/*************************************************************************** * * Copyright (C) 2005 Elad Lahav (elad_lahav@users.sourceforge.net) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ***************************************************************************/ #include <math.h> #include <stdlib.h> #include <tqpainter.h> #include "graphedge.h" #include "graphnode.h" int GraphEdge::RTTI = 1002; // Some definitions required by the ConvexHull class typedef int (*CompFunc)(const void*, const void*); #define ISLEFT(P0, P1, P2) \ (P1.x() - P0.x()) * (P2.y() - P0.y()) - \ (P2.x() - P0.x()) * (P1.y() - P0.y()) #define FARTHEST(P0, P1, P2) \ ((P1.x() - P0.x()) * (P1.x() - P0.x()) - \ (P1.y() - P0.y()) * (P1.y() - P0.y())) - \ ((P2.x() - P0.x()) * (P2.x() - P0.x()) - \ (P2.y() - P0.y()) * (P2.y() - P0.y())) /** * An array of TQPoint objects that can compute the convex hull surrounding all * points in the array. * @author Elad Lahav */ class ConvexHull : public TQPointArray { public: /** * Class constructor. */ ConvexHull() : TQPointArray() {} /** * Computes the convex hull of the points stored in the array, using * Graham's scan. * @param arrHull Holds the coordinates of the convex hull, upon return */ void compute(TQPointArray& arrHull) { uint i, nPivot, nTop; // Find the pivot point nPivot = 0; for (i = 1; i < size(); i++) { if ((*this)[i].y() < (*this)[nPivot].y()) { nPivot = i; } else if ((*this)[i].y() == (*this)[nPivot].y() && (*this)[i].x() < (*this)[nPivot].x()) { nPivot = i; } } // Sort points in radial order, relative to the pivot s_ptPivot = (*this)[nPivot]; (*this)[nPivot] = (*this)[0]; (*this)[0] = s_ptPivot; qsort(&(*this).data()[1], (*this).size() - 1, sizeof(TQPoint), (CompFunc)compRadial); // Initialise Graham's scan algorithm arrHull.resize(size() + 1); arrHull[0] = (*this)[0]; arrHull[1] = (*this)[1]; nTop = 1; // Compute the convex hull for (i = 2; i < size();) { // TODO: According to the algorithm, the condition should be >0 // for pushing the point into the stack. For some reason, it works // only with <0. Why? if (ISLEFT(arrHull[nTop - 1], arrHull[nTop], (*this)[i]) < 0) { arrHull[++nTop] = (*this)[i]; i++; } else { nTop--; } } // Close the hull arrHull[++nTop] = (*this)[0]; arrHull.truncate(nTop + 1); } private: /** The current pivot point, required by compRadial. */ static TQPoint s_ptPivot; /** * Compares two points based on their angle relative to the current * pivot point. * This function is passed as the comparison function of qsort(). * @param pPt1 A pointer to the first point * @param pPt2 A pointer to the second point * @return >0 if the first point is to the left of the second, <0 otherwise */ static int compRadial(const TQPoint* pPt1, const TQPoint* pPt2) { int nResult; // Determine which point is to the left of the other. If the angle is // the same, the greater point is the one farther from the pivot nResult = ISLEFT(s_ptPivot, (*pPt1), (*pPt2)); if (nResult == 0) return FARTHEST(s_ptPivot, (*pPt1), (*pPt2)); return nResult; } }; TQPoint ConvexHull::s_ptPivot; /** * Class constructor. * @param pCanvas The canvas on which to draw the edge * @param pHead The edge's starting point * @param pTail The edge's end point */ GraphEdge::GraphEdge(TQCanvas* pCanvas, GraphNode* pHead, GraphNode* pTail) : TQCanvasPolygonalItem(pCanvas), m_pHead(pHead), m_pTail(pTail), m_arrPoly(4) { } /** * Class destructor. */ GraphEdge::~GraphEdge() { // Classes derived from TQCanvasPolygonalItem must call hide() in their // detructor (according to the TQt documentation) hide(); } /** * Calculates the area surrounding the edge, and the bounding rectangle of * the edge's polygonal head. * The calculated area is used to find items on the canvas and to display * tips. The bounding rectangle defines the tip's region (@see TQToolTip). * TODO: The function assumes that the we can simply append the polygon's * array to that of the splines. Is this always the case, or should we sort * the points of the polygon in radial order? * @param arrCurve The control points of the edge's spline * @param ai Used to calculate the arrow head polygon */ void GraphEdge::setPoints(const TQPointArray& arrCurve, const ArrowInfo& ai) { ConvexHull ch; uint i; int nXpos, nYpos; // Redraw an existing edge if (m_arrArea.size() > 0) invalidate(); // Store the point array for drawing m_arrCurve = arrCurve; // Calculate the arrowhead's polygon makeArrowhead(ai); // Compute the convex hull of the edge ch.resize(m_arrCurve.size() + m_arrPoly.size() - 2); ch.putPoints(0, m_arrCurve.size() - 1, m_arrCurve); ch.putPoints(m_arrCurve.size() - 1, m_arrPoly.size() - 1, m_arrPoly); ch.compute(m_arrArea); // Calculate the head's bounding rectangle m_rcTip = TQRect(m_arrPoly[0], m_arrPoly[0]); for (i = 1; i < m_arrPoly.size(); i++) { nXpos = m_arrPoly[i].x(); if (nXpos < m_rcTip.left()) m_rcTip.setLeft(nXpos); else if (nXpos > m_rcTip.right()) m_rcTip.setRight(nXpos); nYpos = m_arrPoly[i].y(); if (nYpos < m_rcTip.top()) m_rcTip.setTop(nYpos); else if (nYpos > m_rcTip.bottom()) m_rcTip.setBottom(nYpos); } } /** * Sets the call information associated with this edge. * @param sFile The call's file path * @param sLine The call's line number * @param sText The call's text */ void GraphEdge::setCallInfo(const TQString& sFile, const TQString& sLine, const TQString& sText) { m_sFile = sFile; m_sLine = sLine; m_sText = sText; } /** * Constructs a tool-tip string for this edge. * @return The tool-tip text */ TQString GraphEdge::getTip() const { TQString sTip; sTip = m_sText + "<br><i>" + m_sFile + "</i>:" + m_sLine; return sTip; } /** * Draws the spline as a sequence of cubic Bezier curves. * @param painter Used for drawing the item on the canvas view */ void GraphEdge::drawShape(TQPainter& painter) { uint i; // Draw the polygon painter.drawConvexPolygon(m_arrPoly); // Draw the Bezier curves for (i = 0; i < m_arrCurve.size() - 1; i += 3) painter.drawCubicBezier(m_arrCurve, i); #if 0 // Draws the convex hull of the edge TQPen pen = painter.pen(); TQBrush br = painter.brush(); painter.setPen(TQPen(TQColor(255, 0, 0))); painter.setBrush(TQBrush()); painter.drawPolygon(m_arrArea); painter.setPen(pen); painter.setBrush(br); #endif } /** * Computes the coordinates of the edge's arrow head, based on its curve. * @param ai Pre-computed values used for all edges */ void GraphEdge::makeArrowhead(const ArrowInfo& ai) { TQPoint ptLast, ptPrev; double dX1, dY1, dX0, dY0, dX, dY, dDeltaX, dDeltaY, dNormLen; // The arrowhead follows the line from the second last to the last points // in the curve ptLast = m_arrCurve[m_arrCurve.size() - 1]; ptPrev = m_arrCurve[m_arrCurve.size() - 2]; // The first and last points of the polygon are the end of the curve m_arrPoly.setPoint(0, ptLast.x(), ptLast.y()); m_arrPoly.setPoint(3, ptLast.x(), ptLast.y()); // Convert integer points to double precision values dX1 = (double)ptLast.x(); dY1 = (double)ptLast.y(); dX0 = (double)ptPrev.x(); dY0 = (double)ptPrev.y(); // The values (x1-x0), (y1-y0) and sqrt(1 + tan(theta)^2) are useful dDeltaX = dX1 - dX0; dDeltaY = dY1 - dY0; // The normalised length of the arrow's sides dNormLen = ai.m_dLength / sqrt(dDeltaX * dDeltaX + dDeltaY * dDeltaY); // Compute the other two points dX = dX1 - ((dDeltaX - ai.m_dTan * dDeltaY) / ai.m_dSqrt) * dNormLen; dY = dY1 - ((dDeltaY + ai.m_dTan * dDeltaX) / ai.m_dSqrt) * dNormLen; m_arrPoly.setPoint(1, (int)dX, (int)dY); dX = dX1 - ((dDeltaX + ai.m_dTan * dDeltaY) / ai.m_dSqrt) * dNormLen; dY = dY1 - ((dDeltaY - ai.m_dTan * dDeltaX) / ai.m_dSqrt) * dNormLen; m_arrPoly.setPoint(2, (int)dX, (int)dY); }