1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
/***************************************************************************
* Copyright (C) 2005-2006 Nicolas Hadacek <hadacek@kde.org> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
***************************************************************************/
#include "pic_prog.h"
#include "common/global/global.h"
#include "devices/list/device_list.h"
#include "progs/base/prog_config.h"
#include "progs/base/prog_group.h"
#include "pic_debug.h"
//-----------------------------------------------------------------------------
bool Programmer::PicGroup::canReadVoltages() const
{
for (uint i=0; i<Pic::Nb_VoltageTypes; i++)
if ( canReadVoltage(Pic::VoltageType(i)) ) return true;
return false;
}
Debugger::DeviceSpecific *Programmer::PicGroup::createDebuggerDeviceSpecific(::Debugger::Base &base) const
{
const Pic::Data *data = static_cast<const Pic::Data *>(base.device());
if ( data==0 ) return 0;
switch (data->architecture().type()) {
case Pic::Architecture::P10X:
case Pic::Architecture::P16X: return new ::Debugger::P16FSpecific(base);
case Pic::Architecture::P18C:
case Pic::Architecture::P18F:
case Pic::Architecture::P18J: return new ::Debugger::P18FSpecific(base);
case Pic::Architecture::P24F:
case Pic::Architecture::P24H:
case Pic::Architecture::P30F:
case Pic::Architecture::P33F:
case Pic::Architecture::P17C:
case Pic::Architecture::Nb_Types: break;
}
Q_ASSERT(false);
return 0;
}
//-----------------------------------------------------------------------------
Programmer::PicBase::PicBase(const Group &group, const Pic::Data *data, const char *name)
: Base(group, data, name), _deviceMemory(0), _hasProtectedCode(false), _hasProtectedEeprom(false)
{
if (data) _deviceMemory = new Pic::Memory(*data);
}
Programmer::PicBase::~PicBase()
{
delete _deviceMemory;
}
void Programmer::PicBase::clear()
{
::Programmer::Base::clear();
for (uint i=0; i<Pic::Nb_VoltageTypes; i++) {
_voltages[i].error = false;
_voltages[i].value = UNKNOWN_VOLTAGE;
}
}
uint Programmer::PicBase::nbSteps(Task task, const Device::MemoryRange *range) const
{
const Pic::MemoryRange *prange = static_cast<const Pic::MemoryRange *>(range);
switch (task.type()) {
case Task::Erase: return 1;
case Task::Read:
case Task::Verify:
case Task::BlankCheck: {
uint nb = 0;
FOR_EACH(Pic::MemoryRangeType, type) {
if ( type!=Pic::MemoryRangeType::Code && type!=Pic::MemoryRangeType::Eeprom ) continue;
if ( !device()->isReadable(type) || !specific()->canReadRange(type) ) continue;
if ( !prange->all() && prange->_type!=type ) continue;
nb += device()->nbWords(type);
}
return TQMAX(nb, uint(1));
}
case Task::Write: {
uint nb = 0;
FOR_EACH(Pic::MemoryRangeType, type) {
if ( type!=Pic::MemoryRangeType::Code && type!=Pic::MemoryRangeType::Eeprom ) continue;
if ( !device()->isWritable(type) || !specific()->canWriteRange(type) ) continue;
if ( !prange->all() && prange->_type!=type ) continue;
nb += device()->nbWords(type);
if ( readConfigEntry(Config::VerifyAfterProgram).toBool() ) nb += device()->nbWords(type);
}
return TQMAX(nb, uint(1));
}
case Task::Nb_Types: break;
}
Q_ASSERT(false);
return 0;
}
bool Programmer::PicBase::readVoltages()
{
if ( !hardware()->readVoltages(_voltages) ) return false;
bool ok = true;
for (uint i=0; i<Pic::Nb_VoltageTypes; i++) {
if ( !group().canReadVoltage(Pic::VoltageType(i)) ) continue;
if ( _voltages[i].error==true ) {
ok = false;
log(Log::LineType::Error, i18n(" %1 = %2 V: error in voltage level.").arg(i18n(Pic::VOLTAGE_TYPE_LABELS[i])).arg(_voltages[i].value));
} else if ( _voltages[i].value!=UNKNOWN_VOLTAGE )
log(Log::DebugLevel::Normal, TQString(" %1 = %2 V").arg(i18n(Pic::VOLTAGE_TYPE_LABELS[i])).arg(_voltages[i].value));
}
return ok;
}
bool Programmer::PicBase::internalSetupHardware()
{
if ( !Base::internalSetupHardware() ) return false;
if ( group().properties() & ::Programmer::CanReleaseReset ) {
log(Log::DebugLevel::Normal, " Hold reset");
if ( !hardware()->setTargetReset(Pic::ResetHeld) ) return false;
}
Pic::TargetMode mode;
if ( !getTargetMode(mode) ) return false;
if ( mode!=Pic::TargetInProgramming ) {
log(Log::LineType::Error, i18n("Device not in programming"));
return false;
}
return true;
}
bool Programmer::PicBase::initProgramming(Task)
{
/*
if ( vpp()!=UNKNOWN_VOLTAGE ) {
const Pic::VoltageData &tvpp = device()->voltage(Pic::Vpp);
if ( vpp()<tvpp.min )
log(Log::LineType::Warning, i18n("Vpp (%1 V) is lower than the minimum required voltage (%2 V).")
.arg(vpp()).arg(tvpp.min));
if ( vpp()>tvpp.max ) {
TQString s = i18n("Vpp (%1 V) is higher than the maximum voltage (%2 V). You may damage the device.")
.arg(vpp()).arg(tvpp.max);
log(Log::LineType::Warning, s);
if ( !askContinue(s) ) {
logUserAbort();
return false;
}
}
}
if ( vdd()!=UNKNOWN_VOLTAGE ) {
Q_ASSERT( type!=Pic::Vpp );
const Pic::VoltageData &tvdd = device()->voltage(type);
if ( vdd()<tvdd.min ) {
if ( type==Pic::VddBulkErase && device()->voltage(Pic::VddWrite).min!=tvdd.min )
log(Log::LineType::Warning, i18n("Vdd (%1 V) is too low for high-voltage programming\n(piklab only supports high-voltage programming at the moment).\nMinimum required is %2 V.")
.arg(vdd()).arg(tvdd.min));
else if ( type==Pic::VddRead && device()->voltage(Pic::VddWrite).min!=tvdd.min )
log(Log::LineType::Warning, i18n("Vdd (%1 V) is too low for reading\nMinimum required is %2 V.")
.arg(vdd()).arg(tvdd.min));
else log(Log::LineType::Warning, i18n("Vdd (%1 V) is too low for programming\nMinimum required is %2 V.")
.arg(vdd()).arg(tvdd.min));
} else if ( vdd()>tvdd.max ) {
TQString s = i18n("Vdd (%1 V) is higher than the maximum voltage (%2 V). You may damage the device.")
.arg(vdd()).arg(tvdd.max);
log(Log::LineType::Warning, s);
if ( !askContinue(s) ) {
logUserAbort();
return false;
}
}
}
*/
if ( specific()->canReadRange(Pic::MemoryRangeType::Config) ) {
// read config
Device::Array data;
if ( !specific()->read(Pic::MemoryRangeType::Config, data, 0) ) return false;
_deviceMemory->setArray(Pic::MemoryRangeType::Config, data);
_hasProtectedCode = _deviceMemory->isProtected(Pic::Protection::ProgramProtected, Pic::MemoryRangeType::Code);
_hasProtectedEeprom = _deviceMemory->isProtected(Pic::Protection::ProgramProtected, Pic::MemoryRangeType::Eeprom);
log(Log::DebugLevel::Normal, TQString(" protected: code=%1 data=%2")
.arg(_hasProtectedCode ? "true" : "false").arg(_hasProtectedEeprom ? "true" : "false"));
// read calibration
if ( !readCalibration() ) return false;
}
return initProgramming();
}
bool Programmer::PicBase::preserveCode()
{
if ( _hasProtectedCode && !askContinue(i18n("All or part of code memory is protected so it cannot be preserved. Continue anyway?")) )
return false;
return readRange(Pic::MemoryRangeType::Code, _deviceMemory, 0);
}
bool Programmer::PicBase::preserveEeprom()
{
if ( _hasProtectedEeprom && !askContinue(i18n("All or part of data EEPROM is protected so it cannot be preserved. Continue anyway?")) )
return false;
return readRange(Pic::MemoryRangeType::Eeprom, _deviceMemory, 0);
}
bool Programmer::PicBase::internalRun()
{
_state = ::Programmer::Running;
return hardware()->setTargetReset(Pic::ResetReleased);
}
bool Programmer::PicBase::internalStop()
{
_state = ::Programmer::Stopped;
return hardware()->setTargetReset(Pic::ResetHeld);
}
bool Programmer::PicBase::getTargetMode(Pic::TargetMode &mode)
{
return hardware()->getTargetMode(mode);
}
bool Programmer::PicBase::initProgramming()
{
_state = ::Programmer::Stopped;
return hardware()->setTargetReset(Pic::ResetHeld);
}
//-----------------------------------------------------------------------------
BitValue Programmer::PicBase::readDeviceId()
{
Device::Array data;
if ( !specific()->read(Pic::MemoryRangeType::DeviceId, data, 0) ) return 0;
Q_ASSERT( data.count()!=0 );
BitValue id = 0x0;
switch (device()->architecture().type()) {
case Pic::Architecture::P10X:
case Pic::Architecture::P16X:
case Pic::Architecture::P17C: id = data[0]; break;
case Pic::Architecture::P18C:
case Pic::Architecture::P18F:
case Pic::Architecture::P18J: id = data[0] | (data[1] << 8); break;
case Pic::Architecture::P24F:
case Pic::Architecture::P24H:
case Pic::Architecture::P30F:
case Pic::Architecture::P33F: id = data[1] | (data[0] << 16); break;
case Pic::Architecture::Nb_Types: Q_ASSERT(false); break;
}
return id;
}
bool Programmer::PicBase::verifyDeviceId()
{
if ( !specific()->canReadRange(Pic::MemoryRangeType::DeviceId ) ) return true;
if ( !device()->isReadable(Pic::MemoryRangeType::DeviceId) ) {
log(Log::LineType::Information, i18n("Device not autodetectable: continuing with the specified device name \"%1\"...").arg(device()->name()));
return true;
}
BitValue rawId = readDeviceId();
if ( hasError() ) return false;
uint nbChars = device()->nbWords(Pic::MemoryRangeType::DeviceId) * device()->nbCharsWord(Pic::MemoryRangeType::DeviceId);
if ( rawId==0x0 || rawId==device()->mask(Pic::MemoryRangeType::DeviceId) ) {
log(Log::LineType::Error, i18n("Missing or incorrect device (Read id is %1).").arg(toHexLabel(rawId, nbChars)));
return false;
}
TQMap<TQString, Device::IdData> ids;
TQValueVector<TQString> names = group().supportedDevices();
for (uint k=0; k<uint(names.count()); k++) {
const Pic::Data *data = static_cast<const Pic::Data *>(group().deviceData(names[k]).data);
if ( data->architecture()!=device()->architecture() ) continue;
Device::IdData idata;
if ( data->matchId(rawId, idata) ) ids[names[k]] = idata;
}
TQString message;
if ( ids.count()!=0 ) {
log(Log::LineType::Information, i18n("Read id: %1").arg(device()->idNames(ids).join("; ")));
if ( ids.contains(device()->name()) ) return true;
message = i18n("Read id does not match the specified device name \"%1\".").arg(device()->name());
} else {
log(Log::LineType::Warning, i18n(" Unknown or incorrect device (Read id is %1).").arg(toHexLabel(rawId, nbChars)));
message = i18n("Unknown device.");
}
if ( !askContinue(message) ) {
logUserAbort();
return false;
}
log(Log::LineType::Information, i18n("Continue with the specified device name: \"%1\"...").arg(device()->name()));
return true;
}
//-----------------------------------------------------------------------------
TQString Programmer::PicBase::prettyCalibration(const Device::Array &data) const
{
TQString s;
for (uint i=0; i<data.count(); i++) {
if ( i!=0 ) s += ", ";
s += toHexLabel(data[i], device()->nbCharsWord(Pic::MemoryRangeType::Cal));
}
return s;
}
bool Programmer::PicBase::readCalibration()
{
if ( device()->isReadable(Pic::MemoryRangeType::Cal) ) {
if ( !specific()->canReadRange(Pic::MemoryRangeType::Cal) ) {
log(Log::LineType::Warning, i18n("Osccal cannot be read by the selected programmer"));
return true;
}
Device::Array data;
if ( !specific()->read(Pic::MemoryRangeType::Cal, data, 0) ) return false;
_deviceMemory->setArray(Pic::MemoryRangeType::Cal, data);
log(Log::DebugLevel::Normal, TQString(" Read osccal: %1").arg(prettyCalibration(data)));
TQString message;
if ( !device()->checkCalibration(data, &message) ) log(Log::LineType::Warning, " " + message);
if ( device()->isReadable(Pic::MemoryRangeType::CalBackup) ) {
if ( !specific()->canReadRange(Pic::MemoryRangeType::CalBackup) ) {
log(Log::LineType::Warning, i18n("Osccal backup cannot be read by the selected programmer"));
return true;
}
if ( !specific()->read(Pic::MemoryRangeType::CalBackup, data, 0) ) return false;
_deviceMemory->setArray(Pic::MemoryRangeType::CalBackup, data);
log(Log::DebugLevel::Normal, TQString(" Read osccal backup: %1").arg(prettyCalibration(data)));
if ( !device()->checkCalibration(data, &message) ) log(Log::LineType::Warning, " " + message);
}
}
return true;
}
bool Programmer::PicBase::restoreCalibration()
{
if ( !specific()->canReadRange(Pic::MemoryRangeType::Cal) || !specific()->canWriteRange(Pic::MemoryRangeType::Cal) ) return true;
if ( !device()->isWritable(Pic::MemoryRangeType::Cal) ) return true;
Device::Array data = _deviceMemory->arrayForWriting(Pic::MemoryRangeType::Cal);
Device::Array bdata = _deviceMemory->arrayForWriting(Pic::MemoryRangeType::CalBackup);
if ( device()->isReadable(Pic::MemoryRangeType::CalBackup) && specific()->canReadRange(Pic::MemoryRangeType::CalBackup) ) {
if ( !device()->checkCalibration(data) && device()->checkCalibration(bdata) ) {
log(Log::LineType::Information, i18n(" Replace invalid osccal with backup value."));
data = bdata;
}
}
Device::Array cdata;
if ( !specific()->read(Pic::MemoryRangeType::Cal, cdata, 0) ) return false;
if ( cdata==data ) {
log(Log::LineType::Information, i18n(" Osccal is unchanged."));
return true;
}
if ( !programRange(Pic::MemoryRangeType::Cal, data) ) return false;
if ( !specific()->read(Pic::MemoryRangeType::Cal, cdata, 0) ) return false;
if ( cdata==data ) log(Log::LineType::Information, i18n(" Osccal has been preserved."));
if ( !device()->isWritable(Pic::MemoryRangeType::CalBackup) || !device()->checkCalibration(bdata) ) return true;
if ( !specific()->read(Pic::MemoryRangeType::CalBackup, cdata, 0) ) return false;
if ( cdata.count()==0 ) {
log(Log::LineType::Warning, i18n("Osccal backup cannot be read by selected programmer"));
return true;
}
if ( cdata==bdata ) {
log(Log::LineType::Information, i18n(" Osccal backup is unchanged."));
return true;
}
if ( !programRange(Pic::MemoryRangeType::CalBackup, bdata) ) return false;
if ( !specific()->read(Pic::MemoryRangeType::CalBackup, cdata, 0) ) return false;
if ( cdata==bdata ) log(Log::LineType::Information, i18n(" Osccal backup has been preserved."));
return true;
}
bool Programmer::PicBase::restoreBandGapBits()
{
if ( !specific()->canReadRange(Pic::MemoryRangeType::Config) ) return true;
bool hasProtectedBits = false;
for (uint i=0; i<device()->nbWords(Pic::MemoryRangeType::Config); i++)
if ( device()->config()._words[i].pmask!=0 ) hasProtectedBits = true;
if ( !hasProtectedBits ) return true;
Device::Array cdata;
if ( !specific()->read(Pic::MemoryRangeType::Config, cdata, 0) ) return false;
Device::Array data = _deviceMemory->arrayForWriting(Pic::MemoryRangeType::Config);
for (uint i=0; i<cdata.count(); i++) {
BitValue pmask = device()->config()._words[i].pmask;
if ( pmask==0 ) continue;
cdata[i] = cdata[i].clearMaskBits(pmask);
cdata[i] |= data[i].maskWith(pmask);
}
if ( !specific()->canWriteRange(Pic::MemoryRangeType::Config) ) {
log(Log::LineType::Warning, i18n("Could not restore band gap bits because programmer does not support writing config bits."));
return true;
}
log(Log::DebugLevel::Normal, TQString(" Write config with band gap bits: %2").arg(toHexLabel(cdata[0], device()->nbCharsWord(Pic::MemoryRangeType::Config))));
if ( !programRange(Pic::MemoryRangeType::Config, cdata) ) return false;
if ( !specific()->read(Pic::MemoryRangeType::Config, data, 0) ) return false;
if ( data==cdata ) log(Log::LineType::Information, i18n(" Band gap bits have been preserved."));
return true;
}
bool Programmer::PicBase::eraseAll()
{
if ( !specific()->canEraseAll() ) {
log(Log::LineType::SoftError, i18n("The selected programmer does not support erasing the whole device."));
return false;
}
if ( !specific()->erase(_hasProtectedCode || _hasProtectedEeprom) ) return false;
if ( !restoreCalibration() ) return false;
return true;
}
bool Programmer::PicBase::checkErase()
{
if ( device()->memoryTechnology()==Device::MemoryTechnology::Rom || device()->memoryTechnology()==Device::MemoryTechnology::Romless
|| device()->memoryTechnology()==Device::MemoryTechnology::Eprom ) {
log(Log::LineType::SoftError, i18n("Cannot erase ROM or EPROM device."));
return false;
}
return true;
}
bool Programmer::PicBase::internalErase(const Device::MemoryRange &range)
{
if ( !initProgramming(Task::Erase) ) return false;
bool ok = true;
if ( range.all() ) ok = eraseAll();
else ok = eraseRange(static_cast<const Pic::MemoryRange &>(range)._type);
if ( !restoreBandGapBits() ) return false;
return ok;
}
bool Programmer::PicBase::eraseSingle(Pic::MemoryRangeType type)
{
return erase(Pic::MemoryRange(type));
}
bool Programmer::PicBase::eraseRange(Pic::MemoryRangeType type)
{
bool ok = internalEraseRange(type);
if ( !restoreCalibration() ) return false;
if ( ok && readConfigEntry(Config::BlankCheckAfterErase).toBool() ) {
Pic::Memory memory(*device());
VerifyData vdata(BlankCheckVerify, memory);
return readRange(type, 0, &vdata);
}
return ok;
}
bool Programmer::PicBase::internalEraseRange(Pic::MemoryRangeType type)
{
if ( !specific()->canEraseRange(type) && !specific()->canEraseAll() ) {
log(Log::LineType::SoftError, i18n("The selected programmer does not support erasing neither the specified range nor the whole device."));
return false;
}
if ( type==Pic::MemoryRangeType::Code && _hasProtectedCode ) {
log(Log::LineType::SoftError, i18n("Cannot erase protected code memory. Consider erasing the whole chip."));
return false;
}
if ( type==Pic::MemoryRangeType::Eeprom && _hasProtectedEeprom ) {
log(Log::LineType::SoftError, i18n("Cannot erase protected data EEPROM. Consider erasing the whole chip."));
return false;
}
if ( specific()->canEraseRange(type) ) return specific()->eraseRange(type);
bool softErase = true;
if ( type!=Pic::MemoryRangeType::Code && (!specific()->canReadRange(Pic::MemoryRangeType::Code)
|| !specific()->canWriteRange(Pic::MemoryRangeType::Code)) ) softErase = false;
if ( type!=Pic::MemoryRangeType::Eeprom && (!specific()->canReadRange(Pic::MemoryRangeType::Eeprom)
|| !specific()->canWriteRange(Pic::MemoryRangeType::Eeprom)) ) softErase = false;
if ( type!=Pic::MemoryRangeType::Config && (!specific()->canReadRange(Pic::MemoryRangeType::Config)
|| !specific()->canWriteRange(Pic::MemoryRangeType::Config)) ) softErase = false;
if ( type!=Pic::MemoryRangeType::UserId && (!specific()->canReadRange(Pic::MemoryRangeType::UserId)
|| !specific()->canWriteRange(Pic::MemoryRangeType::UserId)) ) softErase = false;
if ( !softErase ) {
log(Log::LineType::SoftError, i18n("Cannot erase specified range because of programmer limitations."));
return false;
}
if ( !askContinue(i18n("%1: Erasing this range only is not supported with this programmer. This will erase the whole chip and restore the other memory ranges.").arg(type.label())) ) {
logUserAbort();
return false;
}
if ( type!=Pic::MemoryRangeType::Code && !preserveCode() ) return false;
if ( type!=Pic::MemoryRangeType::Eeprom && !preserveEeprom() ) return false;
if ( type!=Pic::MemoryRangeType::UserId && !readRange(Pic::MemoryRangeType::UserId, _deviceMemory, 0) ) return false;
specific()->erase(_hasProtectedCode || _hasProtectedEeprom);
if ( type!=Pic::MemoryRangeType::Code && !programAndVerifyRange(Pic::MemoryRangeType::Code, *_deviceMemory) ) return false;
if ( type!=Pic::MemoryRangeType::Eeprom && !programAndVerifyRange(Pic::MemoryRangeType::Eeprom, *_deviceMemory) ) return false;
if ( type!=Pic::MemoryRangeType::UserId && !programAndVerifyRange(Pic::MemoryRangeType::UserId, *_deviceMemory) ) return false;
if ( !programAndVerifyRange(Pic::MemoryRangeType::Config, *_deviceMemory) ) return false;
return true;
}
//-----------------------------------------------------------------------------
bool Programmer::PicBase::readSingle(Pic::MemoryRangeType type, Pic::Memory &memory)
{
if ( !specific()->canReadRange(type) ) {
log(Log::LineType::SoftError, i18n("The selected programmer cannot read the specified memory range."));
return false;
}
Pic::Memory tmp(*device());
if ( !read(tmp, Pic::MemoryRange(type)) ) return false;
memory.copyFrom(type, tmp);
if ( type==Pic::MemoryRangeType::Cal ) memory.copyFrom(Pic::MemoryRangeType::CalBackup, tmp);
return true;
}
bool Programmer::PicBase::readRange(Pic::MemoryRangeType type, Pic::Memory *memory, const VerifyData *vd)
{
if ( !device()->isReadable(type) ) return true;
if ( !specific()->canReadRange(type) ) {
log(Log::LineType::Information, i18n("The selected programmer cannot read %1: operation skipped.").arg(type.label()));
return true;
}
VerifyData *vdata = (vd ? new VerifyData(vd->actions, vd->memory) : 0);
if (vdata) {
log(Log::LineType::Information, i18n(" Verify memory: %1").arg(type.label()));
if ( !(vdata->actions & IgnoreProtectedVerify) ) {
vdata->protectedRanges = static_cast<const Pic::Memory &>(vdata->memory).protectedRanges(Pic::Protection::ProgramProtected, type);
if ( !vdata->protectedRanges.isEmpty() ) log(Log::LineType::Warning, i18n(" Part of device memory is protected (in %1) and cannot be verified.")
.arg(type.label()));
} else vdata->protectedRanges.clear();
} else {
log(Log::LineType::Information, i18n(" Read memory: %1").arg(type.label()));
CRASH_ASSERT(memory);
}
Device::Array data;
bool ok = specific()->read(type, data, vdata);
delete vdata;
if (!ok) return false;
if (memory) memory->setArray(type, data);
return true;
}
bool Programmer::PicBase::checkRead()
{
if ( device()->memoryTechnology()==Device::MemoryTechnology::Romless ) {
log(Log::LineType::SoftError, i18n("Cannot read ROMless device."));
return false;
}
return true;
}
bool Programmer::PicBase::internalRead(Device::Memory *memory, const Device::MemoryRange &range, const VerifyData *vdata)
{
if ( !initProgramming(Task::Read) ) return false;
Pic::Memory *pmemory = static_cast<Pic::Memory *>(memory);
if ( !range.all() ) {
Pic::MemoryRangeType type = static_cast<const Pic::MemoryRange &>(range)._type;
if ( type==Pic::MemoryRangeType::Cal ) {
if ( !readRange(Pic::MemoryRangeType::Cal, pmemory, vdata) ) return false;
return readRange(Pic::MemoryRangeType::CalBackup, pmemory, vdata);
}
return readRange(type, pmemory, vdata);
}
if ( !readRange(Pic::MemoryRangeType::Config, pmemory, vdata) ) return false;
if ( !readRange(Pic::MemoryRangeType::UserId, pmemory, vdata) ) return false;
if ( vdata==0 ) if ( !readRange(Pic::MemoryRangeType::Cal, pmemory, 0) ) return false;
if ( vdata==0 ) if ( !readRange(Pic::MemoryRangeType::CalBackup, pmemory, 0) ) return false;
if ( !readRange(Pic::MemoryRangeType::Code, pmemory, vdata) ) return false;
if ( !readRange(Pic::MemoryRangeType::Eeprom, pmemory, vdata) ) return false;
return true;
}
//-----------------------------------------------------------------------------
bool Programmer::PicBase::programSingle(Pic::MemoryRangeType type, const Pic::Memory &memory)
{
if ( !specific()->canWriteRange(type) ) {
log(Log::LineType::SoftError, i18n("The selected programmer cannot read the specified memory range."));
return false;
}
return program(memory, Pic::MemoryRange(type));
}
bool Programmer::PicBase::programRange(Pic::MemoryRangeType mtype, const Device::Array &data)
{
log(Log::LineType::Information, i18n(" Write memory: %1").arg(mtype.label()));
bool only = ( readConfigEntry(Config::OnlyProgramNonMask).toBool()
&& (mtype==Pic::MemoryRangeType::Code || mtype==Pic::MemoryRangeType::Eeprom) );
return specific()->write(mtype, data, !only);
}
bool Programmer::PicBase::programAndVerifyRange(Pic::MemoryRangeType type, const Pic::Memory &memory)
{
if ( !device()->isWritable(type) || !specific()->canWriteRange(type) ) return true;
Device::Array data = memory.arrayForWriting(type);
if ( !programRange(type, data) ) return false;
if ( !readConfigEntry(Config::VerifyAfterProgram).toBool() ) return true;
if ( !specific()->canReadRange(type) ) return true;
VerifyActions actions = IgnoreProtectedVerify;
if ( type==Pic::MemoryRangeType::Code && readConfigEntry(Config::OnlyVerifyProgrammed).toBool() ) actions |= OnlyProgrammedVerify;
VerifyData vdata(actions, memory);
return readRange(type, 0, &vdata);
}
bool Programmer::PicBase::programAll(const Pic::Memory &memory)
{
if ( !programAndVerifyRange(Pic::MemoryRangeType::Code, memory) ) return false;
if ( readConfigEntry(Config::ProgramEeprom).toBool() ) {
const Pic::Memory &tmp = (readConfigEntry(Config::PreserveEeprom).toBool() ? *_deviceMemory : memory);
if ( !programAndVerifyRange(Pic::MemoryRangeType::Eeprom, tmp) ) return false;
}
if ( !programAndVerifyRange(Pic::MemoryRangeType::UserId, memory) ) return false;
if ( memory.isProtected(Pic::Protection::WriteProtected, Pic::MemoryRangeType::Config) ) {
log(Log::DebugLevel::Normal, " Config write protection is on: first program without it and then with it");
Pic::Memory tmp(memory.device());
tmp.copyFrom(Pic::MemoryRangeType::Config, memory);
tmp.setProtection(false, Pic::Protection::WriteProtected, Pic::MemoryRangeType::Config);
if ( !programAndVerifyRange(Pic::MemoryRangeType::Config, tmp) ) return false;
}
if ( !programAndVerifyRange(Pic::MemoryRangeType::Config, memory) ) return false;
return true;
}
bool Programmer::PicBase::checkProgram(const Device::Memory &memory)
{
if ( device()->memoryTechnology()==Device::MemoryTechnology::Rom || device()->memoryTechnology()==Device::MemoryTechnology::Romless ) {
log(Log::LineType::SoftError, i18n("Cannot write ROM or ROMless device."));
return false;
}
if ( !group().isDebugger() && static_cast<const Pic::Memory &>(memory).hasDebugOn() ) {
if ( !askContinue(i18n("DEBUG configuration bit is on. Are you sure you want to continue programming the chip?")) ) {
logUserAbort();
return false;
}
}
return true;
}
bool Programmer::PicBase::internalProgram(const Device::Memory &memory, const Device::MemoryRange &range)
{
if ( !initProgramming(Task::Erase) ) return false;
const Pic::Memory &pmemory = static_cast<const Pic::Memory &>(memory);
// blank check if OTP device
bool eprom = ( device()->memoryTechnology()==Device::MemoryTechnology::Eprom );
if (eprom) {
log(Log::LineType::Information, i18n(" EPROM device: blank checking first..."));
Pic::Memory memory(*device());
VerifyData vdata(BlankCheckVerify, memory);
if ( !internalRead(0, range, &vdata) ) return false;
log(Log::LineType::Information, i18n(" Blank check successful"));
// check if protecting device
bool protectedCode = pmemory.isProtected(Pic::Protection::ProgramProtected, Pic::MemoryRangeType::Code);
bool protectedEeprom = pmemory.isProtected(Pic::Protection::ProgramProtected, Pic::MemoryRangeType::Eeprom);
if ( protectedCode || protectedEeprom ) {
log(Log::LineType::SoftError, i18n("Protecting code memory or data EEPROM on OTP devices is disabled as a security..."));
return false;
}
}
// programming
bool ok = true;
if ( !range.all() ) {
Pic::MemoryRangeType type = static_cast<const Pic::MemoryRange &>(range)._type;
if ( (type==Pic::MemoryRangeType::Code && _hasProtectedCode) || (type==Pic::MemoryRangeType::Eeprom && _hasProtectedEeprom) ) {
log(Log::LineType::SoftError, i18n("This memory range is programming protected."));
return false;
}
if ( specific()->canEraseRange(type) ) {
if ( !specific()->emulatedErase() && !eraseRange(type) ) return false;
} else log(Log::LineType::Warning, i18n("The range cannot be erased first by the selected programmer so programming may fail..."));
ok = programRange(type, pmemory.arrayForWriting(type));
VerifyData vdata(NormalVerify, pmemory);
if (ok) ok = readRange(type, 0, &vdata);
} else {
if ( !eprom ) {
if ( specific()->canEraseAll() ) {
if ( !specific()->emulatedErase() ) {
log(Log::LineType::Information, i18n(" Erasing device"));
ok = ( !readConfigEntry(Config::PreserveEeprom).toBool() || preserveEeprom() );
if (ok) ok = eraseAll();
}
} else log(Log::LineType::Warning, i18n("The device cannot be erased first by the selected programmer so programming may fail..."));
}
if (ok) ok = programAll(pmemory);
}
if ( !restoreBandGapBits() ) return false;
return ok;
}
//-----------------------------------------------------------------------------
bool Programmer::PicBase::checkProgramCalibration(const Device::Array &data)
{
TQString message, s = prettyCalibration(data);
if ( !device()->checkCalibration(data, &message) ) {
sorry(i18n("The calibration word %1 is not valid.").arg(s), message);
return false;
}
return askContinue(i18n("Do you want to overwrite the device calibration with %1?").arg(s));
}
bool Programmer::PicBase::tryProgramCalibration(const Device::Array &data, bool &success)
{
log(Log::LineType::Information, i18n(" Write memory: %1").arg(Pic::MemoryRangeType(Pic::MemoryRangeType::Cal).label()));
success = true;
if ( !specific()->write(Pic::MemoryRangeType::Cal, data, true) ) return false;
Device::Array read;
if ( !specific()->read(Pic::MemoryRangeType::Cal, read, 0) ) return false;
for (uint i=0; i<data.count(); i++)
if ( data[i]!=read[i] ) success = false;
if ( !success ) return true;
if ( device()->isWritable(Pic::MemoryRangeType::CalBackup) ) {
if ( !specific()->read(Pic::MemoryRangeType::CalBackup, read, 0) ) return false;
if ( device()->checkCalibration(read) ) return true; // do not overwrite correct backup value
log(Log::LineType::Information, i18n(" Write memory: %1").arg(Pic::MemoryRangeType(Pic::MemoryRangeType::CalBackup).label()));
if ( !specific()->write(Pic::MemoryRangeType::CalBackup, data, true) ) return false;
if ( !specific()->read(Pic::MemoryRangeType::CalBackup, read, 0) ) return false;
for (uint i=0; i<data.count(); i++)
if ( data[i]!=read[i] ) success = false;
}
return true;
}
bool Programmer::PicBase::internalProgramCalibration(const Device::Array &data)
{
if ( !initProgramming(Task::Write) ) return false;
// try without erase
bool success;
if ( !tryProgramCalibration(data, success) ) return false;
if (success) return true;
if ( !askContinue(i18n("Programming calibration data needs a chip erase. Continue anyway?")) ) {
logUserAbort();
return false;
}
log(Log::LineType::Information, i18n(" Erasing device"));
bool ok = specific()->erase(_hasProtectedCode || _hasProtectedEeprom);
if ( !restoreBandGapBits() ) return false;
if ( !ok ) return false;
// retry
if ( !tryProgramCalibration(data, success) ) return false;
return success;
}
bool Programmer::PicBase::programCalibration(const Device::Array &data)
{
_progressMonitor.clear();
bool ok = doProgramCalibration(data);
endProgramming();
return ok;
}
bool Programmer::PicBase::doProgramCalibration(const Device::Array &data)
{
if ( !checkProgramCalibration(data) ) return false;
if ( !doConnectDevice() ) return false;
log(Log::LineType::Information, i18n("Programming calibration..."));
emit actionMessage(i18n("Programming calibration..."));
if ( !internalProgramCalibration(data) ) return false;
log(Log::LineType::Information, i18n("Programming calibration successful"));
return true;
}
//-----------------------------------------------------------------------------
bool Programmer::PicBase::verifySingle(Pic::MemoryRangeType type, const Pic::Memory &memory)
{
return verify(memory, Pic::MemoryRange(type));
}
bool Programmer::PicBase::blankCheckSingle(Pic::MemoryRangeType type)
{
return blankCheck(Pic::MemoryRange(type));
}
|