summaryrefslogtreecommitdiffstats
path: root/src/electronics/simulation/circuit.cpp
blob: c15275635939873d2d8966a42432932ca2f3dee4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/***************************************************************************
 *   Copyright (C) 2003-2005 by David Saxton                               *
 *   david@bluehaze.org                                                    *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 ***************************************************************************/

#include <vector>
#include "circuit.h"
#include "circuitdocument.h"
#include "element.h"
#include "elementset.h"
#include "logic.h"
#include "matrix.h"
#include "nonlinear.h"
#include "pin.h"
#include "reactive.h"
#include "wire.h"


#include <cmath>
#include <map>

typedef std::multimap<int, PinList> PinListMap;

//BEGIN class Circuit
Circuit::Circuit()
{
	m_bCanAddChanged = true;
	m_pNextChanged[0] = m_pNextChanged[1] = 0l;
	m_logicOutCount = 0;
	m_bCanCache = false;
	m_pLogicOut = 0l;
	m_elementSet = new ElementSet( this, 0, 0 );
	m_cnodeCount = m_branchCount = -1;
	m_prepNLCount = 0;
	m_pLogicCacheBase = new LogicCacheNode;
}

Circuit::~Circuit()
{
	delete m_elementSet;
	delete m_pLogicCacheBase;
	delete[] m_pLogicOut;
}


void Circuit::addPin( Pin *node )
{
	if ( m_pinList.contains(node) ) return;
	m_pinList.append(node);
}

void Circuit::addElement( Element *element )
{
	if ( m_elementList.contains(element) ) return;
	m_elementList.append(element);
}

bool Circuit::contains( Pin *node )
{
	return m_pinList.contains(node);
}


// static function
int Circuit::identifyGround( PinList nodeList, int *highest )
{
	// What this function does:
	// We are given a list of pins. First, we divide them into groups of pins
	// that are directly connected to each other (e.g. through wires or
	// switches). Then, each group of connected pins is looked at to find the
	// pin with the highest "ground priority", and this is taken to be
	// the priority of the group. The highest ground priority from all the
	// groups is recorded. If the highest ground priority found is the maximum,
	// then all the pins in groups with this priority are marked as ground
	// (their eq-id is set to -1). Otherwise, the first group of pins with the
	// highest ground priority found is marked as ground, and all others are
	// marked as non ground (their eq-id is set to 0).
	
	int temp_highest;
	if (!highest)
		highest = &temp_highest;
	
	// Now to give all the Pins ids
	PinListMap eqs;
	while ( !nodeList.isEmpty() )
	{
		PinList associated;
		PinList nodes;
		Pin *node = *nodeList.begin();
		recursivePinAdd( node, &nodeList, &associated, &nodes );
		if ( nodes.size() > 0 )
		{
			eqs.insert( std::make_pair( associated.size(), nodes ) );
		}
	}
	
	
	// Now, we want to look through the associated Pins, 
	// to find the ones with the highest "Ground Priority". Anything with a lower
	// priority than Pin::gt_never will not be considered
	*highest = Pin::gt_never; // The highest priority found so far
	int numGround = 0; // The number of node groups found with that priority
	const PinListMap::iterator eqsEnd = eqs.end();
	for ( PinListMap::iterator it = eqs.begin(); it != eqsEnd; ++it )
	{
		int highPri = Pin::gt_never; // The highest priority found in these group of nodes
		const PinList::iterator send = it->second.end();
		for ( PinList::iterator sit = it->second.begin(); sit != send; ++sit )
		{
			if ( (*sit)->groundType() < highPri )
				highPri = (*sit)->groundType();
		}
		
		if ( highPri == *highest )
			numGround++;
		
		else if ( highPri < *highest ) 
		{
			numGround = 1;
			*highest = highPri;
		}
	}
	
	if ( *highest == Pin::gt_never )
	{
		(*highest)--;
		numGround=0;
	}
	// If there are no Always Ground nodes, then we only want to set one of the nodes as ground
	else if ( *highest > Pin::gt_always )
		numGround = 1;
	
	
	// Now, we can give the nodes their cnode ids, or tell them they are ground
	bool foundGround = false; // This is only used when we don't have a Always ground node
	for ( PinListMap::iterator it = eqs.begin(); it != eqsEnd; ++it )
	{
		bool ground = false;
		const PinList::iterator send = it->second.end();
		for ( PinList::iterator sit = it->second.begin(); sit != send; ++sit )
		{
			ground |= (*sit)->groundType() <= (*highest);
		}
		if ( ground && (!foundGround || *highest == Pin::gt_always ) )
		{
			for ( PinList::iterator sit = it->second.begin(); sit != send; ++sit )
			{
				(*sit)->setEqId(-1);
			}
			foundGround = true;
		}
		else
		{
			for ( PinList::iterator sit = it->second.begin(); sit != send; ++sit )
			{
				(*sit)->setEqId(0);
			}
		}
	}
	
	return numGround;
}


void Circuit::init()
{
	m_branchCount = 0;
	
	const ElementList::iterator listEnd = m_elementList.end();
	for ( ElementList::iterator it = m_elementList.begin(); it != listEnd; ++it )
	{
		m_branchCount += (*it)->numCBranches();
	}
	
	// Now to give all the Pins ids
	int groundCount = 0;
	PinListMap eqs;
	PinList unassignedNodes = m_pinList;
	while ( !unassignedNodes.isEmpty() )
	{
		PinList associated;
		PinList nodes;
		Pin *node = *unassignedNodes.begin();
		if ( recursivePinAdd( node, &unassignedNodes, &associated, &nodes ) ) {
			groundCount++;
		}
		if ( nodes.size() > 0 ) {
			eqs.insert( std::make_pair( associated.size(), nodes ) );
		}
	}
	
	m_cnodeCount = eqs.size() - groundCount;
	
	delete m_pLogicCacheBase;
	m_pLogicCacheBase = 0l;
	
	delete m_elementSet;
	m_elementSet = new ElementSet( this, m_cnodeCount, m_branchCount );
	
	// Now, we can give the nodes their cnode ids, or tell them they are ground
	Vector *x = m_elementSet->x();
	int i=0;
	const PinListMap::iterator eqsEnd = eqs.end();
	for ( PinListMap::iterator it = eqs.begin(); it != eqsEnd; ++it )
	{
		bool foundGround = false;
		
		const PinList::iterator sEnd = it->second.end();
		for ( PinList::iterator sit = it->second.begin(); sit != sEnd; ++sit )
			foundGround |= (*sit)->eqId() == -1;
			
		if ( foundGround )
			continue;
		
		bool foundEnergyStoragePin = false;
		
		for ( PinList::iterator sit = it->second.begin(); sit != sEnd; ++sit )
		{
			(*sit)->setEqId(i);
			
			bool energyStorage = false;
			const ElementList elements = (*sit)->elements();
			ElementList::const_iterator elementsEnd = elements.end();
			for ( ElementList::const_iterator it = elements.begin(); it != elementsEnd; ++it )
			{
				if ( !*it )
					continue;
				
				if ( ((*it)->type() == Element::Element_Capacitance)
									|| ((*it)->type() == Element::Element_Inductance) )
				{
					energyStorage = true;
					break;
				}
			}
			
			// A pin attached to an energy storage pin overrides one that doesn't.
			// If the two pins have equal status with in this regard, we pick the
			// one with the highest absolute voltage on it.
			
			if ( foundEnergyStoragePin && !energyStorage )
				continue;
			
			double v = (*sit)->voltage();
			
			if ( energyStorage && !foundEnergyStoragePin )
			{
				foundEnergyStoragePin = true;
				(*x)[i] = v;
				continue;
			}
			
			if ( std::abs(v) > std::abs( (*x)[i] ) )
				(*x)[i] = v;
		}
		i++;
	}
	
	
	// And add the elements to the elementSet
	for ( ElementList::iterator it = m_elementList.begin(); it != listEnd; ++it )
	{
		// We don't want the element to prematurely try to do anything,
		// as it doesn't know its actual cnode ids yet
		(*it)->setCNodes();
		(*it)->setCBranches();
		m_elementSet->addElement(*it);
	}	
	// And give the branch ids to the elements
	i=0;
	for ( ElementList::iterator it = m_elementList.begin(); it != listEnd; ++it )
	{
		switch ( (*it)->numCBranches() )
		{
			case 0:
				break;
			case 1:
				(*it)->setCBranches( i );
				i += 1;
				break;
			case 2:
				(*it)->setCBranches( i, i+1 );
				i += 2;
				break;
			case 3:
				(*it)->setCBranches( i, i+1, i+2 );
				i += 3;
				break;
			default:
				// What the?!
				break;
		}
	}
}


void Circuit::initCache()
{
	m_elementSet->updateInfo();
	
	m_bCanCache = true;
	m_logicOutCount = 0;
	
	delete[] m_pLogicOut;
	m_pLogicOut = 0l;
	
	delete m_pLogicCacheBase;
	m_pLogicCacheBase = 0l;
	
	const ElementList::iterator end = m_elementList.end();
	for ( ElementList::iterator it = m_elementList.begin(); it != end && m_bCanCache; ++it )
	{
		switch ( (*it)->type() )
		{
			case Element::Element_BJT:
			case Element::Element_CCCS:
			case Element::Element_CCVS:
			case Element::Element_CurrentSource:
			case Element::Element_Diode:
			case Element::Element_LogicIn:
			case Element::Element_OpAmp:
			case Element::Element_Resistance:
			case Element::Element_VCCS:
			case Element::Element_VCVS:
			case Element::Element_VoltagePoint:
			case Element::Element_VoltageSource:
			{
				break;
			}
				
			case Element::Element_LogicOut:
			{
				m_logicOutCount++;
				break;
			}
				
			case Element::Element_CurrentSignal:
			case Element::Element_VoltageSignal:
			case Element::Element_Capacitance:
			case Element::Element_Inductance:
			{
				m_bCanCache = false;
				break;
			}
		}
	}
	
	if ( !m_bCanCache )
		return;
	
	m_pLogicOut = new LogicOut*[m_logicOutCount];
	unsigned i = 0;
	for ( ElementList::iterator it = m_elementList.begin(); it != end && m_bCanCache; ++it )
	{
		if ( (*it)->type() == Element::Element_LogicOut )
			m_pLogicOut[i++] = static_cast<LogicOut*>(*it);
	}
	
	m_pLogicCacheBase = new LogicCacheNode;
}


void Circuit::setCacheInvalidated()
{
	if (m_pLogicCacheBase)
	{
		delete m_pLogicCacheBase->high;
		m_pLogicCacheBase->high = 0l;
	
		delete m_pLogicCacheBase->low;
		m_pLogicCacheBase->low = 0l;
	
		delete m_pLogicCacheBase->data;
		m_pLogicCacheBase->data = 0l;
	}
}


void Circuit::cacheAndUpdate()
{
	LogicCacheNode * node = m_pLogicCacheBase;
	for ( unsigned i = 0; i < m_logicOutCount; i++ )
	{
		if ( m_pLogicOut[i]->outputState() )
		{
			if (!node->high)
				node->high = new LogicCacheNode;
			
			node = node->high;
		}
		else
		{
			if (!node->low)
				node->low = new LogicCacheNode;
			
			node = node->low;
		}
	}
	
	if ( node->data )
	{
		(*m_elementSet->x()) = *node->data;
		m_elementSet->updateInfo();
		return;
	}
	
	if ( m_elementSet->containsNonLinear() )
		m_elementSet->doNonLinear( 150, 1e-10, 1e-13 );
	else
		m_elementSet->doLinear(true);
	
	node->data = new Vector( m_elementSet->x()->size() );
	*node->data = *m_elementSet->x();
}


void Circuit::createMatrixMap()
{
	m_elementSet->createMatrixMap();
}


bool Circuit::recursivePinAdd( Pin *node, PinList *unassignedNodes, PinList *associated, PinList *nodes )
{
	if ( !unassignedNodes->contains(node) )
		return false;
	unassignedNodes->remove(node);
	
	bool foundGround = node->eqId() == -1;
	
	const PinList circuitDependentPins = node->circuitDependentPins();
	const PinList::const_iterator dEnd = circuitDependentPins.end();
	for ( PinList::const_iterator it = circuitDependentPins.begin(); it != dEnd; ++it )
	{
		if ( !associated->contains(*it) )
			associated->append(*it);
	}
	
	nodes->append(node);
	
	const PinList localConnectedPins = node->localConnectedPins();
	const PinList::const_iterator end = localConnectedPins.end();
	for ( PinList::const_iterator it = localConnectedPins.begin(); it != end; ++it )
		foundGround |= recursivePinAdd( *it, unassignedNodes, associated, nodes );
	
	return foundGround;
}


void Circuit::doNonLogic()
{
	if ( !m_elementSet || m_cnodeCount+m_branchCount <= 0 )
		return;
	
	if (m_bCanCache)
	{
		if ( !m_elementSet->b()->isChanged() && !m_elementSet->matrix()->isChanged() )
			return;
		cacheAndUpdate();
		updateNodalVoltages();
		m_elementSet->b()->setUnchanged();
		return;
	}
	
	stepReactive();
	if ( m_elementSet->containsNonLinear() )
	{
		m_elementSet->doNonLinear( 10, 1e-9, 1e-12 );
		updateNodalVoltages();
	}
	else
	{
		if ( m_elementSet->doLinear(true) )
			updateNodalVoltages();
	}
}


void Circuit::stepReactive()
{
	ElementList::iterator listEnd = m_elementList.end();
	for ( ElementList::iterator it = m_elementList.begin(); it != listEnd; ++it )
	{
		Element * const e = *it;
		if ( e && e->isReactive() )
			(static_cast<Reactive*>(e))->time_step();
	}
}


void Circuit::updateNodalVoltages()
{
	CNode **_cnodes = m_elementSet->cnodes();
	
	const PinList::iterator endIt = m_pinList.end();
	for ( PinList::iterator it = m_pinList.begin(); it != endIt; ++it )
	{
		Pin * const node = *it;
		int i = node->eqId();
		if ( i == -1 )
			node->setVoltage(0.);
		else
		{
			const double v = _cnodes[i]->v;
			node->setVoltage( std::isfinite(v)?v:0. );
		}
	}
}


void Circuit::updateCurrents()
{
	ElementList::iterator listEnd = m_elementList.end();
	for ( ElementList::iterator it = m_elementList.begin(); it != listEnd; ++it )
	{
		(*it)->updateCurrents();
	}
}

void Circuit::displayEquations()
{
	m_elementSet->displayEquations();
}
//END class Circuit



//BEGIN class LogicCacheNode
LogicCacheNode::LogicCacheNode()
{
	low = 0l;
	high = 0l;
	data = 0l;
}


LogicCacheNode::~LogicCacheNode()
{
	delete low;
	delete high;
	delete data;
}
//END class LogicCacheNode