree += sz;
sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
i, range, sz, nFree);
idx = get2byte(&data[idx]);
i++;
}
if( idx!=0 ){
sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx);
}
if( recursive && !pPage->leaf ){
for(i=0; i<nCell; i++){
unsigned char *pCell = findCell(pPage, i);
btreePageDump(pBt, get4byte(pCell), 1, pPage);
idx = get2byte(pCell);
}
btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage);
}
pPage->isInit = isInit;
sqlite3pager_unref(data);
fflush(stdout);
return SQLITE_OK;
}
int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
return btreePageDump(pBt, pgno, recursive, 0);
}
#endif
#ifdef SQLITE_TEST
/*
** Fill aResult[] with information about the entry and page that the
** cursor is pointing to.
**
** aResult[0] = The page number
** aResult[1] = The entry number
** aResult[2] = Total number of entries on this page
** aResult[3] = Cell size (local payload + header)
** aResult[4] = Number of free bytes on this page
** aResult[5] = Number of free blocks on the page
** aResult[6] = Total payload size (local + overflow)
** aResult[7] = Header size in bytes
** aResult[8] = Local payload size
** aResult[9] = Parent page number
**
** This routine is used for testing and debugging only.
*/
int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
int cnt, idx;
MemPage *pPage = pCur->pPage;
BtCursor tmpCur;
pageIntegrity(pPage);
assert( pPage->isInit );
getTempCursor(pCur, &tmpCur);
while( upCnt-- ){
moveToParent(&tmpCur);
}
pPage = tmpCur.pPage;
pageIntegrity(pPage);
aResult[0] = sqlite3pager_pagenumber(pPage->aData);
assert( aResult[0]==pPage->pgno );
aResult[1] = tmpCur.idx;
aResult[2] = pPage->nCell;
if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){
getCellInfo(&tmpCur);
aResult[3] = tmpCur.info.nSize;
aResult[6] = tmpCur.info.nData;
aResult[7] = tmpCur.info.nHeader;
aResult[8] = tmpCur.info.nLocal;
}else{
aResult[3] = 0;
aResult[6] = 0;
aResult[7] = 0;
aResult[8] = 0;
}
aResult[4] = pPage->nFree;
cnt = 0;
idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
while( idx>0 && idx<pPage->pBt->usableSize ){
cnt++;
idx = get2byte(&pPage->aData[idx]);
}
aResult[5] = cnt;
if( pPage->pParent==0 || isRootPage(pPage) ){
aResult[9] = 0;
}else{
aResult[9] = pPage->pParent->pgno;
}
releaseTempCursor(&tmpCur);
return SQLITE_OK;
}
#endif
/*
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *pBt){
return pBt->pPager;
}
/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
Btree *pBt; /* The tree being checked out */
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
int nPage; /* Number of pages in the database */
int *anRef; /* Number of times each page is referenced */
char *zErrMsg; /* An error message. NULL of no errors seen. */
};
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
IntegrityCk *pCheck,
char *zMsg1,
const char *zFormat,
...
){
va_list ap;
char *zMsg2;
va_start(ap, zFormat);
zMsg2 = sqlite3VMPrintf(zFormat, ap);
va_end(ap);
if( zMsg1==0 ) zMsg1 = "";
if( pCheck->zErrMsg ){
char *zOld = pCheck->zErrMsg;
pCheck->zErrMsg = 0;
sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
sqliteFree(zOld);
}else{
sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
}
sqliteFree(zMsg2);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Add 1 to the reference count for page iPage. If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
if( iPage==0 ) return 1;
if( iPage>pCheck->nPage || iPage<0 ){
checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
return 1;
}
if( pCheck->anRef[iPage]==1 ){
checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
return 1;
}
return (pCheck->anRef[iPage]++)>1;
}
#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
IntegrityCk *pCheck, /* Integrity check context */
Pgno iChild, /* Child page number */
u8 eType, /* Expected pointer map type */
Pgno iParent, /* Expected pointer map parent page number */
char *zContext /* Context description (used for error msg) */
){
int rc;
u8 ePtrmapType;
Pgno iPtrmapParent;
rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
if( rc!=SQLITE_OK ){
checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
return;
}
if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
checkAppendMsg(pCheck, zContext,
"Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
iChild, eType, iParent, ePtrmapType, iPtrmapParent);
}
}
#endif
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
IntegrityCk *pCheck, /* Integrity checking context */
int isFreeList, /* True for a freelist. False for overflow page list */
int iPage, /* Page number for first page in the list */
int N, /* Expected number of pages in the list */
char *zContext /* Context for error messages */
){
int i;
int expected = N;
int iFirst = iPage;
while( N-- > 0 ){
unsigned char *pOvfl;
if( iPage<1 ){
checkAppendMsg(pCheck, zContext,
"%d of %d pages missing from overflow list starting at %d",
N+1, expected, iFirst);
break;
}
if( checkRef(pCheck, iPage, zContext) ) break;
if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
break;
}
if( isFreeList ){
int n = get4byte(&pOvfl[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pCheck->pBt->autoVacuum ){
checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
if( n>pCheck->pBt->usableSize/4-8 ){
checkAppendMsg(pCheck, zContext,
"freelist leaf count too big on page %d", iPage);
N--;
}else{
for(i=0; i<n; i++){
Pgno iFreePage = get4byte(&pOvfl[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pCheck->pBt->autoVacuum ){
checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
}
#endif
checkRef(pCheck, iFreePage, zContext);
}
N -= n;
}
}
#ifndef SQLITE_OMIT_AUTOVACUUM
else{
/* If this database supports auto-vacuum and iPage is not the last
** page in this overflow list, check that the pointer-map entry for
** the following page matches iPage.
*/
if( pCheck->pBt->autoVacuum && N>0 ){
i = get4byte(pOvfl);
checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
}
}
#endif
iPage = get4byte(pOvfl);
sqlite3pager_unref(pOvfl);
}
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree. Return
** the tree depth. Root pages return 0. Parents of root pages
** return 1, and so forth.
**
** These checks are done:
**
** 1. Make sure that cells and freeblocks do not overlap
** but combine to completely cover the page.
** NO 2. Make sure cell keys are in order.
** NO 3. Make sure no key is less than or equal to zLowerBound.
** NO 4. Make sure no key is greater than or equal to zUpperBound.
** 5. Check the integrity of overflow pages.
** 6. Recursively call checkTreePage on all children.
** 7. Verify that the depth of all children is the same.
** 8. Make sure this page is at least 33% full or else it is
** the root of the tree.
*/
static int checkTreePage(
IntegrityCk *pCheck, /* Context for the sanity check */
int iPage, /* Page number of the page to check */
MemPage *pParent, /* Parent page */
char *zParentContext, /* Parent context */
char *zLowerBound, /* All keys should be greater than this, if not NULL */
int nLower, /* Number of characters in zLowerBound */
char *zUpperBound, /* All keys should be less than this, if not NULL */
int nUpper /* Number of characters in zUpperBound */
){
MemPage *pPage;
int i, rc, depth, d2, pgno, cnt;
int hdr, cellStart;
int nCell;
u8 *data;
BtCursor cur;
Btree *pBt;
int usableSize;
char zContext[100];
char *hit;
sprintf(zContext, "Page %d: ", iPage);
/* Check that the page exists
*/
cur.pBt = pBt = pCheck->pBt;
usableSize = pBt->usableSize;
if( iPage==0 ) return 0;
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
checkAppendMsg(pCheck, zContext,
"unable to get the page. error code=%d", rc);
return 0;
}
if( (rc = initPage(pPage, pParent))!=0 ){
checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc);
releasePage(pPage);
return 0;
}
/* Check out all the cells.
*/
depth = 0;
cur.pPage = pPage;
for(i=0; i<pPage->nCell; i++){
u8 *pCell;
int sz;
CellInfo info;
/* Check payload overflow pages
*/
sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
pCell = findCell(pPage,i);
parseCellPtr(pPage, pCell, &info);
sz = info.nData;
if( !pPage->intKey ) sz += info.nKey;
if( sz>info.nLocal ){
int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
}
#endif
checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
}
/* Check sanity of left child page.
*/
if( !pPage->leaf ){
pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
}
#endif
d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
if( i>0 && d2!=depth ){
checkAppendMsg(pCheck, zContext, "Child page depth differs");
}
depth = d2;
}
}
if( !pPage->leaf ){
pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
sprintf(zContext, "On page %d at right child: ", iPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum ){
checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
}
#endif
checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
}
/* Check for complete coverage of the page
*/
data = pPage->aData;
hdr = pPage->hdrOffset;
hit = sqliteMalloc( usableSize );
if( hit ){
memset(hit, 1, get2byte(&data[hdr+5]));
nCell = get2byte(&data[hdr+3]);
cellStart = hdr + 12 - 4*pPage->leaf;
for(i=0; i<nCell; i++){
int pc = get2byte(&data[cellStart+i*2]);
int size = cellSizePtr(pPage, &data[pc]);
int j;
if( (pc+size-1)>=usableSize || pc<0 ){
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d",i,iPage,0);
}else{
for(j=pc+size-1; j>=pc; j--) hit[j]++;
}
}
for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
cnt++){
int size = get2byte(&data[i+2]);
int j;
if( (i+size-1)>=usableSize || i<0 ){
checkAppendMsg(pCheck, 0,
"Corruption detected in cell %d on page %d",i,iPage,0);
}else{
for(j=i+size-1; j>=i; j--) hit[j]++;
}
i = get2byte(&data[i]);
}
for(i=cnt=0; i<usableSize; i++){
if( hit[i]==0 ){
cnt++;
}else if( hit[i]>1 ){
checkAppendMsg(pCheck, 0,
"Multiple uses for byte %d of page %d", i, iPage);
break;
}
}
if( cnt!=data[hdr+7] ){
checkAppendMsg(pCheck, 0,
"Fragmented space is %d byte reported as %d on page %d",
cnt, data[hdr+7], iPage);
}
}
sqliteFree(hit);
releasePage(pPage);
return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file. aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
** If everything checks out, this routine returns NULL. If something is
** amiss, an error message is written into memory obtained from malloc()
** and a pointer to that error message is returned. The calling function
** is responsible for freeing the error message when it is done.
*/
char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
int i;
int nRef;
IntegrityCk sCheck;
nRef = *sqlite3pager_stats(pBt->pPager);
if( lockBtreeWithRetry(pBt)!=SQLITE_OK ){
return sqliteStrDup("Unable to acquire a read lock on the database");
}
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
if( sCheck.nPage==0 ){
unlockBtreeIfUnused(pBt);
return 0;
}
sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
if( !sCheck.anRef ){
unlockBtreeIfUnused(pBt);
return sqlite3MPrintf("Unable to malloc %d bytes",
(sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
}
for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
i = PENDING_BYTE_PAGE(pBt);
if( i<=sCheck.nPage ){
sCheck.anRef[i] = 1;
}
sCheck.zErrMsg = 0;
/* Check the integrity of the freelist
*/
checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
/* Check all the tables.
*/
for(i=0; i<nRoot; i++){
if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( pBt->autoVacuum && aRoot[i]>1 ){
checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
}
#endif
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
}
/* Make sure every page in the file is referenced
*/
for(i=1; i<=sCheck.nPage; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
if( sCheck.anRef[i]==0 ){
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
}
#else
/* If the database supports auto-vacuum, make sure no tables contain
** references to pointer-map pages.
*/
if( sCheck.anRef[i]==0 &&
(PTRMAP_PAGENO(pBt->usableSize, i)!=i || !pBt->autoVacuum) ){
checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
}
if( sCheck.anRef[i]!=0 &&
(PTRMAP_PAGENO(pBt->usableSize, i)==i && pBt->autoVacuum) ){
checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
}
#endif
}
/* Make sure this analysis did not leave any unref() pages
*/
unlockBtreeIfUnused(pBt);
if( nRef != *sqlite3pager_stats(pBt->pPager) ){
checkAppendMsg(&sCheck, 0,
"Outstanding page count goes from %d to %d during this analysis",
nRef, *sqlite3pager_stats(pBt->pPager)
);
}
/* Clean up and report errors.
*/
sqliteFree(sCheck.anRef);
return sCheck.zErrMsg;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/*
** Return the full pathname of the underlying database file.
*/
const char *sqlite3BtreeGetFilename(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlite3pager_filename(pBt->pPager);
}
/*
** Return the pathname of the directory that contains the database file.
*/
const char *sqlite3BtreeGetDirname(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlite3pager_dirname(pBt->pPager);
}
/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
*/
const char *sqlite3BtreeGetJournalname(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlite3pager_journalname(pBt->pPager);
}
#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo. A transaction
** must be active for both files.
**
** The size of file pBtFrom may be reduced by this operation.
** If anything goes wrong, the transaction on pBtFrom is rolled back.
*/
int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
int rc = SQLITE_OK;
Pgno i, nPage, nToPage, iSkip;
if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){
return SQLITE_ERROR;
}
if( pBtTo->pCursor ) return SQLITE_BUSY;
nToPage = sqlite3pager_pagecount(pBtTo->pPager);
nPage = sqlite3pager_pagecount(pBtFrom->pPager);
iSkip = PENDING_BYTE_PAGE(pBtTo);
for(i=1; rc==SQLITE_OK && i<=nPage; i++){
void *pPage;
if( i==iSkip ) continue;
rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
if( rc ) break;
rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
if( rc ) break;
sqlite3pager_unref(pPage);
}
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
void *pPage;
if( i==iSkip ) continue;
rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
if( rc ) break;
rc = sqlite3pager_write(pPage);
sqlite3pager_unref(pPage);
sqlite3pager_dont_write(pBtTo->pPager, i);
}
if( !rc && nPage<nToPage ){
rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
}
if( rc ){
sqlite3BtreeRollback(pBtTo);
}
return rc;
}
#endif /* SQLITE_OMIT_VACUUM */
/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *pBt){
return (pBt && (pBt->inTrans==TRANS_WRITE));
}
/*
** Return non-zero if a statement transaction is active.
*/
int sqlite3BtreeIsInStmt(Btree *pBt){
return (pBt && pBt->inStmt);
}
/*
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite3BtreeSync(Btree *pBt, const char *zMaster){
if( pBt->inTrans==TRANS_WRITE ){
#ifndef SQLITE_OMIT_AUTOVACUUM
Pgno nTrunc = 0;
if( pBt->autoVacuum ){
int rc = autoVacuumCommit(pBt, &nTrunc);
if( rc!=SQLITE_OK ) return rc;
}
return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc);
#endif
return sqlite3pager_sync(pBt->pPager, zMaster, 0);
}
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_GLOBALRECOVER
/*
** Reset the btree and underlying pager after a malloc() failure. Any
** transaction that was active when malloc() failed is rolled back.
*/
int sqlite3BtreeReset(Btree *pBt){
if( pBt->pCursor ) return SQLITE_BUSY;
pBt->inTrans = TRANS_NONE;
unlockBtreeIfUnused(pBt);
return sqlite3pager_reset(pBt->pPager);
}
#endif
/* js */
int sqlite3_is_readonly(sqlite3* db) {
return db->aDb->pBt->readOnly;
}
|