summaryrefslogtreecommitdiffstats
path: root/kexi/3rdparty/kexisql3/src/utf.c
blob: d42ab759ec2c7d3310a9f227dc8516c602fe52a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
** 2004 April 13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used to translate between UTF-8, 
** UTF-16, UTF-16BE, and UTF-16LE.
**
** $Id: utf.c 548347 2006-06-05 10:53:00Z staniek $
**
** Notes on UTF-8:
**
**   Byte-0    Byte-1    Byte-2    Byte-3    Value
**  0xxxxxxx                                 00000000 00000000 0xxxxxxx
**  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
**  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
**  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
**
**
** Notes on UTF-16:  (with wwww+1==uuuuu)
**
**      Word-0               Word-1          Value
**  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
**  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
**
**
** BOM or Byte Order Mark:
**     0xff 0xfe   little-endian utf-16 follows
**     0xfe 0xff   big-endian utf-16 follows
**
**
** Handling of malformed strings:
**
** SQLite accepts and processes malformed strings without an error wherever
** possible. However this is not possible when converting between UTF-8 and
** UTF-16.
**
** When converting malformed UTF-8 strings to UTF-16, one instance of the
** replacement character U+FFFD for each byte that cannot be interpeted as
** part of a valid unicode character.
**
** When converting malformed UTF-16 strings to UTF-8, one instance of the
** replacement character U+FFFD for each pair of bytes that cannot be
** interpeted as part of a valid unicode character.
**
** This file contains the following public routines:
**
** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
** sqlite3utf16ByteLen()     - Calculate byte-length of a void* UTF16 string.
** sqlite3utf8CharLen()      - Calculate char-length of a char* UTF8 string.
** sqlite3utf8LikeCompare()  - Do a LIKE match given two UTF8 char* strings.
**
*/
#include "sqliteInt.h"
#include <assert.h>
#include "vdbeInt.h"

/*
** This table maps from the first byte of a UTF-8 character to the number
** of trailing bytes expected. A value '255' indicates that the table key
** is not a legal first byte for a UTF-8 character.
*/
static const u8 xtra_utf8_bytes[256]  = {
/* 0xxxxxxx */
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,

/* 10wwwwww */
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

/* 110yyyyy */
1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,     1, 1, 1, 1, 1, 1, 1, 1,

/* 1110zzzz */
2, 2, 2, 2, 2, 2, 2, 2,     2, 2, 2, 2, 2, 2, 2, 2,

/* 11110yyy */
3, 3, 3, 3, 3, 3, 3, 3,     255, 255, 255, 255, 255, 255, 255, 255,
};

/*
** This table maps from the number of trailing bytes in a UTF-8 character
** to an integer constant that is effectively calculated for each character
** read by a naive implementation of a UTF-8 character reader. The code
** in the READ_UTF8 macro explains things best.
*/
static const int xtra_utf8_bits[4] =  {
0,
12416,          /* (0xC0 << 6) + (0x80) */
925824,         /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
63447168        /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
};

#define READ_UTF8(zIn, c) { \
  int xtra;                                            \
  c = *(zIn)++;                                        \
  xtra = xtra_utf8_bytes[c];                           \
  switch( xtra ){                                      \
    case 255: c = (int)0xFFFD; break;                  \
    case 3: c = (c<<6) + *(zIn)++;                     \
    case 2: c = (c<<6) + *(zIn)++;                     \
    case 1: c = (c<<6) + *(zIn)++;                     \
    c -= xtra_utf8_bits[xtra];                         \
  }                                                    \
}
int sqlite3ReadUtf8(const unsigned char *z){
  int c;
  READ_UTF8(z, c);
  return c;
}

#define SKIP_UTF8(zIn) {                               \
  zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1);            \
}

#define WRITE_UTF8(zOut, c) {                          \
  if( c<0x00080 ){                                     \
    *zOut++ = (c&0xFF);                                \
  }                                                    \
  else if( c<0x00800 ){                                \
    *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
    *zOut++ = 0x80 + (c & 0x3F);                       \
  }                                                    \
  else if( c<0x10000 ){                                \
    *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
    *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
    *zOut++ = 0x80 + (c & 0x3F);                       \
  }else{                                               \
    *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
    *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
    *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
    *zOut++ = 0x80 + (c & 0x3F);                       \
  }                                                    \
}

#define WRITE_UTF16LE(zOut, c) {                                \
  if( c<=0xFFFF ){                                              \
    *zOut++ = (c&0x00FF);                                       \
    *zOut++ = ((c>>8)&0x00FF);                                  \
  }else{                                                        \
    *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
    *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
    *zOut++ = (c&0x00FF);                                       \
    *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
  }                                                             \
}

#define WRITE_UTF16BE(zOut, c) {                                \
  if( c<=0xFFFF ){                                              \
    *zOut++ = ((c>>8)&0x00FF);                                  \
    *zOut++ = (c&0x00FF);                                       \
  }else{                                                        \
    *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
    *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
    *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
    *zOut++ = (c&0x00FF);                                       \
  }                                                             \
}

#define READ_UTF16LE(zIn, c){                                         \
  c = (*zIn++);                                                       \
  c += ((*zIn++)<<8);                                                 \
  if( c>=0xD800 && c<=0xE000 ){                                       \
    int c2 = (*zIn++);                                                \
    c2 += ((*zIn++)<<8);                                              \
    c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
  }                                                                   \
}

#define READ_UTF16BE(zIn, c){                                         \
  c = ((*zIn++)<<8);                                                  \
  c += (*zIn++);                                                      \
  if( c>=0xD800 && c<=0xE000 ){                                       \
    int c2 = ((*zIn++)<<8);                                           \
    c2 += (*zIn++);                                                   \
    c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
  }                                                                   \
}

#define SKIP_UTF16BE(zIn){                                            \
  if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
    zIn += 4;                                                         \
  }else{                                                              \
    zIn += 2;                                                         \
  }                                                                   \
}
#define SKIP_UTF16LE(zIn){                                            \
  zIn++;                                                              \
  if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
    zIn += 3;                                                         \
  }else{                                                              \
    zIn += 1;                                                         \
  }                                                                   \
}

#define RSKIP_UTF16LE(zIn){                                            \
  if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){  \
    zIn -= 4;                                                         \
  }else{                                                              \
    zIn -= 2;                                                         \
  }                                                                   \
}
#define RSKIP_UTF16BE(zIn){                                            \
  zIn--;                                                              \
  if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){  \
    zIn -= 3;                                                         \
  }else{                                                              \
    zIn -= 1;                                                         \
  }                                                                   \
}

/*
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
*/ 
/* #define TRANSLATE_TRACE 1 */

#ifndef SQLITE_OMIT_UTF16
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
  unsigned char zShort[NBFS]; /* Temporary short output buffer */
  int len;                    /* Maximum length of output string in bytes */
  unsigned char *zOut;                  /* Output buffer */
  unsigned char *zIn;                   /* Input iterator */
  unsigned char *zTerm;                 /* End of input */
  unsigned char *z;                     /* Output iterator */
  int c;

  assert( pMem->flags&MEM_Str );
  assert( pMem->enc!=desiredEnc );
  assert( pMem->enc!=0 );
  assert( pMem->n>=0 );

#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
    fprintf(stderr, "INPUT:  %s\n", zBuf);
  }
#endif

  /* If the translation is between UTF-16 little and big endian, then 
  ** all that is required is to swap the byte order. This case is handled
  ** differently from the others.
  */
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
    u8 temp;
    int rc;
    rc = sqlite3VdbeMemMakeWriteable(pMem);
    if( rc!=SQLITE_OK ){
      assert( rc==SQLITE_NOMEM );
      return SQLITE_NOMEM;
    }
    zIn = pMem->z;
    zTerm = &zIn[pMem->n];
    while( zIn<zTerm ){
      temp = *zIn;
      *zIn = *(zIn+1);
      zIn++;
      *zIn++ = temp;
    }
    pMem->enc = desiredEnc;
    goto translate_out;
  }

  /* Set len to the maximum number of bytes required in the output buffer. */
  if( desiredEnc==SQLITE_UTF8 ){
    /* When converting from UTF-16, the maximum growth results from
    ** translating a 2-byte character to a 3-byte UTF-8 character (i.e.
    ** code-point 0xFFFC). A single byte is required for the output string
    ** nul-terminator.
    */
    len = (pMem->n/2) * 3 + 1;
  }else{
    /* When converting from UTF-8 to UTF-16 the maximum growth is caused
    ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
    ** character. Two bytes are required in the output buffer for the
    ** nul-terminator.
    */
    len = pMem->n * 2 + 2;
  }

  /* Set zIn to point at the start of the input buffer and zTerm to point 1
  ** byte past the end.
  **
  ** Variable zOut is set to point at the output buffer. This may be space
  ** obtained from malloc(), or Mem.zShort, if it large enough and not in
  ** use, or the zShort array on the stack (see above).
  */
  zIn = pMem->z;
  zTerm = &zIn[pMem->n];
  if( len>NBFS ){
    zOut = sqliteMallocRaw(len);
    if( !zOut ) return SQLITE_NOMEM;
  }else{
    zOut = zShort;
  }
  z = zOut;

  if( pMem->enc==SQLITE_UTF8 ){
    if( desiredEnc==SQLITE_UTF16LE ){
      /* UTF-8 -> UTF-16 Little-endian */
      while( zIn<zTerm ){
        READ_UTF8(zIn, c); 
        WRITE_UTF16LE(z, c);
      }
    }else{
      assert( desiredEnc==SQLITE_UTF16BE );
      /* UTF-8 -> UTF-16 Big-endian */
      while( zIn<zTerm ){
        READ_UTF8(zIn, c); 
        WRITE_UTF16BE(z, c);
      }
    }
    pMem->n = z - zOut;
    *z++ = 0;
  }else{
    assert( desiredEnc==SQLITE_UTF8 );
    if( pMem->enc==SQLITE_UTF16LE ){
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16LE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }else{
      /* UTF-16 Little-endian -> UTF-8 */
      while( zIn<zTerm ){
        READ_UTF16BE(zIn, c); 
        WRITE_UTF8(z, c);
      }
    }
    pMem->n = z - zOut;
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  sqlite3VdbeMemRelease(pMem);
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
  pMem->enc = desiredEnc;
  if( zOut==zShort ){
    memcpy(pMem->zShort, zOut, len);
    zOut = pMem->zShort;
    pMem->flags |= (MEM_Term|MEM_Short);
  }else{
    pMem->flags |= (MEM_Term|MEM_Dyn);
  }
  pMem->z = zOut;

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
  }
#endif
  return SQLITE_OK;
}

/*
** This routine checks for a byte-order mark at the beginning of the 
** UTF-16 string stored in *pMem. If one is present, it is removed and
** the encoding of the Mem adjusted. This routine does not do any
** byte-swapping, it just sets Mem.enc appropriately.
**
** The allocation (static, dynamic etc.) and encoding of the Mem may be
** changed by this function.
*/
int sqlite3VdbeMemHandleBom(Mem *pMem){
  int rc = SQLITE_OK;
  u8 bom = 0;

  if( pMem->n<0 || pMem->n>1 ){
    u8 b1 = *(u8 *)pMem->z;
    u8 b2 = *(((u8 *)pMem->z) + 1);
    if( b1==0xFE && b2==0xFF ){
      bom = SQLITE_UTF16BE;
    }
    if( b1==0xFF && b2==0xFE ){
      bom = SQLITE_UTF16LE;
    }
  }
  
  if( bom ){
    /* This function is called as soon as a string is stored in a Mem*,
    ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
    ** for the string to be stored in Mem.zShort, or for it to be stored
    ** in dynamic memory with no destructor.
    */
    assert( !(pMem->flags&MEM_Short) );
    assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
    if( pMem->flags & MEM_Dyn ){
      void (*xDel)(void*) = pMem->xDel;
      char *z = pMem->z;
      pMem->z = 0;
      pMem->xDel = 0;
      rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
      xDel(z);
    }else{
      rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, 
          SQLITE_TRANSIENT);
    }
  }
  return rc;
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
** return the number of unicode characters in pZ up to (but not including)
** the first 0x00 byte. If nByte is not less than zero, return the
** number of unicode characters in the first nByte of pZ (or up to 
** the first 0x00, whichever comes first).
*/
int sqlite3utf8CharLen(const char *z, int nByte){
  int r = 0;
  const char *zTerm;
  if( nByte>=0 ){
    zTerm = &z[nByte];
  }else{
    zTerm = (const char *)(-1);
  }
  assert( z<=zTerm );
  while( *z!=0 && z<zTerm ){
    SKIP_UTF8(z);
    r++;
  }
  return r;
}

#ifndef SQLITE_OMIT_UTF16
/*
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
** return the number of bytes up to (but not including), the first pair
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
** then return the number of bytes in the first nChar unicode characters
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
*/
int sqlite3utf16ByteLen(const void *zIn, int nChar){
  int c = 1;
  char const *z = zIn;
  int n = 0;
  if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
    while( c && ((nChar<0) || n<nChar) ){
      READ_UTF16BE(z, c);
      n++;
    }
  }else{
    while( c && ((nChar<0) || n<nChar) ){
      READ_UTF16LE(z, c);
      n++;
    }
  }
  return (z-(char const *)zIn)-((c==0)?2:0);
}

/*
** UTF-16 implementation of the substr()
*/
void sqlite3utf16Substr(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int y, z;
  unsigned char const *zStr;
  unsigned char const *zStrEnd;
  unsigned char const *zStart;
  unsigned char const *zEnd;
  int i;

  zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
  zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
  y = sqlite3_value_int(argv[1]);
  z = sqlite3_value_int(argv[2]);

  if( y>0 ){
    y = y-1;
    zStart = zStr;
    if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
      for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
    }else{
      for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
    }
  }else{
    zStart = zStrEnd;
    if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
      for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
    }else{
      for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
    }
    for(; i<0; i++) z -= 1;
  }

  zEnd = zStart;
  if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
    for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
  }else{
    for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
  }

  sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
}

#if defined(SQLITE_TEST)
/*
** This routine is called from the TCL test function "translate_selftest".
** It checks that the primitives for serializing and deserializing
** characters in each encoding are inverses of each other.
*/
void sqlite3utfSelfTest(){
  int i;
  unsigned char zBuf[20];
  unsigned char *z;
  int n;
  int c;

  for(i=0; i<0x00110000; i++){
    z = zBuf;
    WRITE_UTF8(z, i);
    n = z-zBuf;
    z = zBuf;
    READ_UTF8(z, c);
    assert( c==i );
    assert( (z-zBuf)==n );
  }
  for(i=0; i<0x00110000; i++){
    if( i>=0xD800 && i<=0xE000 ) continue;
    z = zBuf;
    WRITE_UTF16LE(z, i);
    n = z-zBuf;
    z = zBuf;
    READ_UTF16LE(z, c);
    assert( c==i );
    assert( (z-zBuf)==n );
  }
  for(i=0; i<0x00110000; i++){
    if( i>=0xD800 && i<=0xE000 ) continue;
    z = zBuf;
    WRITE_UTF16BE(z, i);
    n = z-zBuf;
    z = zBuf;
    READ_UTF16BE(z, c);
    assert( c==i );
    assert( (z-zBuf)==n );
  }
}
#endif /* SQLITE_TEST */
#endif /* SQLITE_OMIT_UTF16 */