summaryrefslogtreecommitdiffstats
path: root/kexi/3rdparty/kexisql3/src/where.c
blob: 5ab2e4e6717539204e65a61610420eb6db3e5e3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c 548347 2006-06-05 10:53:00Z staniek $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)

/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))

/*
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
int sqlite3_where_trace = 0;
# define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
#else
# define TRACE(X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** All WhereTerms are collected into a single WhereClause structure.  
** The following identity holds:
**
**        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
**
** When a term is of the form:
**
**              X <op> <expr>
**
** where X is a column name and <op> is one of certain operators,
** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
** cursor number and column number for X.  WhereTerm.operator records
** the <op> using a bitmask encoding defined by WO_xxx below.  The
** use of a bitmask encoding for the operator allows us to search
** quickly for terms that match any of several different operators.
**
** prereqRight and prereqAll record sets of cursor numbers,
** but they do so indirectly.  A single ExprMaskSet structure translates
** cursor number into bits and the translated bit is stored in the prereq
** fields.  The translation is used in order to maximize the number of
** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
** spread out over the non-negative integers.  For example, the cursor
** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
** translates these sparse cursor numbers into consecutive integers
** beginning with 0 in order to make the best possible use of the available
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression */
  i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
  i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
  u16 operator;           /* A WO_xx value describing <op> */
  u8 flags;               /* Bit flags.  See below */
  u8 nChild;              /* Number of tqchildren that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by p */
};

/*
** Allowed values of WhereTerm.flags
*/
#define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
#define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
#define TERM_CODED      0x04   /* This term is already coded */
#define TERM_COPIED     0x08   /* Has a child */
#define TERM_OR_OK      0x10   /* Used during OR-clause processing */

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
  WhereTerm aStatic[10];   /* Initial static space for a[] */
};

/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
**
** The VDBE cursor numbers are small integers contained in 
** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
** clause, the cursor numbers might not begin with 0 and they might
** contain gaps in the numbering sequence.  But we want to make maximum
** use of the bits in our bitmasks.  This structure provides a mapping
** from the sparse cursor numbers into consecutive integers beginning
** with 0.
**
** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
**
** For example, if the WHERE clause expression used these VDBE
** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
** would map those cursor numbers into bits 0 through 5.
**
** Note that the mapping is not necessarily ordered.  In the example
** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4.  Or one of 719 other combinations might be used. It
** does not really matter.  What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
};


/*
** Bitmasks for the operators that indices are able to exploit.  An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
#define WO_IN     1
#define WO_EQ     2
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))

/*
** Value for flags returned by bestIndex()
*/
#define WHERE_ROWID_EQ       0x0001   /* rowid=EXPR or rowid IN (...) */
#define WHERE_ROWID_RANGE    0x0002   /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ      0x0010   /* x=EXPR or x IN (...) */
#define WHERE_COLUMN_RANGE   0x0020   /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN      0x0040   /* x IN (...) */
#define WHERE_TOP_LIMIT      0x0100   /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT      0x0200   /* x>EXPR or x>=EXPR constraint */
#define WHERE_IDX_ONLY       0x0800   /* Use index only - omit table */
#define WHERE_ORDERBY        0x1000   /* Output will appear in correct order */
#define WHERE_REVERSE        0x2000   /* Scan in reverse order */
#define WHERE_UNITQUE         0x4000   /* Selects no more than one row */

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(WhereClause *pWC, Parse *pParse){
  pWC->pParse = pParse;
  pWC->nTerm = 0;
  pWC->nSlot = ARRAYSIZE(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->flags & TERM_DYNAMIC ){
      sqlite3ExprDelete(a->pExpr);
    }
  }
  if( pWC->a!=pWC->aStatic ){
    sqliteFree(pWC->a);
  }
}

/*
** Add a new entries to the WhereClause structure.  Increase the allocated
** space as necessary.
**
** WARNING:  This routine might reallocate the space used to store
** WhereTerms.  All pointers to WhereTerms should be invalided after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
  WhereTerm *pTerm;
  int idx;
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ) return 0;
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqliteFree(pOld);
    }
    pWC->nSlot *= 2;
  }
  pTerm = &pWC->a[idx = pWC->nTerm];
  pWC->nTerm++;
  pTerm->pExpr = p;
  pTerm->flags = flags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
  return idx;
}

/*
** This routine identifies subexpressions in the WHERE clause where
** each subexpression is separated by the AND operator or some other
** operator specified in the op parameter.  The WhereClause structure
** is filled with pointers to subexpressions.  For example:
**
**    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
**           \________/     \_______________/     \________________/
**            slot[0]            slot[1]               slot[2]
**
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array.  This array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
  if( pExpr==0 ) return;
  if( pExpr->op!=op ){
    whereClauseInsert(pWC, pExpr, 0);
  }else{
    whereSplit(pWC, pExpr->pLeft, op);
    whereSplit(pWC, pExpr->pRight, op);
  }
}

/*
** Initialize an expression mask set
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))

/*
** Return the bitmask for the given cursor number.  Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
  int i;
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ){
      return ((Bitmask)1)<<i;
    }
  }
  return 0;
}

/*
** Create a new mask for cursor iCursor.
**
** There is one cursor per table in the FROM clause.  The number of
** tables in the FROM clause is limited by a test early in the
** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
** array will never overflow.
*/
static void createMask(ExprMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ExprResolveNames() on the expression.  See
** the header comment on that routine for additional information.
** The sqlite3ExprResolveNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.  This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
    mask = getMask(pMaskSet, p->iTable);
    return mask;
  }
  mask = exprTableUsage(pMaskSet, p->pRight);
  mask |= exprTableUsage(pMaskSet, p->pLeft);
  mask |= exprListTableUsage(pMaskSet, p->pList);
  mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
  return mask;
}
static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
  int i;
  Bitmask mask = 0;
  if( pList ){
    for(i=0; i<pList->nExpr; i++){
      mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
    }
  }
  return mask;
}
static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
  Bitmask mask;
  if( pS==0 ){
    mask = 0;
  }else{
    mask = exprListTableUsage(pMaskSet, pS->pEList);
    mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
    mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
    mask |= exprTableUsage(pMaskSet, pS->pWhere);
    mask |= exprTableUsage(pMaskSet, pS->pHaving);
  }
  return mask;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int allowedOp(int op){
  assert( TK_GT>TK_EQ && TK_GT<TK_GE );
  assert( TK_LT>TK_EQ && TK_LT<TK_GE );
  assert( TK_LE>TK_EQ && TK_LE<TK_GE );
  assert( TK_GE==TK_EQ+4 );
  return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
}

/*
** Swap two objects of type T.
*/
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparision operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
*/
static void exprCommute(Expr *pExpr){
  assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
  SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
  SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
  if( pExpr->op>=TK_GT ){
    assert( TK_LT==TK_GT+2 );
    assert( TK_GE==TK_LE+2 );
    assert( TK_GT>TK_EQ );
    assert( TK_GT<TK_LE );
    assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
    pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
  }
}

/*
** Translate from TK_xx operator to WO_xx bitmask.
*/
static int operatorMask(int op){
  int c;
  assert( allowedOp(op) );
  if( op==TK_IN ){
    c = WO_IN;
  }else{
    c = WO_EQ<<(op-TK_EQ);
  }
  assert( op!=TK_IN || c==WO_IN );
  assert( op!=TK_EQ || c==WO_EQ );
  assert( op!=TK_LT || c==WO_LT );
  assert( op!=TK_LE || c==WO_LE );
  assert( op!=TK_GT || c==WO_GT );
  assert( op!=TK_GE || c==WO_GE );
  return c;
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
*/
static WhereTerm *findTerm(
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u16 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;
  int k;
  for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
    if( pTerm->leftCursor==iCur
       && (pTerm->prereqRight & notReady)==0
       && pTerm->leftColumn==iColumn
       && (pTerm->operator & op)!=0
    ){
      if( iCur>=0 && pIdx ){
        Expr *pX = pTerm->pExpr;
        CollSeq *pColl;
        char idxaff;
        int k;
        Parse *pParse = pWC->pParse;

        idxaff = pIdx->pTable->aCol[iColumn].affinity;
        if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
        pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
        if( !pColl ){
          if( pX->pRight ){
            pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
          }
          if( !pColl ){
            pColl = pParse->db->pDfltColl;
          }
        }
        for(k=0; k<pIdx->nColumn && pIdx->aiColumn[k]!=iColumn; k++){}
        assert( k<pIdx->nColumn );
        if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
      }
      return pTerm;
    }
  }
  return 0;
}

/* Forward reference */
static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
**
**
*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  ExprMaskSet *pMaskSet,   /* table masks */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
    exprAnalyze(pTabList, pMaskSet, pWC, i);
  }
}

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints.  Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.  
*/
static int isLikeOrGlob(
  sqlite3 *db,      /* The database */
  Expr *pExpr,      /* Test this expression */
  int *pnPattern,   /* Number of non-wildcard prefix characters */
  int *pisComplete  /* True if the only wildcard is % in the last character */
){
  const char *z;
  Expr *pRight, *pLeft;
  ExprList *pList;
  int c, cnt;
  int noCase;
  char wc[3];
  CollSeq *pColl;

  if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
    return 0;
  }
  pList = pExpr->pList;
  pRight = pList->a[0].pExpr;
  if( pRight->op!=TK_STRING ){
    return 0;
  }
  pLeft = pList->a[1].pExpr;
  if( pLeft->op!=TK_COLUMN ){
    return 0;
  }
  pColl = pLeft->pColl;
  if( pColl==0 ){
    pColl = db->pDfltColl;
  }
  if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
      (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
    return 0;
  }
  sqlite3DequoteExpr(pRight);
  z = pRight->token.z;
  for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
  if( cnt==0 || 255==(u8)z[cnt] ){
    return 0;
  }
  *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
  *pnPattern = cnt;
  return 1;
}
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */

/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
** If the expression is of the form "<expr> <op> X" it gets commuted
** to the standard form of "X <op> <expr>".  If the expression is of
** the form "X <op> Y" where both X and Y are columns, then the original
** expression is unchanged and a new virtual expression of the form
** "Y <op> X" is added to the WHERE clause and analyzed separately.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  ExprMaskSet *pMaskSet,    /* table masks */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereTerm *pTerm = &pWC->a[idxTerm];
  Expr *pExpr = pTerm->pExpr;
  Bitmask prereqLeft;
  Bitmask prereqAll;
  int nPattern;
  int isComplete;

  if( sqlite3_malloc_failed ) return;
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  if( pExpr->op==TK_IN ){
    assert( pExpr->pRight==0 );
    pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
                          | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
  }else{
    pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
  }
  prereqAll = exprTableUsage(pMaskSet, pExpr);
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->operator = 0;
  if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
    Expr *pLeft = pExpr->pLeft;
    Expr *pRight = pExpr->pRight;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->leftColumn = pLeft->iColumn;
      pTerm->operator = operatorMask(pExpr->op);
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(pExpr);
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->flags |= TERM_COPIED;
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pDup);
      pLeft = pDup->pLeft;
      pNew->leftCursor = pLeft->iTable;
      pNew->leftColumn = pLeft->iColumn;
      pNew->prereqRight = prereqLeft;
      pNew->prereqAll = prereqAll;
      pNew->operator = operatorMask(pDup->op);
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.
  */
  else if( pExpr->op==TK_BETWEEN ){
    ExprList *pList = pExpr->pList;
    int i;
    static const u8 ops[] = {TK_GE, TK_LE};
    assert( pList!=0 );
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
                             sqlite3ExprDup(pList->a[i].pExpr), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  /* Attempt to convert OR-connected terms into an IN operator so that
  ** they can make use of indices.  Example:
  **
  **      x = expr1  OR  expr2 = x  OR  x = expr3
  **
  ** is converted into
  **
  **      x IN (expr1,expr2,expr3)
  */
  else if( pExpr->op==TK_OR ){
    int ok;
    int i, j;
    int iColumn, iCursor;
    WhereClause sOr;
    WhereTerm *pOrTerm;

    assert( (pTerm->flags & TERM_DYNAMIC)==0 );
    whereClauseInit(&sOr, pWC->pParse);
    whereSplit(&sOr, pExpr, TK_OR);
    exprAnalyzeAll(pSrc, pMaskSet, &sOr);
    assert( sOr.nTerm>0 );
    j = 0;
    do{
      iColumn = sOr.a[j].leftColumn;
      iCursor = sOr.a[j].leftCursor;
      ok = iCursor>=0;
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
        if( pOrTerm->operator!=WO_EQ ){
          goto or_not_possible;
        }
        if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
          pOrTerm->flags |= TERM_OR_OK;
        }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
                    ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
                     (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
          pOrTerm->flags &= ~TERM_OR_OK;
        }else{
          ok = 0;
        }
      }
    }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
    if( ok ){
      ExprList *pList = 0;
      Expr *pNew, *pDup;
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
        if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
        pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
        pList = sqlite3ExprListAppend(pList, pDup, 0);
      }
      pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0);
      if( pDup ){
        pDup->iTable = iCursor;
        pDup->iColumn = iColumn;
      }
      pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
      if( pNew ){
        pNew->pList = pList;
      }else{
        sqlite3ExprListDelete(pList);
      }
      pTerm->pExpr = pNew;
      pTerm->flags |= TERM_DYNAMIC;
      exprAnalyze(pSrc, pMaskSet, pWC, idxTerm);
      pTerm = &pWC->a[idxTerm];
    }
or_not_possible:
    whereClauseClear(&sOr);
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  /* Add constraints to reduce the search space on a LIKE or GLOB
  ** operator.
  */
  if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
    Expr *pLeft, *pRight;
    Expr *pStr1, *pStr2;
    Expr *pNewExpr1, *pNewExpr2;
    int idxNew1, idxNew2;

    pLeft = pExpr->pList->a[1].pExpr;
    pRight = pExpr->pList->a[0].pExpr;
    pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
    if( pStr1 ){
      sqlite3TokenCopy(&pStr1->token, &pRight->token);
      pStr1->token.n = nPattern;
    }
    pStr2 = sqlite3ExprDup(pStr1);
    if( pStr2 ){
      assert( pStr2->token.dyn );
      ++*(u8*)&pStr2->token.z[nPattern-1];
    }
    pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
    pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;
      pTerm->nChild = 2;
    }
  }
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
}


/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base".  pIdx is an index on pTab.
**
** nEqCol is the number of columns of pIdx that are used as equality
** constraints.  Any of these columns may be missing from the ORDER BY
** clause and the match can still be a success.
**
** All terms of the ORDER BY that match against the index must be either
** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNITQUE
** index do not need to satisfy this constraint.)  The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int isSortingIndex(
  Parse *pParse,          /* Parsing context */
  Index *pIdx,            /* The index we are testing */
  Table *pTab,            /* The table to be sorted */
  int base,               /* Cursor number for pTab */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int nEqCol,             /* Number of index columns with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;                       /* Loop counters */
  int sortOrder = SQLITE_SO_ASC;  /* Which direction we are sorting */
  int nTerm;                      /* Number of ORDER BY terms */
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );
  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  */
  for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
    Expr *pExpr;       /* The expression of the ORDER BY pTerm */
    CollSeq *pColl;    /* The collating sequence of pExpr */

    pExpr = pTerm->pExpr;
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      return 0;
    }
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
    if( !pColl ) pColl = db->pDfltColl;
    if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
      /* Term j of the ORDER BY clause does not match column i of the index */
      if( i<nEqCol ){
        /* If an index column that is constrained by == fails to match an
        ** ORDER BY term, that is OK.  Just ignore that column of the index
        */
        continue;
      }else{
        /* If an index column fails to match and is not constrained by ==
        ** then the index cannot satisfy the ORDER BY constraint.
        */
        return 0;
      }
    }
    if( i>nEqCol ){
      if( pTerm->sortOrder!=sortOrder ){
        /* Indices can only be used if all ORDER BY terms past the
        ** equality constraints are all either DESC or ASC. */
        return 0;
      }
    }else{
      sortOrder = pTerm->sortOrder;
    }
    j++;
    pTerm++;
  }

  /* The index can be used for sorting if all terms of the ORDER BY clause
  ** are covered.
  */
  if( j>=nTerm ){
    *pbRev = sortOrder==SQLITE_SO_DESC;
    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID.  Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
  int base,               /* Cursor number for table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  Expr *p;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  p = pOrderBy->a[0].pExpr;
  if( pOrderBy->nExpr==1 && p->op==TK_COLUMN && p->iTable==base
          && p->iColumn==-1 ){
    *pbRev = pOrderBy->a[0].sortOrder;
    return 1;
  }
  return 0;
}

/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact.  This is only used for estimating
** the total cost of performing operatings with O(logN) or O(NlogN)
** complexity.  Because N is just a guess, it is no great tragedy if
** logN is a little off.
*/
static double estLog(double N){
  double logN = 1.0;
  double x = 10.0;
  while( N>x ){
    logN += 1.0;
    x *= 10;
  }
  return logN;
}

/*
** Find the best index for accessing a particular table.  Return a pointer
** to the index, flags that describe how the index should be used, the
** number of equality constraints, and the "cost" for this index.
**
** The lowest cost index wins.  The cost is an estimate of the amount of
** CPU and disk I/O need to process the request using the selected index.
** Factors that influence cost include:
**
**    *  The estimated number of rows that will be retrieved.  (The
**       fewer the better.)
**
**    *  Whether or not sorting must occur.
**
**    *  Whether or not there must be separate lookups in the
**       index and in the main table.
**
*/
static double bestIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors that are not available */
  ExprList *pOrderBy,         /* The order by clause */
  Index **ppIndex,            /* Make *ppIndex point to the best index */
  int *pFlags,                /* Put flags describing this choice in *pFlags */
  int *pnEq                   /* Put the number of == or IN constraints here */
){
  WhereTerm *pTerm;
  Index *bestIdx = 0;         /* Index that gives the lowest cost */
  double lowestCost = 1.0e99; /* The cost of using bestIdx */
  int bestFlags = 0;          /* Flags associated with bestIdx */
  int bestNEq = 0;            /* Best value for nEq */
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  int rev;                    /* True to scan in reverse order */
  int flags;                  /* Flags associated with pProbe */
  int nEq;                    /* Number of == or IN constraints */
  double cost;                /* Cost of using pProbe */

  TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));

  /* Check for a rowid=EXPR or rowid IN (...) constraints
  */
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
  if( pTerm ){
    Expr *pExpr;
    *ppIndex = 0;
    bestFlags = WHERE_ROWID_EQ;
    if( pTerm->operator & WO_EQ ){
      /* Rowid== is always the best pick.  Look no further.  Because only
      ** a single row is generated, output is always in sorted order */
      *pFlags = WHERE_ROWID_EQ | WHERE_UNITQUE;
      *pnEq = 1;
      TRACE(("... best is rowid\n"));
      return 0.0;
    }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
      /* Rowid IN (LIST): cost is NlogN where N is the number of list
      ** elements.  */
      lowestCost = pExpr->pList->nExpr;
      lowestCost *= estLog(lowestCost);
    }else{
      /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
      ** in the result of the inner select.  We have no way to estimate
      ** that value so make a wild guess. */
      lowestCost = 200.0;
    }
    TRACE(("... rowid IN cost: %.9g\n", lowestCost));
  }

  /* Estimate the cost of a table scan.  If we do not know how many
  ** entries are in the table, use 1 million as a guess.
  */
  pProbe = pSrc->pTab->pIndex;
  cost = pProbe ? pProbe->aiRowEst[0] : 1000000.0;
  TRACE(("... table scan base cost: %.9g\n", cost));
  flags = WHERE_ROWID_RANGE;

  /* Check for constraints on a range of rowids in a table scan.
  */
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
  if( pTerm ){
    if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
      flags |= WHERE_TOP_LIMIT;
      cost *= 0.333;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
    }
    if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
      flags |= WHERE_BTM_LIMIT;
      cost *= 0.333;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
    }
    TRACE(("... rowid range reduces cost to %.9g\n", cost));
  }else{
    flags = 0;
  }

  /* If the table scan does not satisfy the ORDER BY clause, increase
  ** the cost by NlogN to cover the expense of sorting. */
  if( pOrderBy ){
    if( sortableByRowid(iCur, pOrderBy, &rev) ){
      flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
      if( rev ){
        flags |= WHERE_REVERSE;
      }
    }else{
      cost += cost*estLog(cost);
      TRACE(("... sorting increases cost to %.9g\n", cost));
    }
  }
  if( cost<lowestCost ){
    lowestCost = cost;
    bestFlags = flags;
  }

  /* Look at each index.
  */
  for(; pProbe; pProbe=pProbe->pNext){
    int i;                       /* Loop counter */
    double inMultiplier = 1.0;

    TRACE(("... index %s:\n", pProbe->zName));

    /* Count the number of columns in the index that are satisfied
    ** by x=EXPR constraints or x IN (...) constraints.
    */
    flags = 0;
    for(i=0; i<pProbe->nColumn; i++){
      int j = pProbe->aiColumn[i];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
      if( pTerm==0 ) break;
      flags |= WHERE_COLUMN_EQ;
      if( pTerm->operator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        flags |= WHERE_COLUMN_IN;
        if( pExpr->pSelect!=0 ){
          inMultiplier *= 100.0;
        }else if( pExpr->pList!=0 ){
          inMultiplier *= pExpr->pList->nExpr + 1.0;
        }
      }
    }
    cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
    nEq = i;
    if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
         && nEq==pProbe->nColumn ){
      flags |= WHERE_UNITQUE;
    }
    TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));

    /* Look for range constraints
    */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
      if( pTerm ){
        flags |= WHERE_COLUMN_RANGE;
        if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
          flags |= WHERE_TOP_LIMIT;
          cost *= 0.333;
        }
        if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
          flags |= WHERE_BTM_LIMIT;
          cost *= 0.333;
        }
        TRACE(("...... range reduces cost to %.9g\n", cost));
      }
    }

    /* Add the additional cost of sorting if that is a factor.
    */
    if( pOrderBy ){
      if( (flags & WHERE_COLUMN_IN)==0 &&
           isSortingIndex(pParse,pProbe,pSrc->pTab,iCur,pOrderBy,nEq,&rev) ){
        if( flags==0 ){
          flags = WHERE_COLUMN_RANGE;
        }
        flags |= WHERE_ORDERBY;
        if( rev ){
          flags |= WHERE_REVERSE;
        }
      }else{
        cost += cost*estLog(cost);
        TRACE(("...... orderby increases cost to %.9g\n", cost));
      }
    }

    /* Check to see if we can get away with using just the index without
    ** ever reading the table.  If that is the case, then halve the
    ** cost of this index.
    */
    if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
      Bitmask m = pSrc->colUsed;
      int j;
      for(j=0; j<pProbe->nColumn; j++){
        int x = pProbe->aiColumn[j];
        if( x<BMS-1 ){
          m &= ~(((Bitmask)1)<<x);
        }
      }
      if( m==0 ){
        flags |= WHERE_IDX_ONLY;
        cost *= 0.5;
        TRACE(("...... idx-only reduces cost to %.9g\n", cost));
      }
    }

    /* If this index has achieved the lowest cost so far, then use it.
    */
    if( cost < lowestCost ){
      bestIdx = pProbe;
      lowestCost = cost;
      assert( flags!=0 );
      bestFlags = flags;
      bestNEq = nEq;
    }
  }

  /* Report the best result
  */
  *ppIndex = bestIdx;
  TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
        bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
  *pFlags = bestFlags;
  *pnEq = bestNEq;
  return lowestCost;
}


/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it originates
** in the ON clause.  The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop.  We would get the correct results if nothing were ever disabled,
** but joins might run a little slower.  The trick is to disable as much
** as we can without disabling too much.  If we disabled in (1), we'd get
** the wrong answer.  See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  if( pTerm
      && (pTerm->flags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
  ){
    pTerm->flags |= TERM_CODED;
    if( pTerm->iParent>=0 ){
      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
      if( (--pOther->nChild)==0 ){
        disableTerm(pLevel, pOther);
      }
    }
  }
}

/*
** Generate code that builds a probe for an index.  Details:
**
**    *  Check the top nColumn entries on the stack.  If any
**       of those entries are NULL, jump immediately to brk,
**       which is the loop exit, since no index entry will match
**       if any part of the key is NULL.
**
**    *  Construct a probe entry from the top nColumn entries in
**       the stack with affinities appropriate for index pIdx.
*/
static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
  sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
  sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
  sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
  sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
  sqlite3IndexAffinityStr(v, pIdx);
}


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
**
** The current value for the constraint is left on the top of the stack.
**
** For a constraint of the form X=expr, the expression is evaluated and its
** result is left on the stack.  For constraints of the form X IN (...)
** this routine sets up a loop that will iterate over all values of X.
*/
static void codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  int brk,            /* Jump here to abandon the loop */
  WhereLevel *pLevel  /* When level of the FROM clause we are working on */
){
  Expr *pX = pTerm->pExpr;
  if( pX->op!=TK_IN ){
    assert( pX->op==TK_EQ );
    sqlite3ExprCode(pParse, pX->pRight);
#ifndef SQLITE_OMIT_SUBTQUERY
  }else{
    int iTab;
    int *aIn;
    Vdbe *v = pParse->pVdbe;

    sqlite3CodeSubselect(pParse, pX);
    iTab = pX->iTable;
    sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
    VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
    pLevel->nIn++;
    sqlite3ReallocOrFree((void**)&pLevel->aInLoop,
                                 sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
    aIn = pLevel->aInLoop;
    if( aIn ){
      aIn += pLevel->nIn*3 - 3;
      aIn[0] = OP_Next;
      aIn[1] = iTab;
      aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}

/*
** Generate code that will evaluate all == and IN constraints for an
** index.  The values for all constraints are left on the stack.
**
** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
** The index has as many as three equality constraints, but in this
** example, the third "c" value is an inequality.  So only two 
** constraints are coded.  This routine will generate code to evaluate
** a==5 and b IN (1,2,3).  The current values for a and b will be left
** on the stack - a is the deepest and b the shallowest.
**
** In the example above nEq==2.  But this subroutine works for any value
** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
** The only thing it does is allocate the pLevel->iMem memory cell.
**
** This routine always allocates at least one memory cell and puts
** the address of that memory cell in pLevel->iMem.  The code that
** calls this routine will use pLevel->iMem to store the termination
** key value of the loop.  If one or more IN operators appear, then
** this routine allocates an additional nEq memory cells for internal
** use.
*/
static void codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  WhereClause *pWC,     /* The WHERE clause */
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  int brk               /* Jump here to end the loop */
){
  int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
  int termsInMem = 0;           /* If true, store value in mem[] cells */
  Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
  Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
  WhereTerm *pTerm;             /* A single constraint term */
  int j;                        /* Loop counter */

  /* Figure out how many memory cells we will need then allocate them.
  ** We always need at least one used to store the loop terminator
  ** value.  If there are IN operators we'll need one for each == or
  ** IN constraint.
  */
  pLevel->iMem = pParse->nMem++;
  if( pLevel->flags & WHERE_COLUMN_IN ){
    pParse->nMem += pLevel->nEq;
    termsInMem = 1;
  }

  /* Evaluate the equality constraints
  */
  for(j=0; j<pIdx->nColumn; j++){
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx);
    if( pTerm==0 ) break;
    assert( (pTerm->flags & TERM_CODED)==0 );
    codeEqualityTerm(pParse, pTerm, brk, pLevel);
    if( termsInMem ){
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
    }
  }
  assert( j==nEq );

  /* Make sure all the constraint values are on the top of the stack
  */
  if( termsInMem ){
    for(j=0; j<nEq; j++){
      sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
    }
  }
}

#if defined(SQLITE_TEST)
/*
** The following variable holds a text description of query plan generated
** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
** overwrites the previous.  This information is used for testing and
** analysis only.
*/
char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
static int nTQPlan = 0;              /* Next free slow in _query_plan[] */

#endif /* SQLITE_TEST */



/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select.  (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.)  For
** example, if the SQL is this:
**
**       SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
**      foreach row1 in t1 do       \    Code generated
**        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
**          foreach row3 in t3 do   /
**            ...
**          end                     \    Code generated
**        end                        |-- by sqlite3WhereEnd()
**      end                         /
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices.  Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are Btree cursors associated with each table.  t1 uses cursor
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
** And so forth.  This routine generates code to open those VDBE cursors
** and sqlite3WhereEnd() generates the code to close them.
**
** The code that sqlite3WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries.  The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
** data from the various tables of the loop.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster.  Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop.  After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
**    foreach row1 in t1 do
**      flag = 0
**      foreach row2 in t2 do
**        start:
**          ...
**          flag = 1
**      end
**      if flag==0 then
**        move the row2 cursor to a null row
**        goto start
**      fi
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL.  This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
){
  int i;                     /* Loop counter */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  int brk, cont = 0;         /* Addresses used during code generation */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereTerm *pTerm;          /* A single term in the WHERE clause */
  ExprMaskSet maskSet;       /* The expression mask set */
  WhereClause wc;            /* The WHERE clause is divided into these terms */
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  WhereLevel *pLevel;             /* A single level in the pWInfo list */
  int iFrom;                      /* First unused FROM clause element */
  int andFlags;              /* AND-ed combination of all wc.a[].flags */

  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
    return 0;
  }

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(&maskSet);
  whereClauseInit(&wc, pParse);
  whereSplit(&wc, pWhere, TK_AND);
    
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite3_malloc_failed ){
    goto whereBeginNoMem;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  for(i=0; i<pTabList->nSrc; i++){
    createMask(&maskSet, pTabList->a[i].iCursor);
  }
  exprAnalyzeAll(pTabList, &maskSet, &wc);
  if( sqlite3_malloc_failed ){
    goto whereBeginNoMem;
  }

  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:
  **
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
  **   pWInfo->a[].nEq       The number of == and IN constraints
  **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
  **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
  **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
  **
  ** This loop also figures out the nesting order of tables in the FROM
  ** clause.
  */
  notReady = ~(Bitmask)0;
  pTabItem = pTabList->a;
  pLevel = pWInfo->a;
  andFlags = ~0;
  TRACE(("*** Optimizer Start ***\n"));
  for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int flags;                  /* Flags asssociated with pIdx */
    int nEq;                    /* Number of == or IN constraints */
    double cost;                /* The cost for pIdx */
    int j;                      /* For looping over FROM tables */
    Index *pBest = 0;           /* The best index seen so far */
    int bestFlags = 0;          /* Flags associated with pBest */
    int bestNEq = 0;            /* nEq associated with pBest */
    double lowestCost = 1.0e99; /* Cost of the pBest */
    int bestJ;                  /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */

    for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
      m = getMask(&maskSet, pTabItem->iCursor);
      if( (m & notReady)==0 ){
        if( j==iFrom ) iFrom++;
        continue;
      }
      cost = bestIndex(pParse, &wc, pTabItem, notReady,
                       (i==0 && ppOrderBy) ? *ppOrderBy : 0,
                       &pIdx, &flags, &nEq);
      if( cost<lowestCost ){
        lowestCost = cost;
        pBest = pIdx;
        bestFlags = flags;
        bestNEq = nEq;
        bestJ = j;
      }
      if( (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0
         || (j>0 && (pTabItem[-1].jointype & (JT_LEFT|JT_CROSS))!=0)
      ){
        break;
      }
    }
    TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
           pLevel-pWInfo->a));
    if( (bestFlags & WHERE_ORDERBY)!=0 ){
      *ppOrderBy = 0;
    }
    andFlags &= bestFlags;
    pLevel->flags = bestFlags;
    pLevel->pIdx = pBest;
    pLevel->nEq = bestNEq;
    pLevel->aInLoop = 0;
    pLevel->nIn = 0;
    if( pBest ){
      pLevel->iIdxCur = pParse->nTab++;
    }else{
      pLevel->iIdxCur = -1;
    }
    notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
    pLevel->iFrom = bestJ;
  }
  TRACE(("*** Optimizer Finished ***\n"));

  /* If the total query only selects a single row, then the ORDER BY
  ** clause is irrelevant.
  */
  if( (andFlags & WHERE_UNITQUE)!=0 && ppOrderBy ){
    *ppOrderBy = 0;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  pLevel = pWInfo->a;
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    Table *pTab;
    Index *pIx;
    int iIdxCur = pLevel->iIdxCur;

#ifndef SQLITE_OMIT_EXPLAIN
    if( pParse->explain==2 ){
      char *zMsg;
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
      zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
      if( pItem->zAlias ){
        zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
      }
      if( (pIx = pLevel->pIdx)!=0 ){
        zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
      }
      sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    if( pTab->isTransient || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
    }
    pLevel->iTabCur = pTabItem->iCursor;
    if( (pIx = pLevel->pIdx)!=0 ){
      sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      VdbeComment((v, "# %s", pIx->zName));
      sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
                     (char*)&pIx->keyInfo, P3_KEYINFO);
    }
    if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
      sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
    }
    sqlite3CodeVerifySchema(pParse, pTab->iDb);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    int j;
    int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
    Index *pIdx;       /* The index we will be using */
    int iIdxCur;       /* The VDBE cursor for the index */
    int omitTable;     /* True if we use the index only */
    int bRev;          /* True if we need to scan in reverse order */

    pTabItem = &pTabList->a[pLevel->iFrom];
    iCur = pTabItem->iCursor;
    pIdx = pLevel->pIdx;
    iIdxCur = pLevel->iIdxCur;
    bRev = (pLevel->flags & WHERE_REVERSE)!=0;
    omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;

    /* Create labels for the "break" and "continue" instructions
    ** for the current loop.  Jump to brk to break out of a loop.
    ** Jump to cont to go immediately to the next iteration of the
    ** loop.
    */
    brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
    cont = pLevel->cont = sqlite3VdbeMakeLabel(v);

    /* If this is the right table of a LEFT OUTER JOIN, allocate and
    ** initialize a memory cell that records if this table matches any
    ** row of the left table of the join.
    */
    if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){
      if( !pParse->nMem ) pParse->nMem++;
      pLevel->iLeftJoin = pParse->nMem++;
      sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
      VdbeComment((v, "# init LEFT JOIN no-match flag"));
    }

    if( pLevel->flags & WHERE_ROWID_EQ ){
      /* Case 1:  We can directly reference a single row using an
      **          equality comparison against the ROWID field.  Or
      **          we reference multiple rows using a "rowid IN (...)"
      **          construct.
      */
      pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
      assert( pTerm!=0 );
      assert( pTerm->pExpr!=0 );
      assert( pTerm->leftCursor==iCur );
      assert( omitTable==0 );
      codeEqualityTerm(pParse, pTerm, brk, pLevel);
      sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
      sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
      VdbeComment((v, "pk"));
      pLevel->op = OP_Noop;
    }else if( pLevel->flags & WHERE_ROWID_RANGE ){
      /* Case 2:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;
      WhereTerm *pStart, *pEnd;

      assert( omitTable==0 );
      pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
      pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
      if( bRev ){
        pTerm = pStart;
        pStart = pEnd;
        pEnd = pTerm;
      }
      if( pStart ){
        Expr *pX;
        pX = pStart->pExpr;
        assert( pX!=0 );
        assert( pStart->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
        sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
        VdbeComment((v, "pk"));
        disableTerm(pLevel, pStart);
      }else{
        sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
      }
      if( pEnd ){
        Expr *pX;
        pX = pEnd->pExpr;
        assert( pX!=0 );
        assert( pEnd->leftCursor==iCur );
        sqlite3ExprCode(pParse, pX->pRight);
        pLevel->iMem = pParse->nMem++;
        sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( pX->op==TK_LT || pX->op==TK_GT ){
          testOp = bRev ? OP_Le : OP_Ge;
        }else{
          testOp = bRev ? OP_Lt : OP_Gt;
        }
        disableTerm(pLevel, pEnd);
      }
      start = sqlite3VdbeCurrentAddr(v);
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, 'n', brk);
      }
    }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
      /* Case 3: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must
      **         use the "==" and "IN" operators.
      **
      **         This case is also used when there are no WHERE clause
      **         constraints but an index is selected anyway, in order
      **         to force the output order to conform to an ORDER BY.
      */
      int start;
      int nEq = pLevel->nEq;
      int leFlag=0, geFlag=0;
      int testOp;
      int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
      int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;

      /* Generate code to evaluate all constraint terms using == or IN
      ** and level the values of those terms on the stack.
      */
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEq; j++){
        sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
      }

      /* Generate the termination key.  This is the key value that
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( topLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, WO_LT|WO_LE, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        leFlag = pX->op==TK_LE;
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        leFlag = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEq + topLimit;
        pLevel->iMem = pParse->nMem++;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          int op = leFlag ? OP_MoveLe : OP_MoveLt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }else{
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( bRev ){
        sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( btmLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, WO_GT|WO_GE, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        geFlag = pX->op==TK_GE;
        disableTerm(pLevel, pTerm);
      }else{
        geFlag = 1;
      }
      if( nEq>0 || btmLimit ){
        int nCol = nEq + btmLimit;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          pLevel->iMem = pParse->nMem++;
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          int op = geFlag ? OP_MoveGe : OP_MoveGt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }
      }else if( bRev ){
        testOp = OP_Noop;
      }else{
        sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqlite3VdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
        if( (leFlag && !bRev) || (!geFlag && bRev) ){
          sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
        }
      }
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont);
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      }

      /* Record the instruction used to terminate the loop.
      */
      pLevel->op = bRev ? OP_Prev : OP_Next;
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else if( pLevel->flags & WHERE_COLUMN_EQ ){
      /* Case 4:  There is an index and all terms of the WHERE clause that
      **          refer to the index using the "==" or "IN" operators.
      */
      int start;
      int nEq = pLevel->nEq;

      /* Generate code to evaluate all constraint terms using == or IN
      ** and leave the values of those terms on the stack.
      */
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);

      /* Generate a single key that will be used to both start and terminate
      ** the search
      */
      buildIndexProbe(v, nEq, brk, pIdx);
      sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);

      /* Generate code (1) to move to the first matching element of the table.
      ** Then generate code (2) that jumps to "brk" after the cursor is past
      ** the last matching element of the table.  The code (1) is executed
      ** once to initialize the search, the code (2) is executed before each
      ** iteration of the scan to see if the scan has finished. */
      if( bRev ){
        /* Scan in reverse order */
        sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
        pLevel->op = OP_Prev;
      }else{
        /* Scan in the forward order */
        sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
        start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
        pLevel->op = OP_Next;
      }
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont);
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
        sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      }
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else{
      /* Case 5:  There is no usable index.  We must do a complete
      **          scan of the entire table.
      */
      assert( omitTable==0 );
      assert( bRev==0 );
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
    }
    notReady &= ~getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
      Expr *pE;
      if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & notReady)!=0 ) continue;
      pE = pTerm->pExpr;
      assert( pE!=0 );
      if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
        continue;
      }
      sqlite3ExprIfFalse(pParse, pE, cont, 1);
      pTerm->flags |= TERM_CODED;
    }

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
      VdbeComment((v, "# record LEFT JOIN hit"));
      for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
        if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
        if( (pTerm->prereqAll & notReady)!=0 ) continue;
        assert( pTerm->pExpr );
        sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
        pTerm->flags |= TERM_CODED;
      }
    }
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
  ** the index is listed as "{}".  If the primary key is used the
  ** index name is '*'.
  */
  for(i=0; i<pTabList->nSrc; i++){
    char *z;
    int n;
    pLevel = &pWInfo->a[i];
    pTabItem = &pTabList->a[pLevel->iFrom];
    z = pTabItem->zAlias;
    if( z==0 ) z = pTabItem->pTab->zName;
    n = strlen(z);
    if( n+nTQPlan < sizeof(sqlite3_query_plan)-10 ){
      if( pLevel->flags & WHERE_IDX_ONLY ){
        strcpy(&sqlite3_query_plan[nTQPlan], "{}");
        nTQPlan += 2;
      }else{
        strcpy(&sqlite3_query_plan[nTQPlan], z);
        nTQPlan += n;
      }
      sqlite3_query_plan[nTQPlan++] = ' ';
    }
    if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
      strcpy(&sqlite3_query_plan[nTQPlan], "* ");
      nTQPlan += 2;
    }else if( pLevel->pIdx==0 ){
      strcpy(&sqlite3_query_plan[nTQPlan], "{} ");
      nTQPlan += 3;
    }else{
      n = strlen(pLevel->pIdx->zName);
      if( n+nTQPlan < sizeof(sqlite3_query_plan)-2 ){
        strcpy(&sqlite3_query_plan[nTQPlan], pLevel->pIdx->zName);
        nTQPlan += n;
        sqlite3_query_plan[nTQPlan++] = ' ';
      }
    }
  }
  while( nTQPlan>0 && sqlite3_query_plan[nTQPlan-1]==' ' ){
    sqlite3_query_plan[--nTQPlan] = 0;
  }
  sqlite3_query_plan[nTQPlan] = 0;
  nTQPlan = 0;
#endif /* SQLITE_TEST // Testing and debugging use only */

  /* Record the continuation address in the WhereInfo structure.  Then
  ** clean up and return.
  */
  pWInfo->iContinue = cont;
  whereClauseClear(&wc);
  return pWInfo;

  /* Jump here if malloc fails */
whereBeginNoMem:
  whereClauseClear(&wc);
  sqliteFree(pWInfo);
  return 0;
}

/*
** Generate the end of the WHERE loop.  See comments on 
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
  Vdbe *v = pWInfo->pParse->pVdbe;
  int i;
  WhereLevel *pLevel;
  SrcList *pTabList = pWInfo->pTabList;

  /* Generate loop termination code.
  */
  for(i=pTabList->nSrc-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqlite3VdbeResolveLabel(v, pLevel->cont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
    }
    sqlite3VdbeResolveLabel(v, pLevel->brk);
    if( pLevel->nIn ){
      int *a;
      int j;
      for(j=pLevel->nIn, a=&pLevel->aInLoop[j*3-3]; j>0; j--, a-=3){
        sqlite3VdbeAddOp(v, a[0], a[1], a[2]);
      }
      sqliteFree(pLevel->aInLoop);
    }
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
      sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
      if( pLevel->iIdxCur>=0 ){
        sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
      }
      sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
      sqlite3VdbeJumpHere(v, addr);
    }
  }

  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( pTab->isTransient || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
    }
    if( pLevel->pIdx!=0 ){
      sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
    }

    /* Make cursor substitutions for cases where we want to use
    ** just the index and never reference the table.
    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLevel->flags & WHERE_IDX_ONLY ){
      int i, j, last;
      VdbeOp *pOp;
      Index *pIdx = pLevel->pIdx;

      assert( pIdx!=0 );
      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);
      for(i=pWInfo->iTop; i<last; i++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          pOp->p1 = pLevel->iIdxCur;
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              break;
            }
          }
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }else if( pOp->opcode==OP_NullRow ){
          pOp->opcode = OP_Noop;
        }
      }
    }
  }

  /* Final cleanup
  */
  sqliteFree(pWInfo);
  return;
}