summaryrefslogtreecommitdiffstats
path: root/src/electronics/simulation/nonlinear.cpp
blob: c975f163de263ef858678585a30b3ffc5da13cdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/***************************************************************************
 *   Copyright (C) 2003-2005 by David Saxton                               *
 *   david@bluehaze.org                                                    *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 ***************************************************************************/

#include "matrix.h"
#include "nonlinear.h"

#include <cmath>
using namespace std;

const double KTL_MAX_DOUBLE = 1.7976931348623157e+308; ///< 7fefffff ffffffff
const int KTL_MAX_EXPONENT = int( log( KTL_MAX_DOUBLE ) );


NonLinear::NonLinear()
	: Element()
{
}


#ifndef MIN
# define MIN(x,y) (((x) < (y)) ? (x) : (y))
#endif


// The function computes the exponential pn-junction current.
double NonLinear::diodeCurrent( double v, double I_S, double Vte ) const
{
	return I_S * (exp( MIN( v / Vte, KTL_MAX_EXPONENT ) ) - 1);
}



double NonLinear::diodeConductance( double v, double I_S, double Vte ) const
{
	return I_S * exp( MIN( v / Vte, KTL_MAX_EXPONENT ) ) / Vte;
}



double NonLinear::diodeVoltage( double V, double V_prev, double V_T, double Vcrit ) const
{
	if ( V > Vcrit && fabs( V - V_prev ) > 2 * V_T )
	{
		if ( V_prev > 0 )
		{
			double arg = (V - V_prev) / V_T;
			if (arg > 0)
				V = V_prev + V_T * (2 + log( arg - 2 ));
			else
				V = V_prev - V_T * (2 + log( 2 - arg ));
		}
		else
			V = (V_prev < 0) ? (V_T * log (V / V_T)) : Vcrit;
	}
	else
	{
		if ( V < 0 )
		{
			double arg = (V_prev > 0) ? (-1 - V_prev) : (2 * V_prev - 1);
			if (V < arg)
				V = arg;
		}
	}
	return V;
}


double NonLinear::diodeCriticalVoltage( double I_S, double V_Te ) const
{
	return V_Te * log( V_Te / M_SQRT2 / I_S );
}


void NonLinear::diodeJunction( double V, double I_S, double V_Te, double * I, double * g ) const
{
	if (V < -3 * V_Te)
	{
		double a = 3 * V_Te / (V * M_E);
		a = a * a * a;
		*I = -I_S * (1 + a);
		*g = +I_S * 3 * a / V;
	}
	else
	{ 
		double e = exp( MIN( V / V_Te, KTL_MAX_EXPONENT ) );
		*I = I_S * (e - 1);
		*g = I_S * e / V_Te;
	}
}