diff options
Diffstat (limited to 'src/3rdparty/sqlite/vdbe.c')
-rw-r--r-- | src/3rdparty/sqlite/vdbe.c | 4885 |
1 files changed, 4885 insertions, 0 deletions
diff --git a/src/3rdparty/sqlite/vdbe.c b/src/3rdparty/sqlite/vdbe.c new file mode 100644 index 0000000..0d3fb43 --- /dev/null +++ b/src/3rdparty/sqlite/vdbe.c @@ -0,0 +1,4885 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** The code in this file implements execution method of the +** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") +** handles housekeeping details such as creating and deleting +** VDBE instances. This file is solely interested in executing +** the VDBE program. +** +** In the external interface, an "sqlite_vm*" is an opaque pointer +** to a VDBE. +** +** The SQL parser generates a program which is then executed by +** the VDBE to do the work of the SQL statement. VDBE programs are +** similar in form to assembly language. The program consists of +** a linear sequence of operations. Each operation has an opcode +** and 3 operands. Operands P1 and P2 are integers. Operand P3 +** is a null-terminated string. The P2 operand must be non-negative. +** Opcodes will typically ignore one or more operands. Many opcodes +** ignore all three operands. +** +** Computation results are stored on a stack. Each entry on the +** stack is either an integer, a null-terminated string, a floating point +** number, or the SQL "NULL" value. An inplicit conversion from one +** type to the other occurs as necessary. +** +** Most of the code in this file is taken up by the sqliteVdbeExec() +** function which does the work of interpreting a VDBE program. +** But other routines are also provided to help in building up +** a program instruction by instruction. +** +** Various scripts scan this source file in order to generate HTML +** documentation, headers files, or other derived files. The formatting +** of the code in this file is, therefore, important. See other comments +** in this file for details. If in doubt, do not deviate from existing +** commenting and indentation practices when changing or adding code. +** +** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $ +*/ +#include "sqliteInt.h" +#include "os.h" +#include <ctype.h> +#include "vdbeInt.h" + +/* +** The following global variable is incremented every time a cursor +** moves, either by the OP_MoveTo or the OP_Next opcode. The test +** procedures use this information to make sure that indices are +** working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +int sqlite_search_count = 0; + +/* +** When this global variable is positive, it gets decremented once before +** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt +** of the db.flags field is set in order to simulate and interrupt. +** +** This facility is used for testing purposes only. It does not function +** in an ordinary build. +*/ +int sqlite_interrupt_count = 0; + +/* +** Advance the virtual machine to the next output row. +** +** The return vale will be either SQLITE_BUSY, SQLITE_DONE, +** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. +** +** SQLITE_BUSY means that the virtual machine attempted to open +** a locked database and there is no busy callback registered. +** Call sqlite_step() again to retry the open. *pN is set to 0 +** and *pazColName and *pazValue are both set to NULL. +** +** SQLITE_DONE means that the virtual machine has finished +** executing. sqlite_step() should not be called again on this +** virtual machine. *pN and *pazColName are set appropriately +** but *pazValue is set to NULL. +** +** SQLITE_ROW means that the virtual machine has generated another +** row of the result set. *pN is set to the number of columns in +** the row. *pazColName is set to the names of the columns followed +** by the column datatypes. *pazValue is set to the values of each +** column in the row. The value of the i-th column is (*pazValue)[i]. +** The name of the i-th column is (*pazColName)[i] and the datatype +** of the i-th column is (*pazColName)[i+*pN]. +** +** SQLITE_ERROR means that a run-time error (such as a constraint +** violation) has occurred. The details of the error will be returned +** by the next call to sqlite_finalize(). sqlite_step() should not +** be called again on the VM. +** +** SQLITE_MISUSE means that the this routine was called inappropriately. +** Perhaps it was called on a virtual machine that had already been +** finalized or on one that had previously returned SQLITE_ERROR or +** SQLITE_DONE. Or it could be the case the the same database connection +** is being used simulataneously by two or more threads. +*/ +int sqlite_step( + sqlite_vm *pVm, /* The virtual machine to execute */ + int *pN, /* OUT: Number of columns in result */ + const char ***pazValue, /* OUT: Column data */ + const char ***pazColName /* OUT: Column names and datatypes */ +){ + Vdbe *p = (Vdbe*)pVm; + sqlite *db; + int rc; + + if( p->magic!=VDBE_MAGIC_RUN ){ + return SQLITE_MISUSE; + } + db = p->db; + if( sqliteSafetyOn(db) ){ + p->rc = SQLITE_MISUSE; + return SQLITE_MISUSE; + } + if( p->explain ){ + rc = sqliteVdbeList(p); + }else{ + rc = sqliteVdbeExec(p); + } + if( rc==SQLITE_DONE || rc==SQLITE_ROW ){ + if( pazColName ) *pazColName = (const char**)p->azColName; + if( pN ) *pN = p->nResColumn; + }else{ + if( pazColName) *pazColName = 0; + if( pN ) *pN = 0; + } + if( pazValue ){ + if( rc==SQLITE_ROW ){ + *pazValue = (const char**)p->azResColumn; + }else{ + *pazValue = 0; + } + } + if( sqliteSafetyOff(db) ){ + return SQLITE_MISUSE; + } + return rc; +} + +/* +** Insert a new aggregate element and make it the element that +** has focus. +** +** Return 0 on success and 1 if memory is exhausted. +*/ +static int AggInsert(Agg *p, char *zKey, int nKey){ + AggElem *pElem, *pOld; + int i; + Mem *pMem; + pElem = sqliteMalloc( sizeof(AggElem) + nKey + + (p->nMem-1)*sizeof(pElem->aMem[0]) ); + if( pElem==0 ) return 1; + pElem->zKey = (char*)&pElem->aMem[p->nMem]; + memcpy(pElem->zKey, zKey, nKey); + pElem->nKey = nKey; + pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); + if( pOld!=0 ){ + assert( pOld==pElem ); /* Malloc failed on insert */ + sqliteFree(pOld); + return 0; + } + for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){ + pMem->flags = MEM_Null; + } + p->pCurrent = pElem; + return 0; +} + +/* +** Get the AggElem currently in focus +*/ +#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) +static AggElem *_AggInFocus(Agg *p){ + HashElem *pElem = sqliteHashFirst(&p->hash); + if( pElem==0 ){ + AggInsert(p,"",1); + pElem = sqliteHashFirst(&p->hash); + } + return pElem ? sqliteHashData(pElem) : 0; +} + +/* +** Convert the given stack entity into a string if it isn't one +** already. +*/ +#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} +static int hardStringify(Mem *pStack){ + int fg = pStack->flags; + if( fg & MEM_Real ){ + sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); + }else if( fg & MEM_Int ){ + sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); + }else{ + pStack->zShort[0] = 0; + } + pStack->z = pStack->zShort; + pStack->n = strlen(pStack->zShort)+1; + pStack->flags = MEM_Str | MEM_Short; + return 0; +} + +/* +** Convert the given stack entity into a string that has been obtained +** from sqliteMalloc(). This is different from Stringify() above in that +** Stringify() will use the NBFS bytes of static string space if the string +** will fit but this routine always mallocs for space. +** Return non-zero if we run out of memory. +*/ +#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) +static int hardDynamicify(Mem *pStack){ + int fg = pStack->flags; + char *z; + if( (fg & MEM_Str)==0 ){ + hardStringify(pStack); + } + assert( (fg & MEM_Dyn)==0 ); + z = sqliteMallocRaw( pStack->n ); + if( z==0 ) return 1; + memcpy(z, pStack->z, pStack->n); + pStack->z = z; + pStack->flags |= MEM_Dyn; + return 0; +} + +/* +** An ephemeral string value (signified by the MEM_Ephem flag) contains +** a pointer to a dynamically allocated string where some other entity +** is responsible for deallocating that string. Because the stack entry +** does not control the string, it might be deleted without the stack +** entry knowing it. +** +** This routine converts an ephemeral string into a dynamically allocated +** string that the stack entry itself controls. In other words, it +** converts an MEM_Ephem string into an MEM_Dyn string. +*/ +#define Deephemeralize(P) \ + if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} +static int hardDeephem(Mem *pStack){ + char *z; + assert( (pStack->flags & MEM_Ephem)!=0 ); + z = sqliteMallocRaw( pStack->n ); + if( z==0 ) return 1; + memcpy(z, pStack->z, pStack->n); + pStack->z = z; + pStack->flags &= ~MEM_Ephem; + pStack->flags |= MEM_Dyn; + return 0; +} + +/* +** Release the memory associated with the given stack level. This +** leaves the Mem.flags field in an inconsistent state. +*/ +#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } + +/* +** Pop the stack N times. +*/ +static void popStack(Mem **ppTos, int N){ + Mem *pTos = *ppTos; + while( N>0 ){ + N--; + Release(pTos); + pTos--; + } + *ppTos = pTos; +} + +/* +** Return TRUE if zNum is a 32-bit signed integer and write +** the value of the integer into *pNum. If zNum is not an integer +** or is an integer that is too large to be expressed with just 32 +** bits, then return false. +** +** Under Linux (RedHat 7.2) this routine is much faster than atoi() +** for converting strings into integers. +*/ +static int toInt(const char *zNum, int *pNum){ + int v = 0; + int neg; + int i, c; + if( *zNum=='-' ){ + neg = 1; + zNum++; + }else if( *zNum=='+' ){ + neg = 0; + zNum++; + }else{ + neg = 0; + } + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ + v = v*10 + c - '0'; + } + *pNum = neg ? -v : v; + return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0)); +} + +/* +** Convert the given stack entity into a integer if it isn't one +** already. +** +** Any prior string or real representation is invalidated. +** NULLs are converted into 0. +*/ +#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } +static void hardIntegerify(Mem *pStack){ + if( pStack->flags & MEM_Real ){ + pStack->i = (int)pStack->r; + Release(pStack); + }else if( pStack->flags & MEM_Str ){ + toInt(pStack->z, &pStack->i); + Release(pStack); + }else{ + pStack->i = 0; + } + pStack->flags = MEM_Int; +} + +/* +** Get a valid Real representation for the given stack element. +** +** Any prior string or integer representation is retained. +** NULLs are converted into 0.0. +*/ +#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } +static void hardRealify(Mem *pStack){ + if( pStack->flags & MEM_Str ){ + pStack->r = sqliteAtoF(pStack->z, 0); + }else if( pStack->flags & MEM_Int ){ + pStack->r = pStack->i; + }else{ + pStack->r = 0.0; + } + pStack->flags |= MEM_Real; +} + +/* +** The parameters are pointers to the head of two sorted lists +** of Sorter structures. Merge these two lists together and return +** a single sorted list. This routine forms the core of the merge-sort +** algorithm. +** +** In the case of a tie, left sorts in front of right. +*/ +static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ + Sorter sHead; + Sorter *pTail; + pTail = &sHead; + pTail->pNext = 0; + while( pLeft && pRight ){ + int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); + if( c<=0 ){ + pTail->pNext = pLeft; + pLeft = pLeft->pNext; + }else{ + pTail->pNext = pRight; + pRight = pRight->pNext; + } + pTail = pTail->pNext; + } + if( pLeft ){ + pTail->pNext = pLeft; + }else if( pRight ){ + pTail->pNext = pRight; + } + return sHead.pNext; +} + +/* +** The following routine works like a replacement for the standard +** library routine fgets(). The difference is in how end-of-line (EOL) +** is handled. Standard fgets() uses LF for EOL under unix, CRLF +** under windows, and CR under mac. This routine accepts any of these +** character sequences as an EOL mark. The EOL mark is replaced by +** a single LF character in zBuf. +*/ +static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ + int i, c; + for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){ + zBuf[i] = c; + if( c=='\r' || c=='\n' ){ + if( c=='\r' ){ + zBuf[i] = '\n'; + c = getc(in); + if( c!=EOF && c!='\n' ) ungetc(c, in); + } + i++; + break; + } + } + zBuf[i] = 0; + return i>0 ? zBuf : 0; +} + +/* +** Make sure there is space in the Vdbe structure to hold at least +** mxCursor cursors. If there is not currently enough space, then +** allocate more. +** +** If a memory allocation error occurs, return 1. Return 0 if +** everything works. +*/ +static int expandCursorArraySize(Vdbe *p, int mxCursor){ + if( mxCursor>=p->nCursor ){ + Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); + if( aCsr==0 ) return 1; + p->aCsr = aCsr; + memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); + p->nCursor = mxCursor+1; + } + return 0; +} + +#ifdef VDBE_PROFILE +/* +** The following routine only works on pentium-class processors. +** It uses the RDTSC opcode to read cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +#endif + +/* +** The CHECK_FOR_INTERRUPT macro defined here looks to see if the +** sqlite_interrupt() routine has been called. If it has been, then +** processing of the VDBE program is interrupted. +** +** This macro added to every instruction that does a jump in order to +** implement a loop. This test used to be on every single instruction, +** but that meant we more testing that we needed. By only testing the +** flag on jump instructions, we get a (small) speed improvement. +*/ +#define CHECK_FOR_INTERRUPT \ + if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; + + +/* +** Execute as much of a VDBE program as we can then return. +** +** sqliteVdbeMakeReady() must be called before this routine in order to +** close the program with a final OP_Halt and to set up the callbacks +** and the error message pointer. +** +** Whenever a row or result data is available, this routine will either +** invoke the result callback (if there is one) or return with +** SQLITE_ROW. +** +** If an attempt is made to open a locked database, then this routine +** will either invoke the busy callback (if there is one) or it will +** return SQLITE_BUSY. +** +** If an error occurs, an error message is written to memory obtained +** from sqliteMalloc() and p->zErrMsg is made to point to that memory. +** The error code is stored in p->rc and this routine returns SQLITE_ERROR. +** +** If the callback ever returns non-zero, then the program exits +** immediately. There will be no error message but the p->rc field is +** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. +** +** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this +** routine to return SQLITE_ERROR. +** +** Other fatal errors return SQLITE_ERROR. +** +** After this routine has finished, sqliteVdbeFinalize() should be +** used to clean up the mess that was left behind. +*/ +int sqliteVdbeExec( + Vdbe *p /* The VDBE */ +){ + int pc; /* The program counter */ + Op *pOp; /* Current operation */ + int rc = SQLITE_OK; /* Value to return */ + sqlite *db = p->db; /* The database */ + Mem *pTos; /* Top entry in the operand stack */ + char zBuf[100]; /* Space to sprintf() an integer */ +#ifdef VDBE_PROFILE + unsigned long long start; /* CPU clock count at start of opcode */ + int origPc; /* Program counter at start of opcode */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int nProgressOps = 0; /* Opcodes executed since progress callback. */ +#endif + + if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; + assert( db->magic==SQLITE_MAGIC_BUSY ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + p->rc = SQLITE_OK; + assert( p->explain==0 ); + if( sqlite_malloc_failed ) goto no_mem; + pTos = p->pTos; + if( p->popStack ){ + popStack(&pTos, p->popStack); + p->popStack = 0; + } + CHECK_FOR_INTERRUPT; + for(pc=p->pc; rc==SQLITE_OK; pc++){ + assert( pc>=0 && pc<p->nOp ); + assert( pTos<=&p->aStack[pc] ); +#ifdef VDBE_PROFILE + origPc = pc; + start = hwtime(); +#endif + pOp = &p->aOp[pc]; + + /* Only allow tracing if NDEBUG is not defined. + */ +#ifndef NDEBUG + if( p->trace ){ + sqliteVdbePrintOp(p->trace, pc, pOp); + } +#endif + + /* Check to see if we need to simulate an interrupt. This only happens + ** if we have a special test build. + */ +#ifdef SQLITE_TEST + if( sqlite_interrupt_count>0 ){ + sqlite_interrupt_count--; + if( sqlite_interrupt_count==0 ){ + sqlite_interrupt(db); + } + } +#endif + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + /* Call the progress callback if it is configured and the required number + ** of VDBE ops have been executed (either since this invocation of + ** sqliteVdbeExec() or since last time the progress callback was called). + ** If the progress callback returns non-zero, exit the virtual machine with + ** a return code SQLITE_ABORT. + */ + if( db->xProgress ){ + if( db->nProgressOps==nProgressOps ){ + if( db->xProgress(db->pProgressArg)!=0 ){ + rc = SQLITE_ABORT; + continue; /* skip to the next iteration of the for loop */ + } + nProgressOps = 0; + } + nProgressOps++; + } +#endif + + switch( pOp->opcode ){ + +/***************************************************************************** +** What follows is a massive switch statement where each case implements a +** separate instruction in the virtual machine. If we follow the usual +** indentation conventions, each case should be indented by 6 spaces. But +** that is a lot of wasted space on the left margin. So the code within +** the switch statement will break with convention and be flush-left. Another +** big comment (similar to this one) will mark the point in the code where +** we transition back to normal indentation. +** +** The formatting of each case is important. The makefile for SQLite +** generates two C files "opcodes.h" and "opcodes.c" by scanning this +** file looking for lines that begin with "case OP_". The opcodes.h files +** will be filled with #defines that give unique integer values to each +** opcode and the opcodes.c file is filled with an array of strings where +** each string is the symbolic name for the corresponding opcode. +** +** Documentation about VDBE opcodes is generated by scanning this file +** for lines of that contain "Opcode:". That line and all subsequent +** comment lines are used in the generation of the opcode.html documentation +** file. +** +** SUMMARY: +** +** Formatting is important to scripts that scan this file. +** Do not deviate from the formatting style currently in use. +** +*****************************************************************************/ + +/* Opcode: Goto * P2 * +** +** An unconditional jump to address P2. +** The next instruction executed will be +** the one at index P2 from the beginning of +** the program. +*/ +case OP_Goto: { + CHECK_FOR_INTERRUPT; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Gosub * P2 * +** +** Push the current address plus 1 onto the return address stack +** and then jump to address P2. +** +** The return address stack is of limited depth. If too many +** OP_Gosub operations occur without intervening OP_Returns, then +** the return address stack will fill up and processing will abort +** with a fatal error. +*/ +case OP_Gosub: { + if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ + sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0); + p->rc = SQLITE_INTERNAL; + return SQLITE_ERROR; + } + p->returnStack[p->returnDepth++] = pc+1; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Return * * * +** +** Jump immediately to the next instruction after the last unreturned +** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then +** processing aborts with a fatal error. +*/ +case OP_Return: { + if( p->returnDepth<=0 ){ + sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0); + p->rc = SQLITE_INTERNAL; + return SQLITE_ERROR; + } + p->returnDepth--; + pc = p->returnStack[p->returnDepth] - 1; + break; +} + +/* Opcode: Halt P1 P2 * +** +** Exit immediately. All open cursors, Lists, Sorts, etc are closed +** automatically. +** +** P1 is the result code returned by sqlite_exec(). For a normal +** halt, this should be SQLITE_OK (0). For errors, it can be some +** other value. If P1!=0 then P2 will determine whether or not to +** rollback the current transaction. Do not rollback if P2==OE_Fail. +** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back +** out all changes that have occurred during this execution of the +** VDBE, but do not rollback the transaction. +** +** There is an implied "Halt 0 0 0" instruction inserted at the very end of +** every program. So a jump past the last instruction of the program +** is the same as executing Halt. +*/ +case OP_Halt: { + p->magic = VDBE_MAGIC_HALT; + p->pTos = pTos; + if( pOp->p1!=SQLITE_OK ){ + p->rc = pOp->p1; + p->errorAction = pOp->p2; + if( pOp->p3 ){ + sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); + } + return SQLITE_ERROR; + }else{ + p->rc = SQLITE_OK; + return SQLITE_DONE; + } +} + +/* Opcode: Integer P1 * P3 +** +** The integer value P1 is pushed onto the stack. If P3 is not zero +** then it is assumed to be a string representation of the same integer. +*/ +case OP_Integer: { + pTos++; + pTos->i = pOp->p1; + pTos->flags = MEM_Int; + if( pOp->p3 ){ + pTos->z = pOp->p3; + pTos->flags |= MEM_Str | MEM_Static; + pTos->n = strlen(pOp->p3)+1; + } + break; +} + +/* Opcode: String * * P3 +** +** The string value P3 is pushed onto the stack. If P3==0 then a +** NULL is pushed onto the stack. +*/ +case OP_String: { + char *z = pOp->p3; + pTos++; + if( z==0 ){ + pTos->flags = MEM_Null; + }else{ + pTos->z = z; + pTos->n = strlen(z) + 1; + pTos->flags = MEM_Str | MEM_Static; + } + break; +} + +/* Opcode: Variable P1 * * +** +** Push the value of variable P1 onto the stack. A variable is +** an unknown in the original SQL string as handed to sqlite_compile(). +** Any occurance of the '?' character in the original SQL is considered +** a variable. Variables in the SQL string are number from left to +** right beginning with 1. The values of variables are set using the +** sqlite_bind() API. +*/ +case OP_Variable: { + int j = pOp->p1 - 1; + pTos++; + if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){ + pTos->z = p->azVar[j]; + pTos->n = p->anVar[j]; + pTos->flags = MEM_Str | MEM_Static; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: Pop P1 * * +** +** P1 elements are popped off of the top of stack and discarded. +*/ +case OP_Pop: { + assert( pOp->p1>=0 ); + popStack(&pTos, pOp->p1); + assert( pTos>=&p->aStack[-1] ); + break; +} + +/* Opcode: Dup P1 P2 * +** +** A copy of the P1-th element of the stack +** is made and pushed onto the top of the stack. +** The top of the stack is element 0. So the +** instruction "Dup 0 0 0" will make a copy of the +** top of the stack. +** +** If the content of the P1-th element is a dynamically +** allocated string, then a new copy of that string +** is made if P2==0. If P2!=0, then just a pointer +** to the string is copied. +** +** Also see the Pull instruction. +*/ +case OP_Dup: { + Mem *pFrom = &pTos[-pOp->p1]; + assert( pFrom<=pTos && pFrom>=p->aStack ); + pTos++; + memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); + if( pTos->flags & MEM_Str ){ + if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ + pTos->flags &= ~MEM_Dyn; + pTos->flags |= MEM_Ephem; + }else if( pTos->flags & MEM_Short ){ + memcpy(pTos->zShort, pFrom->zShort, pTos->n); + pTos->z = pTos->zShort; + }else if( (pTos->flags & MEM_Static)==0 ){ + pTos->z = sqliteMallocRaw(pFrom->n); + if( sqlite_malloc_failed ) goto no_mem; + memcpy(pTos->z, pFrom->z, pFrom->n); + pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); + pTos->flags |= MEM_Dyn; + } + } + break; +} + +/* Opcode: Pull P1 * * +** +** The P1-th element is removed from its current location on +** the stack and pushed back on top of the stack. The +** top of the stack is element 0, so "Pull 0 0 0" is +** a no-op. "Pull 1 0 0" swaps the top two elements of +** the stack. +** +** See also the Dup instruction. +*/ +case OP_Pull: { + Mem *pFrom = &pTos[-pOp->p1]; + int i; + Mem ts; + + ts = *pFrom; + Deephemeralize(pTos); + for(i=0; i<pOp->p1; i++, pFrom++){ + Deephemeralize(&pFrom[1]); + *pFrom = pFrom[1]; + assert( (pFrom->flags & MEM_Ephem)==0 ); + if( pFrom->flags & MEM_Short ){ + assert( pFrom->flags & MEM_Str ); + assert( pFrom->z==pFrom[1].zShort ); + pFrom->z = pFrom->zShort; + } + } + *pTos = ts; + if( pTos->flags & MEM_Short ){ + assert( pTos->flags & MEM_Str ); + assert( pTos->z==pTos[-pOp->p1].zShort ); + pTos->z = pTos->zShort; + } + break; +} + +/* Opcode: Push P1 * * +** +** Overwrite the value of the P1-th element down on the +** stack (P1==0 is the top of the stack) with the value +** of the top of the stack. Then pop the top of the stack. +*/ +case OP_Push: { + Mem *pTo = &pTos[-pOp->p1]; + + assert( pTo>=p->aStack ); + Deephemeralize(pTos); + Release(pTo); + *pTo = *pTos; + if( pTo->flags & MEM_Short ){ + assert( pTo->z==pTos->zShort ); + pTo->z = pTo->zShort; + } + pTos--; + break; +} + + +/* Opcode: ColumnName P1 P2 P3 +** +** P3 becomes the P1-th column name (first is 0). An array of pointers +** to all column names is passed as the 4th parameter to the callback. +** If P2==1 then this is the last column in the result set and thus the +** number of columns in the result set will be P1. There must be at least +** one OP_ColumnName with a P2==1 before invoking OP_Callback and the +** number of columns specified in OP_Callback must one more than the P1 +** value of the OP_ColumnName that has P2==1. +*/ +case OP_ColumnName: { + assert( pOp->p1>=0 && pOp->p1<p->nOp ); + p->azColName[pOp->p1] = pOp->p3; + p->nCallback = 0; + if( pOp->p2 ) p->nResColumn = pOp->p1+1; + break; +} + +/* Opcode: Callback P1 * * +** +** Pop P1 values off the stack and form them into an array. Then +** invoke the callback function using the newly formed array as the +** 3rd parameter. +*/ +case OP_Callback: { + int i; + char **azArgv = p->zArgv; + Mem *pCol; + + pCol = &pTos[1-pOp->p1]; + assert( pCol>=p->aStack ); + for(i=0; i<pOp->p1; i++, pCol++){ + if( pCol->flags & MEM_Null ){ + azArgv[i] = 0; + }else{ + Stringify(pCol); + azArgv[i] = pCol->z; + } + } + azArgv[i] = 0; + p->nCallback++; + p->azResColumn = azArgv; + assert( p->nResColumn==pOp->p1 ); + p->popStack = pOp->p1; + p->pc = pc + 1; + p->pTos = pTos; + return SQLITE_ROW; +} + +/* Opcode: Concat P1 P2 P3 +** +** Look at the first P1 elements of the stack. Append them all +** together with the lowest element first. Use P3 as a separator. +** Put the result on the top of the stack. The original P1 elements +** are popped from the stack if P2==0 and retained if P2==1. If +** any element of the stack is NULL, then the result is NULL. +** +** If P3 is NULL, then use no separator. When P1==1, this routine +** makes a copy of the top stack element into memory obtained +** from sqliteMalloc(). +*/ +case OP_Concat: { + char *zNew; + int nByte; + int nField; + int i, j; + char *zSep; + int nSep; + Mem *pTerm; + + nField = pOp->p1; + zSep = pOp->p3; + if( zSep==0 ) zSep = ""; + nSep = strlen(zSep); + assert( &pTos[1-nField] >= p->aStack ); + nByte = 1 - nSep; + pTerm = &pTos[1-nField]; + for(i=0; i<nField; i++, pTerm++){ + if( pTerm->flags & MEM_Null ){ + nByte = -1; + break; + }else{ + Stringify(pTerm); + nByte += pTerm->n - 1 + nSep; + } + } + if( nByte<0 ){ + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->flags = MEM_Null; + break; + } + zNew = sqliteMallocRaw( nByte ); + if( zNew==0 ) goto no_mem; + j = 0; + pTerm = &pTos[1-nField]; + for(i=j=0; i<nField; i++, pTerm++){ + assert( pTerm->flags & MEM_Str ); + memcpy(&zNew[j], pTerm->z, pTerm->n-1); + j += pTerm->n-1; + if( nSep>0 && i<nField-1 ){ + memcpy(&zNew[j], zSep, nSep); + j += nSep; + } + } + zNew[j] = 0; + if( pOp->p2==0 ){ + popStack(&pTos, nField); + } + pTos++; + pTos->n = nByte; + pTos->flags = MEM_Str|MEM_Dyn; + pTos->z = zNew; + break; +} + +/* Opcode: Add * * * +** +** Pop the top two elements from the stack, add them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the addition. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Multiply * * * +** +** Pop the top two elements from the stack, multiply them together, +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the multiplication. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Subtract * * * +** +** Pop the top two elements from the stack, subtract the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the subtraction. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Divide * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the result back onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: Remainder * * * +** +** Pop the top two elements from the stack, divide the +** first (what was on top of the stack) from the second (the +** next on stack) +** and push the remainder after division onto the stack. If either element +** is a string then it is converted to a double using the atof() +** function before the division. Division by zero returns NULL. +** If either operand is NULL, the result is NULL. +*/ +case OP_Add: +case OP_Subtract: +case OP_Multiply: +case OP_Divide: +case OP_Remainder: { + Mem *pNos = &pTos[-1]; + assert( pNos>=p->aStack ); + if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ + int a, b; + a = pTos->i; + b = pNos->i; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + if( a==0 ) goto divide_by_zero; + b %= a; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->i = b; + pTos->flags = MEM_Int; + }else{ + double a, b; + Realify(pTos); + Realify(pNos); + a = pTos->r; + b = pNos->r; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0.0 ) goto divide_by_zero; + b /= a; + break; + } + default: { + int ia = (int)a; + int ib = (int)b; + if( ia==0.0 ) goto divide_by_zero; + b = ib % ia; + break; + } + } + Release(pTos); + pTos--; + Release(pTos); + pTos->r = b; + pTos->flags = MEM_Real; + } + break; + +divide_by_zero: + Release(pTos); + pTos--; + Release(pTos); + pTos->flags = MEM_Null; + break; +} + +/* Opcode: Function P1 * P3 +** +** Invoke a user function (P3 is a pointer to a Function structure that +** defines the function) with P1 string arguments taken from the stack. +** Pop all arguments from the stack and push back the result. +** +** See also: AggFunc +*/ +case OP_Function: { + int n, i; + Mem *pArg; + char **azArgv; + sqlite_func ctx; + + n = pOp->p1; + pArg = &pTos[1-n]; + azArgv = p->zArgv; + for(i=0; i<n; i++, pArg++){ + if( pArg->flags & MEM_Null ){ + azArgv[i] = 0; + }else{ + Stringify(pArg); + azArgv[i] = pArg->z; + } + } + ctx.pFunc = (FuncDef*)pOp->p3; + ctx.s.flags = MEM_Null; + ctx.s.z = 0; + ctx.isError = 0; + ctx.isStep = 0; + if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; + (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); + if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; + popStack(&pTos, n); + pTos++; + *pTos = ctx.s; + if( pTos->flags & MEM_Short ){ + pTos->z = pTos->zShort; + } + if( ctx.isError ){ + sqliteSetString(&p->zErrMsg, + (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: BitAnd * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise AND of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: BitOr * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the bit-wise OR of the +** two elements. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftLeft * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the top element shifted +** left by N bits where N is the second element on the stack. +** If either operand is NULL, the result is NULL. +*/ +/* Opcode: ShiftRight * * * +** +** Pop the top two elements from the stack. Convert both elements +** to integers. Push back onto the stack the top element shifted +** right by N bits where N is the second element on the stack. +** If either operand is NULL, the result is NULL. +*/ +case OP_BitAnd: +case OP_BitOr: +case OP_ShiftLeft: +case OP_ShiftRight: { + Mem *pNos = &pTos[-1]; + int a, b; + + assert( pNos>=p->aStack ); + if( (pTos->flags | pNos->flags) & MEM_Null ){ + popStack(&pTos, 2); + pTos++; + pTos->flags = MEM_Null; + break; + } + Integerify(pTos); + Integerify(pNos); + a = pTos->i; + b = pNos->i; + switch( pOp->opcode ){ + case OP_BitAnd: a &= b; break; + case OP_BitOr: a |= b; break; + case OP_ShiftLeft: a <<= b; break; + case OP_ShiftRight: a >>= b; break; + default: /* CANT HAPPEN */ break; + } + assert( (pTos->flags & MEM_Dyn)==0 ); + assert( (pNos->flags & MEM_Dyn)==0 ); + pTos--; + Release(pTos); + pTos->i = a; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: AddImm P1 * * +** +** Add the value P1 to whatever is on top of the stack. The result +** is always an integer. +** +** To force the top of the stack to be an integer, just add 0. +*/ +case OP_AddImm: { + assert( pTos>=p->aStack ); + Integerify(pTos); + pTos->i += pOp->p1; + break; +} + +/* Opcode: ForceInt P1 P2 * +** +** Convert the top of the stack into an integer. If the current top of +** the stack is not numeric (meaning that is is a NULL or a string that +** does not look like an integer or floating point number) then pop the +** stack and jump to P2. If the top of the stack is numeric then +** convert it into the least integer that is greater than or equal to its +** current value if P1==0, or to the least integer that is strictly +** greater than its current value if P1==1. +*/ +case OP_ForceInt: { + int v; + assert( pTos>=p->aStack ); + if( (pTos->flags & (MEM_Int|MEM_Real))==0 + && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ + Release(pTos); + pTos--; + pc = pOp->p2 - 1; + break; + } + if( pTos->flags & MEM_Int ){ + v = pTos->i + (pOp->p1!=0); + }else{ + Realify(pTos); + v = (int)pTos->r; + if( pTos->r>(double)v ) v++; + if( pOp->p1 && pTos->r==(double)v ) v++; + } + Release(pTos); + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: MustBeInt P1 P2 * +** +** Force the top of the stack to be an integer. If the top of the +** stack is not an integer and cannot be converted into an integer +** with out data loss, then jump immediately to P2, or if P2==0 +** raise an SQLITE_MISMATCH exception. +** +** If the top of the stack is not an integer and P2 is not zero and +** P1 is 1, then the stack is popped. In all other cases, the depth +** of the stack is unchanged. +*/ +case OP_MustBeInt: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Int ){ + /* Do nothing */ + }else if( pTos->flags & MEM_Real ){ + int i = (int)pTos->r; + double r = (double)i; + if( r!=pTos->r ){ + goto mismatch; + } + pTos->i = i; + }else if( pTos->flags & MEM_Str ){ + int v; + if( !toInt(pTos->z, &v) ){ + double r; + if( !sqliteIsNumber(pTos->z) ){ + goto mismatch; + } + Realify(pTos); + v = (int)pTos->r; + r = (double)v; + if( r!=pTos->r ){ + goto mismatch; + } + } + pTos->i = v; + }else{ + goto mismatch; + } + Release(pTos); + pTos->flags = MEM_Int; + break; + +mismatch: + if( pOp->p2==0 ){ + rc = SQLITE_MISMATCH; + goto abort_due_to_error; + }else{ + if( pOp->p1 ) popStack(&pTos, 1); + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: Eq P1 P2 * +** +** Pop the top two elements from the stack. If they are equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared for equality that way. Otherwise the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrEq. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: Ne P1 P2 * +** +** Pop the top two elements from the stack. If they are not equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared in that format. Otherwise the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrNe. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: Lt P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is less than the first (the top of stack), then +** jump to instruction P2. Otherwise, continue to the next instruction. +** In other words, jump if NOS<TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared in that format. Numeric values are always less than +** non-numeric values. If both operands are non-numeric, the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrLt. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: Le P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is less than or equal to the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS<=TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared in that format. Numeric values are always less than +** non-numeric values. If both operands are non-numeric, the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrLe. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: Gt P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is greater than the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS>TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared in that format. Numeric values are always less than +** non-numeric values. If both operands are non-numeric, the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrGt. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: Ge P1 P2 * +** +** Pop the top two elements from the stack. If second element (the next +** on stack) is greater than or equal to the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS>=TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** If both values are numeric, they are converted to doubles using atof() +** and compared in that format. Numeric values are always less than +** non-numeric values. If both operands are non-numeric, the strcmp() library +** routine is used for the comparison. For a pure text comparison +** use OP_StrGe. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +case OP_Eq: +case OP_Ne: +case OP_Lt: +case OP_Le: +case OP_Gt: +case OP_Ge: { + Mem *pNos = &pTos[-1]; + int c, v; + int ft, fn; + assert( pNos>=p->aStack ); + ft = pTos->flags; + fn = pNos->flags; + if( (ft | fn) & MEM_Null ){ + popStack(&pTos, 2); + if( pOp->p2 ){ + if( pOp->p1 ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->flags = MEM_Null; + } + break; + }else if( (ft & fn & MEM_Int)==MEM_Int ){ + c = pNos->i - pTos->i; + }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ + c = v - pTos->i; + }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ + c = pNos->i - v; + }else{ + Stringify(pTos); + Stringify(pNos); + c = sqliteCompare(pNos->z, pTos->z); + } + switch( pOp->opcode ){ + case OP_Eq: c = c==0; break; + case OP_Ne: c = c!=0; break; + case OP_Lt: c = c<0; break; + case OP_Le: c = c<=0; break; + case OP_Gt: c = c>0; break; + default: c = c>=0; break; + } + popStack(&pTos, 2); + if( pOp->p2 ){ + if( c ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->i = c; + pTos->flags = MEM_Int; + } + break; +} +/* INSERT NO CODE HERE! +** +** The opcode numbers are extracted from this source file by doing +** +** grep '^case OP_' vdbe.c | ... >opcodes.h +** +** The opcodes are numbered in the order that they appear in this file. +** But in order for the expression generating code to work right, the +** string comparison operators that follow must be numbered exactly 6 +** greater than the numeric comparison opcodes above. So no other +** cases can appear between the two. +*/ +/* Opcode: StrEq P1 P2 * +** +** Pop the top two elements from the stack. If they are equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Eq. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: StrNe P1 P2 * +** +** Pop the top two elements from the stack. If they are not equal, then +** jump to instruction P2. Otherwise, continue to the next instruction. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Ne. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: StrLt P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is less than the first (the top of stack), then +** jump to instruction P2. Otherwise, continue to the next instruction. +** In other words, jump if NOS<TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Lt. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: StrLe P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is less than or equal to the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS<=TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Le. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: StrGt P1 P2 * +** +** Pop the top two elements from the stack. If second element (the +** next on stack) is greater than the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS>TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Gt. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +/* Opcode: StrGe P1 P2 * +** +** Pop the top two elements from the stack. If second element (the next +** on stack) is greater than or equal to the first (the top of stack), +** then jump to instruction P2. In other words, jump if NOS>=TOS. +** +** If either operand is NULL (and thus if the result is unknown) then +** take the jump if P1 is true. +** +** The strcmp() library routine is used for the comparison. For a +** numeric comparison, use OP_Ge. +** +** If P2 is zero, do not jump. Instead, push an integer 1 onto the +** stack if the jump would have been taken, or a 0 if not. Push a +** NULL if either operand was NULL. +*/ +case OP_StrEq: +case OP_StrNe: +case OP_StrLt: +case OP_StrLe: +case OP_StrGt: +case OP_StrGe: { + Mem *pNos = &pTos[-1]; + int c; + assert( pNos>=p->aStack ); + if( (pNos->flags | pTos->flags) & MEM_Null ){ + popStack(&pTos, 2); + if( pOp->p2 ){ + if( pOp->p1 ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->flags = MEM_Null; + } + break; + }else{ + Stringify(pTos); + Stringify(pNos); + c = strcmp(pNos->z, pTos->z); + } + /* The asserts on each case of the following switch are there to verify + ** that string comparison opcodes are always exactly 6 greater than the + ** corresponding numeric comparison opcodes. The code generator depends + ** on this fact. + */ + switch( pOp->opcode ){ + case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; + case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; + case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; + case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; + case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; + default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; + } + popStack(&pTos, 2); + if( pOp->p2 ){ + if( c ) pc = pOp->p2-1; + }else{ + pTos++; + pTos->flags = MEM_Int; + pTos->i = c; + } + break; +} + +/* Opcode: And * * * +** +** Pop two values off the stack. Take the logical AND of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +/* Opcode: Or * * * +** +** Pop two values off the stack. Take the logical OR of the +** two values and push the resulting boolean value back onto the +** stack. +*/ +case OP_And: +case OP_Or: { + Mem *pNos = &pTos[-1]; + int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ + + assert( pNos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + v1 = 2; + }else{ + Integerify(pTos); + v1 = pTos->i==0; + } + if( pNos->flags & MEM_Null ){ + v2 = 2; + }else{ + Integerify(pNos); + v2 = pNos->i==0; + } + if( pOp->opcode==OP_And ){ + static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; + v1 = and_logic[v1*3+v2]; + }else{ + static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; + v1 = or_logic[v1*3+v2]; + } + popStack(&pTos, 2); + pTos++; + if( v1==2 ){ + pTos->flags = MEM_Null; + }else{ + pTos->i = v1==0; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: Negative * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its additive inverse. If the top of the stack is NULL +** its value is unchanged. +*/ +/* Opcode: AbsValue * * * +** +** Treat the top of the stack as a numeric quantity. Replace it +** with its absolute value. If the top of the stack is NULL +** its value is unchanged. +*/ +case OP_Negative: +case OP_AbsValue: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Real ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + }else if( pTos->flags & MEM_Int ){ + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->i<0 ){ + pTos->i = -pTos->i; + } + pTos->flags = MEM_Int; + }else if( pTos->flags & MEM_Null ){ + /* Do nothing */ + }else{ + Realify(pTos); + Release(pTos); + if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ + pTos->r = -pTos->r; + } + pTos->flags = MEM_Real; + } + break; +} + +/* Opcode: Not * * * +** +** Interpret the top of the stack as a boolean value. Replace it +** with its complement. If the top of the stack is NULL its value +** is unchanged. +*/ +case OP_Not: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + Release(pTos); + pTos->i = !pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: BitNot * * * +** +** Interpret the top of the stack as an value. Replace it +** with its ones-complement. If the top of the stack is NULL its +** value is unchanged. +*/ +case OP_BitNot: { + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ + Integerify(pTos); + Release(pTos); + pTos->i = ~pTos->i; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: Noop * * * +** +** Do nothing. This instruction is often useful as a jump +** destination. +*/ +case OP_Noop: { + break; +} + +/* Opcode: If P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** true, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +/* Opcode: IfNot P1 P2 * +** +** Pop a single boolean from the stack. If the boolean popped is +** false, then jump to p2. Otherwise continue to the next instruction. +** An integer is false if zero and true otherwise. A string is +** false if it has zero length and true otherwise. +** +** If the value popped of the stack is NULL, then take the jump if P1 +** is true and fall through if P1 is false. +*/ +case OP_If: +case OP_IfNot: { + int c; + assert( pTos>=p->aStack ); + if( pTos->flags & MEM_Null ){ + c = pOp->p1; + }else{ + Integerify(pTos); + c = pTos->i; + if( pOp->opcode==OP_IfNot ) c = !c; + } + assert( (pTos->flags & MEM_Dyn)==0 ); + pTos--; + if( c ) pc = pOp->p2-1; + break; +} + +/* Opcode: IsNull P1 P2 * +** +** If any of the top abs(P1) values on the stack are NULL, then jump +** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack +** unchanged. +*/ +case OP_IsNull: { + int i, cnt; + Mem *pTerm; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + pTerm = &pTos[1-cnt]; + assert( pTerm>=p->aStack ); + for(i=0; i<cnt; i++, pTerm++){ + if( pTerm->flags & MEM_Null ){ + pc = pOp->p2-1; + break; + } + } + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: NotNull P1 P2 * +** +** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the +** stack if P1 times if P1 is greater than zero. If P1 is less than +** zero then leave the stack unchanged. +*/ +case OP_NotNull: { + int i, cnt; + cnt = pOp->p1; + if( cnt<0 ) cnt = -cnt; + assert( &pTos[1-cnt] >= p->aStack ); + for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} + if( i>=cnt ) pc = pOp->p2-1; + if( pOp->p1>0 ) popStack(&pTos, cnt); + break; +} + +/* Opcode: MakeRecord P1 P2 * +** +** Convert the top P1 entries of the stack into a single entry +** suitable for use as a data record in a database table. The +** details of the format are irrelavant as long as the OP_Column +** opcode can decode the record later. Refer to source code +** comments for the details of the record format. +** +** If P2 is true (non-zero) and one or more of the P1 entries +** that go into building the record is NULL, then add some extra +** bytes to the record to make it distinct for other entries created +** during the same run of the VDBE. The extra bytes added are a +** counter that is reset with each run of the VDBE, so records +** created this way will not necessarily be distinct across runs. +** But they should be distinct for transient tables (created using +** OP_OpenTemp) which is what they are intended for. +** +** (Later:) The P2==1 option was intended to make NULLs distinct +** for the UNION operator. But I have since discovered that NULLs +** are indistinct for UNION. So this option is never used. +*/ +case OP_MakeRecord: { + char *zNewRecord; + int nByte; + int nField; + int i, j; + int idxWidth; + u32 addr; + Mem *pRec; + int addUnique = 0; /* True to cause bytes to be added to make the + ** generated record distinct */ + char zTemp[NBFS]; /* Temp space for small records */ + + /* Assuming the record contains N fields, the record format looks + ** like this: + ** + ** ------------------------------------------------------------------- + ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | + ** ------------------------------------------------------------------- + ** + ** All data fields are converted to strings before being stored and + ** are stored with their null terminators. NULL entries omit the + ** null terminator. Thus an empty string uses 1 byte and a NULL uses + ** zero bytes. Data(0) is taken from the lowest element of the stack + ** and data(N-1) is the top of the stack. + ** + ** Each of the idx() entries is either 1, 2, or 3 bytes depending on + ** how big the total record is. Idx(0) contains the offset to the start + ** of data(0). Idx(k) contains the offset to the start of data(k). + ** Idx(N) contains the total number of bytes in the record. + */ + nField = pOp->p1; + pRec = &pTos[1-nField]; + assert( pRec>=p->aStack ); + nByte = 0; + for(i=0; i<nField; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + addUnique = pOp->p2; + }else{ + Stringify(pRec); + nByte += pRec->n; + } + } + if( addUnique ) nByte += sizeof(p->uniqueCnt); + if( nByte + nField + 1 < 256 ){ + idxWidth = 1; + }else if( nByte + 2*nField + 2 < 65536 ){ + idxWidth = 2; + }else{ + idxWidth = 3; + } + nByte += idxWidth*(nField + 1); + if( nByte>MAX_BYTES_PER_ROW ){ + rc = SQLITE_TOOBIG; + goto abort_due_to_error; + } + if( nByte<=NBFS ){ + zNewRecord = zTemp; + }else{ + zNewRecord = sqliteMallocRaw( nByte ); + if( zNewRecord==0 ) goto no_mem; + } + j = 0; + addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); + for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ + zNewRecord[j++] = addr & 0xff; + if( idxWidth>1 ){ + zNewRecord[j++] = (addr>>8)&0xff; + if( idxWidth>2 ){ + zNewRecord[j++] = (addr>>16)&0xff; + } + } + if( (pRec->flags & MEM_Null)==0 ){ + addr += pRec->n; + } + } + zNewRecord[j++] = addr & 0xff; + if( idxWidth>1 ){ + zNewRecord[j++] = (addr>>8)&0xff; + if( idxWidth>2 ){ + zNewRecord[j++] = (addr>>16)&0xff; + } + } + if( addUnique ){ + memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); + p->uniqueCnt++; + j += sizeof(p->uniqueCnt); + } + for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){ + if( (pRec->flags & MEM_Null)==0 ){ + memcpy(&zNewRecord[j], pRec->z, pRec->n); + j += pRec->n; + } + } + popStack(&pTos, nField); + pTos++; + pTos->n = nByte; + if( nByte<=NBFS ){ + assert( zNewRecord==zTemp ); + memcpy(pTos->zShort, zTemp, nByte); + pTos->z = pTos->zShort; + pTos->flags = MEM_Str | MEM_Short; + }else{ + assert( zNewRecord!=zTemp ); + pTos->z = zNewRecord; + pTos->flags = MEM_Str | MEM_Dyn; + } + break; +} + +/* Opcode: MakeKey P1 P2 P3 +** +** Convert the top P1 entries of the stack into a single entry suitable +** for use as the key in an index. The top P1 records are +** converted to strings and merged. The null-terminators +** are retained and used as separators. +** The lowest entry in the stack is the first field and the top of the +** stack becomes the last. +** +** If P2 is not zero, then the original entries remain on the stack +** and the new key is pushed on top. If P2 is zero, the original +** data is popped off the stack first then the new key is pushed +** back in its place. +** +** P3 is a string that is P1 characters long. Each character is either +** an 'n' or a 't' to indicates if the argument should be intepreted as +** numeric or text type. The first character of P3 corresponds to the +** lowest element on the stack. If P3 is NULL then all arguments are +** assumed to be of the numeric type. +** +** The type makes a difference in that text-type fields may not be +** introduced by 'b' (as described in the next paragraph). The +** first character of a text-type field must be either 'a' (if it is NULL) +** or 'c'. Numeric fields will be introduced by 'b' if their content +** looks like a well-formed number. Otherwise the 'a' or 'c' will be +** used. +** +** The key is a concatenation of fields. Each field is terminated by +** a single 0x00 character. A NULL field is introduced by an 'a' and +** is followed immediately by its 0x00 terminator. A numeric field is +** introduced by a single character 'b' and is followed by a sequence +** of characters that represent the number such that a comparison of +** the character string using memcpy() sorts the numbers in numerical +** order. The character strings for numbers are generated using the +** sqliteRealToSortable() function. A text field is introduced by a +** 'c' character and is followed by the exact text of the field. The +** use of an 'a', 'b', or 'c' character at the beginning of each field +** guarantees that NULLs sort before numbers and that numbers sort +** before text. 0x00 characters do not occur except as separators +** between fields. +** +** See also: MakeIdxKey, SortMakeKey +*/ +/* Opcode: MakeIdxKey P1 P2 P3 +** +** Convert the top P1 entries of the stack into a single entry suitable +** for use as the key in an index. In addition, take one additional integer +** off of the stack, treat that integer as a four-byte record number, and +** append the four bytes to the key. Thus a total of P1+1 entries are +** popped from the stack for this instruction and a single entry is pushed +** back. The first P1 entries that are popped are strings and the last +** entry (the lowest on the stack) is an integer record number. +** +** The converstion of the first P1 string entries occurs just like in +** MakeKey. Each entry is separated from the others by a null. +** The entire concatenation is null-terminated. The lowest entry +** in the stack is the first field and the top of the stack becomes the +** last. +** +** If P2 is not zero and one or more of the P1 entries that go into the +** generated key is NULL, then jump to P2 after the new key has been +** pushed on the stack. In other words, jump to P2 if the key is +** guaranteed to be unique. This jump can be used to skip a subsequent +** uniqueness test. +** +** P3 is a string that is P1 characters long. Each character is either +** an 'n' or a 't' to indicates if the argument should be numeric or +** text. The first character corresponds to the lowest element on the +** stack. If P3 is null then all arguments are assumed to be numeric. +** +** See also: MakeKey, SortMakeKey +*/ +case OP_MakeIdxKey: +case OP_MakeKey: { + char *zNewKey; + int nByte; + int nField; + int addRowid; + int i, j; + int containsNull = 0; + Mem *pRec; + char zTemp[NBFS]; + + addRowid = pOp->opcode==OP_MakeIdxKey; + nField = pOp->p1; + pRec = &pTos[1-nField]; + assert( pRec>=p->aStack ); + nByte = 0; + for(j=0, i=0; i<nField; i++, j++, pRec++){ + int flags = pRec->flags; + int len; + char *z; + if( flags & MEM_Null ){ + nByte += 2; + containsNull = 1; + }else if( pOp->p3 && pOp->p3[j]=='t' ){ + Stringify(pRec); + pRec->flags &= ~(MEM_Int|MEM_Real); + nByte += pRec->n+1; + }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ + if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ + pRec->r = pRec->i; + }else if( (flags & (MEM_Real|MEM_Int))==0 ){ + pRec->r = sqliteAtoF(pRec->z, 0); + } + Release(pRec); + z = pRec->zShort; + sqliteRealToSortable(pRec->r, z); + len = strlen(z); + pRec->z = 0; + pRec->flags = MEM_Real; + pRec->n = len+1; + nByte += pRec->n+1; + }else{ + nByte += pRec->n+1; + } + } + if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ + rc = SQLITE_TOOBIG; + goto abort_due_to_error; + } + if( addRowid ) nByte += sizeof(u32); + if( nByte<=NBFS ){ + zNewKey = zTemp; + }else{ + zNewKey = sqliteMallocRaw( nByte ); + if( zNewKey==0 ) goto no_mem; + } + j = 0; + pRec = &pTos[1-nField]; + for(i=0; i<nField; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + zNewKey[j++] = 'a'; + zNewKey[j++] = 0; + }else if( pRec->flags==MEM_Real ){ + zNewKey[j++] = 'b'; + memcpy(&zNewKey[j], pRec->zShort, pRec->n); + j += pRec->n; + }else{ + assert( pRec->flags & MEM_Str ); + zNewKey[j++] = 'c'; + memcpy(&zNewKey[j], pRec->z, pRec->n); + j += pRec->n; + } + } + if( addRowid ){ + u32 iKey; + pRec = &pTos[-nField]; + assert( pRec>=p->aStack ); + Integerify(pRec); + iKey = intToKey(pRec->i); + memcpy(&zNewKey[j], &iKey, sizeof(u32)); + popStack(&pTos, nField+1); + if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; + }else{ + if( pOp->p2==0 ) popStack(&pTos, nField); + } + pTos++; + pTos->n = nByte; + if( nByte<=NBFS ){ + assert( zNewKey==zTemp ); + pTos->z = pTos->zShort; + memcpy(pTos->zShort, zTemp, nByte); + pTos->flags = MEM_Str | MEM_Short; + }else{ + pTos->z = zNewKey; + pTos->flags = MEM_Str | MEM_Dyn; + } + break; +} + +/* Opcode: IncrKey * * * +** +** The top of the stack should contain an index key generated by +** The MakeKey opcode. This routine increases the least significant +** byte of that key by one. This is used so that the MoveTo opcode +** will move to the first entry greater than the key rather than to +** the key itself. +*/ +case OP_IncrKey: { + assert( pTos>=p->aStack ); + /* The IncrKey opcode is only applied to keys generated by + ** MakeKey or MakeIdxKey and the results of those operands + ** are always dynamic strings or zShort[] strings. So we + ** are always free to modify the string in place. + */ + assert( pTos->flags & (MEM_Dyn|MEM_Short) ); + pTos->z[pTos->n-1]++; + break; +} + +/* Opcode: Checkpoint P1 * * +** +** Begin a checkpoint. A checkpoint is the beginning of a operation that +** is part of a larger transaction but which might need to be rolled back +** itself without effecting the containing transaction. A checkpoint will +** be automatically committed or rollback when the VDBE halts. +** +** The checkpoint is begun on the database file with index P1. The main +** database file has an index of 0 and the file used for temporary tables +** has an index of 1. +*/ +case OP_Checkpoint: { + int i = pOp->p1; + if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ + rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); + if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2; + } + break; +} + +/* Opcode: Transaction P1 * * +** +** Begin a transaction. The transaction ends when a Commit or Rollback +** opcode is encountered. Depending on the ON CONFLICT setting, the +** transaction might also be rolled back if an error is encountered. +** +** P1 is the index of the database file on which the transaction is +** started. Index 0 is the main database file and index 1 is the +** file used for temporary tables. +** +** A write lock is obtained on the database file when a transaction is +** started. No other process can read or write the file while the +** transaction is underway. Starting a transaction also creates a +** rollback journal. A transaction must be started before any changes +** can be made to the database. +*/ +case OP_Transaction: { + int busy = 1; + int i = pOp->p1; + assert( i>=0 && i<db->nDb ); + if( db->aDb[i].inTrans ) break; + while( db->aDb[i].pBt!=0 && busy ){ + rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); + switch( rc ){ + case SQLITE_BUSY: { + if( db->xBusyCallback==0 ){ + p->pc = pc; + p->undoTransOnError = 1; + p->rc = SQLITE_BUSY; + p->pTos = pTos; + return SQLITE_BUSY; + }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ + sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); + busy = 0; + } + break; + } + case SQLITE_READONLY: { + rc = SQLITE_OK; + /* Fall thru into the next case */ + } + case SQLITE_OK: { + p->inTempTrans = 0; + busy = 0; + break; + } + default: { + goto abort_due_to_error; + } + } + } + db->aDb[i].inTrans = 1; + p->undoTransOnError = 1; + break; +} + +/* Opcode: Commit * * * +** +** Cause all modifications to the database that have been made since the +** last Transaction to actually take effect. No additional modifications +** are allowed until another transaction is started. The Commit instruction +** deletes the journal file and releases the write lock on the database. +** A read lock continues to be held if there are still cursors open. +*/ +case OP_Commit: { + int i; + if( db->xCommitCallback!=0 ){ + if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; + if( db->xCommitCallback(db->pCommitArg)!=0 ){ + rc = SQLITE_CONSTRAINT; + } + if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; + } + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + if( db->aDb[i].inTrans ){ + rc = sqliteBtreeCommit(db->aDb[i].pBt); + db->aDb[i].inTrans = 0; + } + } + if( rc==SQLITE_OK ){ + sqliteCommitInternalChanges(db); + }else{ + sqliteRollbackAll(db); + } + break; +} + +/* Opcode: Rollback P1 * * +** +** Cause all modifications to the database that have been made since the +** last Transaction to be undone. The database is restored to its state +** before the Transaction opcode was executed. No additional modifications +** are allowed until another transaction is started. +** +** P1 is the index of the database file that is committed. An index of 0 +** is used for the main database and an index of 1 is used for the file used +** to hold temporary tables. +** +** This instruction automatically closes all cursors and releases both +** the read and write locks on the indicated database. +*/ +case OP_Rollback: { + sqliteRollbackAll(db); + break; +} + +/* Opcode: ReadCookie P1 P2 * +** +** Read cookie number P2 from database P1 and push it onto the stack. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** There must be a read-lock on the database (either a transaction +** must be started or there must be an open cursor) before +** executing this instruction. +*/ +case OP_ReadCookie: { + int aMeta[SQLITE_N_BTREE_META]; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( db->aDb[pOp->p1].pBt!=0 ); + rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); + pTos++; + pTos->i = aMeta[1+pOp->p2]; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: SetCookie P1 P2 * +** +** Write the top of the stack into cookie number P2 of database P1. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** A transaction must be started before executing this opcode. +*/ +case OP_SetCookie: { + int aMeta[SQLITE_N_BTREE_META]; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( db->aDb[pOp->p1].pBt!=0 ); + assert( pTos>=p->aStack ); + Integerify(pTos) + rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); + if( rc==SQLITE_OK ){ + aMeta[1+pOp->p2] = pTos->i; + rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: VerifyCookie P1 P2 * +** +** Check the value of global database parameter number 0 (the +** schema version) and make sure it is equal to P2. +** P1 is the database number which is 0 for the main database file +** and 1 for the file holding temporary tables and some higher number +** for auxiliary databases. +** +** The cookie changes its value whenever the database schema changes. +** This operation is used to detect when that the cookie has changed +** and that the current process needs to reread the schema. +** +** Either a transaction needs to have been started or an OP_Open needs +** to be executed (to establish a read lock) before this opcode is +** invoked. +*/ +case OP_VerifyCookie: { + int aMeta[SQLITE_N_BTREE_META]; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); + if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){ + sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0); + rc = SQLITE_SCHEMA; + } + break; +} + +/* Opcode: OpenRead P1 P2 P3 +** +** Open a read-only cursor for the database table whose root page is +** P2 in a database file. The database file is determined by an +** integer from the top of the stack. 0 means the main database and +** 1 means the database used for temporary tables. Give the new +** cursor an identifier of P1. The P1 values need not be contiguous +** but all P1 values should be small integers. It is an error for +** P1 to be negative. +** +** If P2==0 then take the root page number from the next of the stack. +** +** There will be a read lock on the database whenever there is an +** open cursor. If the database was unlocked prior to this instruction +** then a read lock is acquired as part of this instruction. A read +** lock allows other processes to read the database but prohibits +** any other process from modifying the database. The read lock is +** released when all cursors are closed. If this instruction attempts +** to get a read lock but fails, the script terminates with an +** SQLITE_BUSY error code. +** +** The P3 value is the name of the table or index being opened. +** The P3 value is not actually used by this opcode and may be +** omitted. But the code generator usually inserts the index or +** table name into P3 to make the code easier to read. +** +** See also OpenWrite. +*/ +/* Opcode: OpenWrite P1 P2 P3 +** +** Open a read/write cursor named P1 on the table or index whose root +** page is P2. If P2==0 then take the root page number from the stack. +** +** The P3 value is the name of the table or index being opened. +** The P3 value is not actually used by this opcode and may be +** omitted. But the code generator usually inserts the index or +** table name into P3 to make the code easier to read. +** +** This instruction works just like OpenRead except that it opens the cursor +** in read/write mode. For a given table, there can be one or more read-only +** cursors or a single read/write cursor but not both. +** +** See also OpenRead. +*/ +case OP_OpenRead: +case OP_OpenWrite: { + int busy = 0; + int i = pOp->p1; + int p2 = pOp->p2; + int wrFlag; + Btree *pX; + int iDb; + + assert( pTos>=p->aStack ); + Integerify(pTos); + iDb = pTos->i; + pTos--; + assert( iDb>=0 && iDb<db->nDb ); + pX = db->aDb[iDb].pBt; + assert( pX!=0 ); + wrFlag = pOp->opcode==OP_OpenWrite; + if( p2<=0 ){ + assert( pTos>=p->aStack ); + Integerify(pTos); + p2 = pTos->i; + pTos--; + if( p2<2 ){ + sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); + rc = SQLITE_INTERNAL; + break; + } + } + assert( i>=0 ); + if( expandCursorArraySize(p, i) ) goto no_mem; + sqliteVdbeCleanupCursor(&p->aCsr[i]); + memset(&p->aCsr[i], 0, sizeof(Cursor)); + p->aCsr[i].nullRow = 1; + if( pX==0 ) break; + do{ + rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); + switch( rc ){ + case SQLITE_BUSY: { + if( db->xBusyCallback==0 ){ + p->pc = pc; + p->rc = SQLITE_BUSY; + p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ + return SQLITE_BUSY; + }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ + sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); + busy = 0; + } + break; + } + case SQLITE_OK: { + busy = 0; + break; + } + default: { + goto abort_due_to_error; + } + } + }while( busy ); + break; +} + +/* Opcode: OpenTemp P1 P2 * +** +** Open a new cursor to a transient table. +** The transient cursor is always opened read/write even if +** the main database is read-only. The transient table is deleted +** automatically when the cursor is closed. +** +** The cursor points to a BTree table if P2==0 and to a BTree index +** if P2==1. A BTree table must have an integer key and can have arbitrary +** data. A BTree index has no data but can have an arbitrary key. +** +** This opcode is used for tables that exist for the duration of a single +** SQL statement only. Tables created using CREATE TEMPORARY TABLE +** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the +** context of this opcode means for the duration of a single SQL statement +** whereas "Temporary" in the context of CREATE TABLE means for the duration +** of the connection to the database. Same word; different meanings. +*/ +case OP_OpenTemp: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + if( expandCursorArraySize(p, i) ) goto no_mem; + pCx = &p->aCsr[i]; + sqliteVdbeCleanupCursor(pCx); + memset(pCx, 0, sizeof(*pCx)); + pCx->nullRow = 1; + rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); + + if( rc==SQLITE_OK ){ + rc = sqliteBtreeBeginTrans(pCx->pBt); + } + if( rc==SQLITE_OK ){ + if( pOp->p2 ){ + int pgno; + rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); + if( rc==SQLITE_OK ){ + rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); + } + }else{ + rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); + } + } + break; +} + +/* Opcode: OpenPseudo P1 * * +** +** Open a new cursor that points to a fake table that contains a single +** row of data. Any attempt to write a second row of data causes the +** first row to be deleted. All data is deleted when the cursor is +** closed. +** +** A pseudo-table created by this opcode is useful for holding the +** NEW or OLD tables in a trigger. +*/ +case OP_OpenPseudo: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + if( expandCursorArraySize(p, i) ) goto no_mem; + pCx = &p->aCsr[i]; + sqliteVdbeCleanupCursor(pCx); + memset(pCx, 0, sizeof(*pCx)); + pCx->nullRow = 1; + pCx->pseudoTable = 1; + break; +} + +/* Opcode: Close P1 * * +** +** Close a cursor previously opened as P1. If P1 is not +** currently open, this instruction is a no-op. +*/ +case OP_Close: { + int i = pOp->p1; + if( i>=0 && i<p->nCursor ){ + sqliteVdbeCleanupCursor(&p->aCsr[i]); + } + break; +} + +/* Opcode: MoveTo P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to an entry with a matching key. If +** the table contains no record with a matching key, then the cursor +** is left pointing at the first record that is greater than the key. +** If there are no records greater than the key and P2 is not zero, +** then an immediate jump to P2 is made. +** +** See also: Found, NotFound, Distinct, MoveLt +*/ +/* Opcode: MoveLt P1 P2 * +** +** Pop the top of the stack and use its value as a key. Reposition +** cursor P1 so that it points to the entry with the largest key that is +** less than the key popped from the stack. +** If there are no records less than than the key and P2 +** is not zero then an immediate jump to P2 is made. +** +** See also: MoveTo +*/ +case OP_MoveLt: +case OP_MoveTo: { + int i = pOp->p1; + Cursor *pC; + + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + if( pC->pCursor!=0 ){ + int res, oc; + pC->nullRow = 0; + if( pTos->flags & MEM_Int ){ + int iKey = intToKey(pTos->i); + if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ + pC->movetoTarget = iKey; + pC->deferredMoveto = 1; + Release(pTos); + pTos--; + break; + } + sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); + pC->lastRecno = pTos->i; + pC->recnoIsValid = res==0; + }else{ + Stringify(pTos); + sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + pC->recnoIsValid = 0; + } + pC->deferredMoveto = 0; + sqlite_search_count++; + oc = pOp->opcode; + if( oc==OP_MoveTo && res<0 ){ + sqliteBtreeNext(pC->pCursor, &res); + pC->recnoIsValid = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else if( oc==OP_MoveLt ){ + if( res>=0 ){ + sqliteBtreePrevious(pC->pCursor, &res); + pC->recnoIsValid = 0; + }else{ + /* res might be negative because the table is empty. Check to + ** see if this is the case. + */ + int keysize; + res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; + } + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Distinct P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key does +** not exist in the table of cursor P1, then jump to P2. If the record +** does already exist, then fall thru. The cursor is left pointing +** at the record if it exists. The key is not popped from the stack. +** +** This operation is similar to NotFound except that this operation +** does not pop the key from the stack. +** +** See also: Found, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: Found P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does exist in table of P1, then jump to P2. If the record +** does not exist, then fall thru. The cursor is left pointing +** to the record if it exists. The key is popped from the stack. +** +** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: NotFound P1 P2 * +** +** Use the top of the stack as a string key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The key is popped from the stack. +** +** The difference between this operation and Distinct is that +** Distinct does not pop the key from the stack. +** +** See also: Distinct, Found, MoveTo, NotExists, IsUnique +*/ +case OP_Distinct: +case OP_NotFound: +case OP_Found: { + int i = pOp->p1; + int alreadyExists = 0; + Cursor *pC; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + if( (pC = &p->aCsr[i])->pCursor!=0 ){ + int res, rx; + Stringify(pTos); + rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); + alreadyExists = rx==SQLITE_OK && res==0; + pC->deferredMoveto = 0; + } + if( pOp->opcode==OP_Found ){ + if( alreadyExists ) pc = pOp->p2 - 1; + }else{ + if( !alreadyExists ) pc = pOp->p2 - 1; + } + if( pOp->opcode!=OP_Distinct ){ + Release(pTos); + pTos--; + } + break; +} + +/* Opcode: IsUnique P1 P2 * +** +** The top of the stack is an integer record number. Call this +** record number R. The next on the stack is an index key created +** using MakeIdxKey. Call it K. This instruction pops R from the +** stack but it leaves K unchanged. +** +** P1 is an index. So all but the last four bytes of K are an +** index string. The last four bytes of K are a record number. +** +** This instruction asks if there is an entry in P1 where the +** index string matches K but the record number is different +** from R. If there is no such entry, then there is an immediate +** jump to P2. If any entry does exist where the index string +** matches K but the record number is not R, then the record +** number for that entry is pushed onto the stack and control +** falls through to the next instruction. +** +** See also: Distinct, NotFound, NotExists, Found +*/ +case OP_IsUnique: { + int i = pOp->p1; + Mem *pNos = &pTos[-1]; + BtCursor *pCrsr; + int R; + + /* Pop the value R off the top of the stack + */ + assert( pNos>=p->aStack ); + Integerify(pTos); + R = pTos->i; + pTos--; + assert( i>=0 && i<=p->nCursor ); + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int res, rc; + int v; /* The record number on the P1 entry that matches K */ + char *zKey; /* The value of K */ + int nKey; /* Number of bytes in K */ + + /* Make sure K is a string and make zKey point to K + */ + Stringify(pNos); + zKey = pNos->z; + nKey = pNos->n; + assert( nKey >= 4 ); + + /* Search for an entry in P1 where all but the last four bytes match K. + ** If there is no such entry, jump immediately to P2. + */ + assert( p->aCsr[i].deferredMoveto==0 ); + rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res<0 ){ + rc = sqliteBtreeNext(pCrsr, &res); + if( res ){ + pc = pOp->p2 - 1; + break; + } + } + rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res>0 ){ + pc = pOp->p2 - 1; + break; + } + + /* At this point, pCrsr is pointing to an entry in P1 where all but + ** the last for bytes of the key match K. Check to see if the last + ** four bytes of the key are different from R. If the last four + ** bytes equal R then jump immediately to P2. + */ + sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); + v = keyToInt(v); + if( v==R ){ + pc = pOp->p2 - 1; + break; + } + + /* The last four bytes of the key are different from R. Convert the + ** last four bytes of the key into an integer and push it onto the + ** stack. (These bytes are the record number of an entry that + ** violates a UNIQUE constraint.) + */ + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + } + break; +} + +/* Opcode: NotExists P1 P2 * +** +** Use the top of the stack as a integer key. If a record with that key +** does not exist in table of P1, then jump to P2. If the record +** does exist, then fall thru. The cursor is left pointing to the +** record if it exists. The integer key is popped from the stack. +** +** The difference between this operation and NotFound is that this +** operation assumes the key is an integer and NotFound assumes it +** is a string. +** +** See also: Distinct, Found, MoveTo, NotFound, IsUnique +*/ +case OP_NotExists: { + int i = pOp->p1; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int res, rx, iKey; + assert( pTos->flags & MEM_Int ); + iKey = intToKey(pTos->i); + rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); + p->aCsr[i].lastRecno = pTos->i; + p->aCsr[i].recnoIsValid = res==0; + p->aCsr[i].nullRow = 0; + if( rx!=SQLITE_OK || res!=0 ){ + pc = pOp->p2 - 1; + p->aCsr[i].recnoIsValid = 0; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: NewRecno P1 * * +** +** Get a new integer record number used as the key to a table. +** The record number is not previously used as a key in the database +** table that cursor P1 points to. The new record number is pushed +** onto the stack. +*/ +case OP_NewRecno: { + int i = pOp->p1; + int v = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + if( (pC = &p->aCsr[i])->pCursor==0 ){ + v = 0; + }else{ + /* The next rowid or record number (different terms for the same + ** thing) is obtained in a two-step algorithm. + ** + ** First we attempt to find the largest existing rowid and add one + ** to that. But if the largest existing rowid is already the maximum + ** positive integer, we have to fall through to the second + ** probabilistic algorithm + ** + ** The second algorithm is to select a rowid at random and see if + ** it already exists in the table. If it does not exist, we have + ** succeeded. If the random rowid does exist, we select a new one + ** and try again, up to 1000 times. + ** + ** For a table with less than 2 billion entries, the probability + ** of not finding a unused rowid is about 1.0e-300. This is a + ** non-zero probability, but it is still vanishingly small and should + ** never cause a problem. You are much, much more likely to have a + ** hardware failure than for this algorithm to fail. + ** + ** The analysis in the previous paragraph assumes that you have a good + ** source of random numbers. Is a library function like lrand48() + ** good enough? Maybe. Maybe not. It's hard to know whether there + ** might be subtle bugs is some implementations of lrand48() that + ** could cause problems. To avoid uncertainty, SQLite uses its own + ** random number generator based on the RC4 algorithm. + ** + ** To promote locality of reference for repetitive inserts, the + ** first few attempts at chosing a random rowid pick values just a little + ** larger than the previous rowid. This has been shown experimentally + ** to double the speed of the COPY operation. + */ + int res, rx, cnt, x; + cnt = 0; + if( !pC->useRandomRowid ){ + if( pC->nextRowidValid ){ + v = pC->nextRowid; + }else{ + rx = sqliteBtreeLast(pC->pCursor, &res); + if( res ){ + v = 1; + }else{ + sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); + v = keyToInt(v); + if( v==0x7fffffff ){ + pC->useRandomRowid = 1; + }else{ + v++; + } + } + } + if( v<0x7fffffff ){ + pC->nextRowidValid = 1; + pC->nextRowid = v+1; + }else{ + pC->nextRowidValid = 0; + } + } + if( pC->useRandomRowid ){ + v = db->priorNewRowid; + cnt = 0; + do{ + if( v==0 || cnt>2 ){ + sqliteRandomness(sizeof(v), &v); + if( cnt<5 ) v &= 0xffffff; + }else{ + unsigned char r; + sqliteRandomness(1, &r); + v += r + 1; + } + if( v==0 ) continue; + x = intToKey(v); + rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); + cnt++; + }while( cnt<1000 && rx==SQLITE_OK && res==0 ); + db->priorNewRowid = v; + if( rx==SQLITE_OK && res==0 ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + } + pTos++; + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: PutIntKey P1 P2 * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be an integer. The stack is popped twice by this instruction. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set, +** then the current statement change count is incremented (otherwise not). +** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is +** stored for subsequent return by the sqlite_last_insert_rowid() function +** (otherwise it's unmodified). +*/ +/* Opcode: PutStrKey P1 * * +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value on the top of the +** stack. The key is the next value down on the stack. The key must +** be a string. The stack is popped twice by this instruction. +** +** P1 may not be a pseudo-table opened using the OpenPseudo opcode. +*/ +case OP_PutIntKey: +case OP_PutStrKey: { + Mem *pNos = &pTos[-1]; + int i = pOp->p1; + Cursor *pC; + assert( pNos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ + char *zKey; + int nKey, iKey; + if( pOp->opcode==OP_PutStrKey ){ + Stringify(pNos); + nKey = pNos->n; + zKey = pNos->z; + }else{ + assert( pNos->flags & MEM_Int ); + nKey = sizeof(int); + iKey = intToKey(pNos->i); + zKey = (char*)&iKey; + if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; + if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; + if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; + if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ + pC->nextRowidValid = 0; + } + } + if( pTos->flags & MEM_Null ){ + pTos->z = 0; + pTos->n = 0; + }else{ + assert( pTos->flags & MEM_Str ); + } + if( pC->pseudoTable ){ + /* PutStrKey does not work for pseudo-tables. + ** The following assert makes sure we are not trying to use + ** PutStrKey on a pseudo-table + */ + assert( pOp->opcode==OP_PutIntKey ); + sqliteFree(pC->pData); + pC->iKey = iKey; + pC->nData = pTos->n; + if( pTos->flags & MEM_Dyn ){ + pC->pData = pTos->z; + pTos->flags = MEM_Null; + }else{ + pC->pData = sqliteMallocRaw( pC->nData ); + if( pC->pData ){ + memcpy(pC->pData, pTos->z, pC->nData); + } + } + pC->nullRow = 0; + }else{ + rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); + } + pC->recnoIsValid = 0; + pC->deferredMoveto = 0; + } + popStack(&pTos, 2); + break; +} + +/* Opcode: Delete P1 P2 * +** +** Delete the record at which the P1 cursor is currently pointing. +** +** The cursor will be left pointing at either the next or the previous +** record in the table. If it is left pointing at the next record, then +** the next Next instruction will be a no-op. Hence it is OK to delete +** a record from within an Next loop. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set, +** then the current statement change count is incremented (otherwise not). +** +** If P1 is a pseudo-table, then this instruction is a no-op. +*/ +case OP_Delete: { + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + if( pC->pCursor!=0 ){ + sqliteVdbeCursorMoveto(pC); + rc = sqliteBtreeDelete(pC->pCursor); + pC->nextRowidValid = 0; + } + if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; + if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; + break; +} + +/* Opcode: SetCounts * * * +** +** Called at end of statement. Updates lsChange (last statement change count) +** and resets csChange (current statement change count) to 0. +*/ +case OP_SetCounts: { + db->lsChange=db->csChange; + db->csChange=0; + break; +} + +/* Opcode: KeyAsData P1 P2 * +** +** Turn the key-as-data mode for cursor P1 either on (if P2==1) or +** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls +** data off of the key rather than the data. This is used for +** processing compound selects. +*/ +case OP_KeyAsData: { + int i = pOp->p1; + assert( i>=0 && i<p->nCursor ); + p->aCsr[i].keyAsData = pOp->p2; + break; +} + +/* Opcode: RowData P1 * * +** +** Push onto the stack the complete row data for cursor P1. +** There is no interpretation of the data. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +/* Opcode: RowKey P1 * * +** +** Push onto the stack the complete row key for cursor P1. +** There is no interpretation of the key. It is just copied +** onto the stack exactly as it is found in the database file. +** +** If the cursor is not pointing to a valid row, a NULL is pushed +** onto the stack. +*/ +case OP_RowKey: +case OP_RowData: { + int i = pOp->p1; + Cursor *pC; + int n; + + pTos++; + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + if( pC->nullRow ){ + pTos->flags = MEM_Null; + }else if( pC->pCursor!=0 ){ + BtCursor *pCrsr = pC->pCursor; + sqliteVdbeCursorMoveto(pC); + if( pC->nullRow ){ + pTos->flags = MEM_Null; + break; + }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + sqliteBtreeKeySize(pCrsr, &n); + }else{ + sqliteBtreeDataSize(pCrsr, &n); + } + pTos->n = n; + if( n<=NBFS ){ + pTos->flags = MEM_Str | MEM_Short; + pTos->z = pTos->zShort; + }else{ + char *z = sqliteMallocRaw( n ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Str | MEM_Dyn; + pTos->z = z; + } + if( pC->keyAsData || pOp->opcode==OP_RowKey ){ + sqliteBtreeKey(pCrsr, 0, n, pTos->z); + }else{ + sqliteBtreeData(pCrsr, 0, n, pTos->z); + } + }else if( pC->pseudoTable ){ + pTos->n = pC->nData; + pTos->z = pC->pData; + pTos->flags = MEM_Str|MEM_Ephem; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: Column P1 P2 * +** +** Interpret the data that cursor P1 points to as +** a structure built using the MakeRecord instruction. +** (See the MakeRecord opcode for additional information about +** the format of the data.) +** Push onto the stack the value of the P2-th column contained +** in the data. +** +** If the KeyAsData opcode has previously executed on this cursor, +** then the field might be extracted from the key rather than the +** data. +** +** If P1 is negative, then the record is stored on the stack rather +** than in a table. For P1==-1, the top of the stack is used. +** For P1==-2, the next on the stack is used. And so forth. The +** value pushed is always just a pointer into the record which is +** stored further down on the stack. The column value is not copied. +*/ +case OP_Column: { + int amt, offset, end, payloadSize; + int i = pOp->p1; + int p2 = pOp->p2; + Cursor *pC; + char *zRec; + BtCursor *pCrsr; + int idxWidth; + unsigned char aHdr[10]; + + assert( i<p->nCursor ); + pTos++; + if( i<0 ){ + assert( &pTos[i]>=p->aStack ); + assert( pTos[i].flags & MEM_Str ); + zRec = pTos[i].z; + payloadSize = pTos[i].n; + }else if( (pC = &p->aCsr[i])->pCursor!=0 ){ + sqliteVdbeCursorMoveto(pC); + zRec = 0; + pCrsr = pC->pCursor; + if( pC->nullRow ){ + payloadSize = 0; + }else if( pC->keyAsData ){ + sqliteBtreeKeySize(pCrsr, &payloadSize); + }else{ + sqliteBtreeDataSize(pCrsr, &payloadSize); + } + }else if( pC->pseudoTable ){ + payloadSize = pC->nData; + zRec = pC->pData; + assert( payloadSize==0 || zRec!=0 ); + }else{ + payloadSize = 0; + } + + /* Figure out how many bytes in the column data and where the column + ** data begins. + */ + if( payloadSize==0 ){ + pTos->flags = MEM_Null; + break; + }else if( payloadSize<256 ){ + idxWidth = 1; + }else if( payloadSize<65536 ){ + idxWidth = 2; + }else{ + idxWidth = 3; + } + + /* Figure out where the requested column is stored and how big it is. + */ + if( payloadSize < idxWidth*(p2+1) ){ + rc = SQLITE_CORRUPT; + goto abort_due_to_error; + } + if( zRec ){ + memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); + }else if( pC->keyAsData ){ + sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); + }else{ + sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); + } + offset = aHdr[0]; + end = aHdr[idxWidth]; + if( idxWidth>1 ){ + offset |= aHdr[1]<<8; + end |= aHdr[idxWidth+1]<<8; + if( idxWidth>2 ){ + offset |= aHdr[2]<<16; + end |= aHdr[idxWidth+2]<<16; + } + } + amt = end - offset; + if( amt<0 || offset<0 || end>payloadSize ){ + rc = SQLITE_CORRUPT; + goto abort_due_to_error; + } + + /* amt and offset now hold the offset to the start of data and the + ** amount of data. Go get the data and put it on the stack. + */ + pTos->n = amt; + if( amt==0 ){ + pTos->flags = MEM_Null; + }else if( zRec ){ + pTos->flags = MEM_Str | MEM_Ephem; + pTos->z = &zRec[offset]; + }else{ + if( amt<=NBFS ){ + pTos->flags = MEM_Str | MEM_Short; + pTos->z = pTos->zShort; + }else{ + char *z = sqliteMallocRaw( amt ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Str | MEM_Dyn; + pTos->z = z; + } + if( pC->keyAsData ){ + sqliteBtreeKey(pCrsr, offset, amt, pTos->z); + }else{ + sqliteBtreeData(pCrsr, offset, amt, pTos->z); + } + } + break; +} + +/* Opcode: Recno P1 * * +** +** Push onto the stack an integer which is the first 4 bytes of the +** the key to the current entry in a sequential scan of the database +** file P1. The sequential scan should have been started using the +** Next opcode. +*/ +case OP_Recno: { + int i = pOp->p1; + Cursor *pC; + int v; + + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + sqliteVdbeCursorMoveto(pC); + pTos++; + if( pC->recnoIsValid ){ + v = pC->lastRecno; + }else if( pC->pseudoTable ){ + v = keyToInt(pC->iKey); + }else if( pC->nullRow || pC->pCursor==0 ){ + pTos->flags = MEM_Null; + break; + }else{ + assert( pC->pCursor!=0 ); + sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); + v = keyToInt(v); + } + pTos->i = v; + pTos->flags = MEM_Int; + break; +} + +/* Opcode: FullKey P1 * * +** +** Extract the complete key from the record that cursor P1 is currently +** pointing to and push the key onto the stack as a string. +** +** Compare this opcode to Recno. The Recno opcode extracts the first +** 4 bytes of the key and pushes those bytes onto the stack as an +** integer. This instruction pushes the entire key as a string. +** +** This opcode may not be used on a pseudo-table. +*/ +case OP_FullKey: { + int i = pOp->p1; + BtCursor *pCrsr; + + assert( p->aCsr[i].keyAsData ); + assert( !p->aCsr[i].pseudoTable ); + assert( i>=0 && i<p->nCursor ); + pTos++; + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int amt; + char *z; + + sqliteVdbeCursorMoveto(&p->aCsr[i]); + sqliteBtreeKeySize(pCrsr, &amt); + if( amt<=0 ){ + rc = SQLITE_CORRUPT; + goto abort_due_to_error; + } + if( amt>NBFS ){ + z = sqliteMallocRaw( amt ); + if( z==0 ) goto no_mem; + pTos->flags = MEM_Str | MEM_Dyn; + }else{ + z = pTos->zShort; + pTos->flags = MEM_Str | MEM_Short; + } + sqliteBtreeKey(pCrsr, 0, amt, z); + pTos->z = z; + pTos->n = amt; + } + break; +} + +/* Opcode: NullRow P1 * * +** +** Move the cursor P1 to a null row. Any OP_Column operations +** that occur while the cursor is on the null row will always push +** a NULL onto the stack. +*/ +case OP_NullRow: { + int i = pOp->p1; + + assert( i>=0 && i<p->nCursor ); + p->aCsr[i].nullRow = 1; + p->aCsr[i].recnoIsValid = 0; + break; +} + +/* Opcode: Last P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the last entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Last: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + rc = sqliteBtreeLast(pCrsr, &res); + pC->nullRow = res; + pC->deferredMoveto = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else{ + pC->nullRow = 0; + } + break; +} + +/* Opcode: Rewind P1 P2 * +** +** The next use of the Recno or Column or Next instruction for P1 +** will refer to the first entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Rewind: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pC = &p->aCsr[i]; + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + rc = sqliteBtreeFirst(pCrsr, &res); + pC->atFirst = res==0; + pC->nullRow = res; + pC->deferredMoveto = 0; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + }else{ + pC->nullRow = 0; + } + break; +} + +/* Opcode: Next P1 P2 * +** +** Advance cursor P1 so that it points to the next key/data pair in its +** table or index. If there are no more key/value pairs then fall through +** to the following instruction. But if the cursor advance was successful, +** jump immediately to P2. +** +** See also: Prev +*/ +/* Opcode: Prev P1 P2 * +** +** Back up cursor P1 so that it points to the previous key/data pair in its +** table or index. If there is no previous key/value pairs then fall through +** to the following instruction. But if the cursor backup was successful, +** jump immediately to P2. +*/ +case OP_Prev: +case OP_Next: { + Cursor *pC; + BtCursor *pCrsr; + + CHECK_FOR_INTERRUPT; + assert( pOp->p1>=0 && pOp->p1<p->nCursor ); + pC = &p->aCsr[pOp->p1]; + if( (pCrsr = pC->pCursor)!=0 ){ + int res; + if( pC->nullRow ){ + res = 1; + }else{ + assert( pC->deferredMoveto==0 ); + rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : + sqliteBtreePrevious(pCrsr, &res); + pC->nullRow = res; + } + if( res==0 ){ + pc = pOp->p2 - 1; + sqlite_search_count++; + } + }else{ + pC->nullRow = 1; + } + pC->recnoIsValid = 0; + break; +} + +/* Opcode: IdxPut P1 P2 P3 +** +** The top of the stack holds a SQL index key made using the +** MakeIdxKey instruction. This opcode writes that key into the +** index P1. Data for the entry is nil. +** +** If P2==1, then the key must be unique. If the key is not unique, +** the program aborts with a SQLITE_CONSTRAINT error and the database +** is rolled back. If P3 is not null, then it becomes part of the +** error message returned with the SQLITE_CONSTRAINT. +*/ +case OP_IdxPut: { + int i = pOp->p1; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( i>=0 && i<p->nCursor ); + assert( pTos->flags & MEM_Str ); + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int nKey = pTos->n; + const char *zKey = pTos->z; + if( pOp->p2 ){ + int res, n; + assert( nKey >= 4 ); + rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + while( res!=0 ){ + int c; + sqliteBtreeKeySize(pCrsr, &n); + if( n==nKey + && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK + && c==0 + ){ + rc = SQLITE_CONSTRAINT; + if( pOp->p3 && pOp->p3[0] ){ + sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); + } + goto abort_due_to_error; + } + if( res<0 ){ + sqliteBtreeNext(pCrsr, &res); + res = +1; + }else{ + break; + } + } + } + rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); + assert( p->aCsr[i].deferredMoveto==0 ); + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxDelete P1 * * +** +** The top of the stack is an index key built using the MakeIdxKey opcode. +** This opcode removes that entry from the index. +*/ +case OP_IdxDelete: { + int i = pOp->p1; + BtCursor *pCrsr; + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Str ); + assert( i>=0 && i<p->nCursor ); + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int rx, res; + rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); + if( rx==SQLITE_OK && res==0 ){ + rc = sqliteBtreeDelete(pCrsr); + } + assert( p->aCsr[i].deferredMoveto==0 ); + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxRecno P1 * * +** +** Push onto the stack an integer which is the last 4 bytes of the +** the key to the current entry in index P1. These 4 bytes should +** be the record number of the table entry to which this index entry +** points. +** +** See also: Recno, MakeIdxKey. +*/ +case OP_IdxRecno: { + int i = pOp->p1; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + pTos++; + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int v; + int sz; + assert( p->aCsr[i].deferredMoveto==0 ); + sqliteBtreeKeySize(pCrsr, &sz); + if( sz<sizeof(u32) ){ + pTos->flags = MEM_Null; + }else{ + sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); + v = keyToInt(v); + pTos->i = v; + pTos->flags = MEM_Int; + } + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: IdxGT P1 P2 * +** +** Compare the top of the stack against the key on the index entry that +** cursor P1 is currently pointing to. Ignore the last 4 bytes of the +** index entry. If the index entry is greater than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +/* Opcode: IdxGE P1 P2 * +** +** Compare the top of the stack against the key on the index entry that +** cursor P1 is currently pointing to. Ignore the last 4 bytes of the +** index entry. If the index entry is greater than or equal to +** the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +/* Opcode: IdxLT P1 P2 * +** +** Compare the top of the stack against the key on the index entry that +** cursor P1 is currently pointing to. Ignore the last 4 bytes of the +** index entry. If the index entry is less than the top of the stack +** then jump to P2. Otherwise fall through to the next instruction. +** In either case, the stack is popped once. +*/ +case OP_IdxLT: +case OP_IdxGT: +case OP_IdxGE: { + int i= pOp->p1; + BtCursor *pCrsr; + + assert( i>=0 && i<p->nCursor ); + assert( pTos>=p->aStack ); + if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ + int res, rc; + + Stringify(pTos); + assert( p->aCsr[i].deferredMoveto==0 ); + rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); + if( rc!=SQLITE_OK ){ + break; + } + if( pOp->opcode==OP_IdxLT ){ + res = -res; + }else if( pOp->opcode==OP_IdxGE ){ + res++; + } + if( res>0 ){ + pc = pOp->p2 - 1 ; + } + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: IdxIsNull P1 P2 * +** +** The top of the stack contains an index entry such as might be generated +** by the MakeIdxKey opcode. This routine looks at the first P1 fields of +** that key. If any of the first P1 fields are NULL, then a jump is made +** to address P2. Otherwise we fall straight through. +** +** The index entry is always popped from the stack. +*/ +case OP_IdxIsNull: { + int i = pOp->p1; + int k, n; + const char *z; + + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Str ); + z = pTos->z; + n = pTos->n; + for(k=0; k<n && i>0; i--){ + if( z[k]=='a' ){ + pc = pOp->p2-1; + break; + } + while( k<n && z[k] ){ k++; } + k++; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: Destroy P1 P2 * +** +** Delete an entire database table or index whose root page in the database +** file is given by P1. +** +** The table being destroyed is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Clear +*/ +case OP_Destroy: { + rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: Clear P1 P2 * +** +** Delete all contents of the database table or index whose root page +** in the database file is given by P1. But, unlike Destroy, do not +** remove the table or index from the database file. +** +** The table being clear is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Destroy +*/ +case OP_Clear: { + rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: CreateTable * P2 P3 +** +** Allocate a new table in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number +** for the root page of the new table onto the stack. +** +** The root page number is also written to a memory location that P3 +** points to. This is the mechanism is used to write the root page +** number into the parser's internal data structures that describe the +** new table. +** +** The difference between a table and an index is this: A table must +** have a 4-byte integer key and can have arbitrary data. An index +** has an arbitrary key but no data. +** +** See also: CreateIndex +*/ +/* Opcode: CreateIndex * P2 P3 +** +** Allocate a new index in the main database file if P2==0 or in the +** auxiliary database file if P2==1. Push the page number of the +** root page of the new index onto the stack. +** +** See documentation on OP_CreateTable for additional information. +*/ +case OP_CreateIndex: +case OP_CreateTable: { + int pgno; + assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); + assert( pOp->p2>=0 && pOp->p2<db->nDb ); + assert( db->aDb[pOp->p2].pBt!=0 ); + if( pOp->opcode==OP_CreateTable ){ + rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); + }else{ + rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); + } + pTos++; + if( rc==SQLITE_OK ){ + pTos->i = pgno; + pTos->flags = MEM_Int; + *(u32*)pOp->p3 = pgno; + pOp->p3 = 0; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: IntegrityCk P1 P2 * +** +** Do an analysis of the currently open database. Push onto the +** stack the text of an error message describing any problems. +** If there are no errors, push a "ok" onto the stack. +** +** P1 is the index of a set that contains the root page numbers +** for all tables and indices in the main database file. The set +** is cleared by this opcode. In other words, after this opcode +** has executed, the set will be empty. +** +** If P2 is not zero, the check is done on the auxiliary database +** file, not the main database file. +** +** This opcode is used for testing purposes only. +*/ +case OP_IntegrityCk: { + int nRoot; + int *aRoot; + int iSet = pOp->p1; + Set *pSet; + int j; + HashElem *i; + char *z; + + assert( iSet>=0 && iSet<p->nSet ); + pTos++; + pSet = &p->aSet[iSet]; + nRoot = sqliteHashCount(&pSet->hash); + aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); + if( aRoot==0 ) goto no_mem; + for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ + toInt((char*)sqliteHashKey(i), &aRoot[j]); + } + aRoot[j] = 0; + sqliteHashClear(&pSet->hash); + pSet->prev = 0; + z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); + if( z==0 || z[0]==0 ){ + if( z ) sqliteFree(z); + pTos->z = "ok"; + pTos->n = 3; + pTos->flags = MEM_Str | MEM_Static; + }else{ + pTos->z = z; + pTos->n = strlen(z) + 1; + pTos->flags = MEM_Str | MEM_Dyn; + } + sqliteFree(aRoot); + break; +} + +/* Opcode: ListWrite * * * +** +** Write the integer on the top of the stack +** into the temporary storage list. +*/ +case OP_ListWrite: { + Keylist *pKeylist; + assert( pTos>=p->aStack ); + pKeylist = p->pList; + if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ + pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); + if( pKeylist==0 ) goto no_mem; + pKeylist->nKey = 1000; + pKeylist->nRead = 0; + pKeylist->nUsed = 0; + pKeylist->pNext = p->pList; + p->pList = pKeylist; + } + Integerify(pTos); + pKeylist->aKey[pKeylist->nUsed++] = pTos->i; + Release(pTos); + pTos--; + break; +} + +/* Opcode: ListRewind * * * +** +** Rewind the temporary buffer back to the beginning. +*/ +case OP_ListRewind: { + /* What this opcode codes, really, is reverse the order of the + ** linked list of Keylist structures so that they are read out + ** in the same order that they were read in. */ + Keylist *pRev, *pTop; + pRev = 0; + while( p->pList ){ + pTop = p->pList; + p->pList = pTop->pNext; + pTop->pNext = pRev; + pRev = pTop; + } + p->pList = pRev; + break; +} + +/* Opcode: ListRead * P2 * +** +** Attempt to read an integer from the temporary storage buffer +** and push it onto the stack. If the storage buffer is empty, +** push nothing but instead jump to P2. +*/ +case OP_ListRead: { + Keylist *pKeylist; + CHECK_FOR_INTERRUPT; + pKeylist = p->pList; + if( pKeylist!=0 ){ + assert( pKeylist->nRead>=0 ); + assert( pKeylist->nRead<pKeylist->nUsed ); + assert( pKeylist->nRead<pKeylist->nKey ); + pTos++; + pTos->i = pKeylist->aKey[pKeylist->nRead++]; + pTos->flags = MEM_Int; + if( pKeylist->nRead>=pKeylist->nUsed ){ + p->pList = pKeylist->pNext; + sqliteFree(pKeylist); + } + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: ListReset * * * +** +** Reset the temporary storage buffer so that it holds nothing. +*/ +case OP_ListReset: { + if( p->pList ){ + sqliteVdbeKeylistFree(p->pList); + p->pList = 0; + } + break; +} + +/* Opcode: ListPush * * * +** +** Save the current Vdbe list such that it can be restored by a ListPop +** opcode. The list is empty after this is executed. +*/ +case OP_ListPush: { + p->keylistStackDepth++; + assert(p->keylistStackDepth > 0); + p->keylistStack = sqliteRealloc(p->keylistStack, + sizeof(Keylist *) * p->keylistStackDepth); + if( p->keylistStack==0 ) goto no_mem; + p->keylistStack[p->keylistStackDepth - 1] = p->pList; + p->pList = 0; + break; +} + +/* Opcode: ListPop * * * +** +** Restore the Vdbe list to the state it was in when ListPush was last +** executed. +*/ +case OP_ListPop: { + assert(p->keylistStackDepth > 0); + p->keylistStackDepth--; + sqliteVdbeKeylistFree(p->pList); + p->pList = p->keylistStack[p->keylistStackDepth]; + p->keylistStack[p->keylistStackDepth] = 0; + if( p->keylistStackDepth == 0 ){ + sqliteFree(p->keylistStack); + p->keylistStack = 0; + } + break; +} + +/* Opcode: ContextPush * * * +** +** Save the current Vdbe context such that it can be restored by a ContextPop +** opcode. The context stores the last insert row id, the last statement change +** count, and the current statement change count. +*/ +case OP_ContextPush: { + p->contextStackDepth++; + assert(p->contextStackDepth > 0); + p->contextStack = sqliteRealloc(p->contextStack, + sizeof(Context) * p->contextStackDepth); + if( p->contextStack==0 ) goto no_mem; + p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid; + p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange; + p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange; + break; +} + +/* Opcode: ContextPop * * * +** +** Restore the Vdbe context to the state it was in when contextPush was last +** executed. The context stores the last insert row id, the last statement +** change count, and the current statement change count. +*/ +case OP_ContextPop: { + assert(p->contextStackDepth > 0); + p->contextStackDepth--; + p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid; + p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange; + p->db->csChange = p->contextStack[p->contextStackDepth].csChange; + if( p->contextStackDepth == 0 ){ + sqliteFree(p->contextStack); + p->contextStack = 0; + } + break; +} + +/* Opcode: SortPut * * * +** +** The TOS is the key and the NOS is the data. Pop both from the stack +** and put them on the sorter. The key and data should have been +** made using SortMakeKey and SortMakeRec, respectively. +*/ +case OP_SortPut: { + Mem *pNos = &pTos[-1]; + Sorter *pSorter; + assert( pNos>=p->aStack ); + if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; + pSorter = sqliteMallocRaw( sizeof(Sorter) ); + if( pSorter==0 ) goto no_mem; + pSorter->pNext = p->pSort; + p->pSort = pSorter; + assert( pTos->flags & MEM_Dyn ); + pSorter->nKey = pTos->n; + pSorter->zKey = pTos->z; + assert( pNos->flags & MEM_Dyn ); + pSorter->nData = pNos->n; + pSorter->pData = pNos->z; + pTos -= 2; + break; +} + +/* Opcode: SortMakeRec P1 * * +** +** The top P1 elements are the arguments to a callback. Form these +** elements into a single data entry that can be stored on a sorter +** using SortPut and later fed to a callback using SortCallback. +*/ +case OP_SortMakeRec: { + char *z; + char **azArg; + int nByte; + int nField; + int i; + Mem *pRec; + + nField = pOp->p1; + pRec = &pTos[1-nField]; + assert( pRec>=p->aStack ); + nByte = 0; + for(i=0; i<nField; i++, pRec++){ + if( (pRec->flags & MEM_Null)==0 ){ + Stringify(pRec); + nByte += pRec->n; + } + } + nByte += sizeof(char*)*(nField+1); + azArg = sqliteMallocRaw( nByte ); + if( azArg==0 ) goto no_mem; + z = (char*)&azArg[nField+1]; + for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + azArg[i] = 0; + }else{ + azArg[i] = z; + memcpy(z, pRec->z, pRec->n); + z += pRec->n; + } + } + popStack(&pTos, nField); + pTos++; + pTos->n = nByte; + pTos->z = (char*)azArg; + pTos->flags = MEM_Str | MEM_Dyn; + break; +} + +/* Opcode: SortMakeKey * * P3 +** +** Convert the top few entries of the stack into a sort key. The +** number of stack entries consumed is the number of characters in +** the string P3. One character from P3 is prepended to each entry. +** The first character of P3 is prepended to the element lowest in +** the stack and the last character of P3 is prepended to the top of +** the stack. All stack entries are separated by a \000 character +** in the result. The whole key is terminated by two \000 characters +** in a row. +** +** "N" is substituted in place of the P3 character for NULL values. +** +** See also the MakeKey and MakeIdxKey opcodes. +*/ +case OP_SortMakeKey: { + char *zNewKey; + int nByte; + int nField; + int i, j, k; + Mem *pRec; + + nField = strlen(pOp->p3); + pRec = &pTos[1-nField]; + nByte = 1; + for(i=0; i<nField; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + nByte += 2; + }else{ + Stringify(pRec); + nByte += pRec->n+2; + } + } + zNewKey = sqliteMallocRaw( nByte ); + if( zNewKey==0 ) goto no_mem; + j = 0; + k = 0; + for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + zNewKey[j++] = 'N'; + zNewKey[j++] = 0; + k++; + }else{ + zNewKey[j++] = pOp->p3[k++]; + memcpy(&zNewKey[j], pRec->z, pRec->n-1); + j += pRec->n-1; + zNewKey[j++] = 0; + } + } + zNewKey[j] = 0; + assert( j<nByte ); + popStack(&pTos, nField); + pTos++; + pTos->n = nByte; + pTos->flags = MEM_Str|MEM_Dyn; + pTos->z = zNewKey; + break; +} + +/* Opcode: Sort * * * +** +** Sort all elements on the sorter. The algorithm is a +** mergesort. +*/ +case OP_Sort: { + int i; + Sorter *pElem; + Sorter *apSorter[NSORT]; + for(i=0; i<NSORT; i++){ + apSorter[i] = 0; + } + while( p->pSort ){ + pElem = p->pSort; + p->pSort = pElem->pNext; + pElem->pNext = 0; + for(i=0; i<NSORT-1; i++){ + if( apSorter[i]==0 ){ + apSorter[i] = pElem; + break; + }else{ + pElem = Merge(apSorter[i], pElem); + apSorter[i] = 0; + } + } + if( i>=NSORT-1 ){ + apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); + } + } + pElem = 0; + for(i=0; i<NSORT; i++){ + pElem = Merge(apSorter[i], pElem); + } + p->pSort = pElem; + break; +} + +/* Opcode: SortNext * P2 * +** +** Push the data for the topmost element in the sorter onto the +** stack, then remove the element from the sorter. If the sorter +** is empty, push nothing on the stack and instead jump immediately +** to instruction P2. +*/ +case OP_SortNext: { + Sorter *pSorter = p->pSort; + CHECK_FOR_INTERRUPT; + if( pSorter!=0 ){ + p->pSort = pSorter->pNext; + pTos++; + pTos->z = pSorter->pData; + pTos->n = pSorter->nData; + pTos->flags = MEM_Str|MEM_Dyn; + sqliteFree(pSorter->zKey); + sqliteFree(pSorter); + }else{ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: SortCallback P1 * * +** +** The top of the stack contains a callback record built using +** the SortMakeRec operation with the same P1 value as this +** instruction. Pop this record from the stack and invoke the +** callback on it. +*/ +case OP_SortCallback: { + assert( pTos>=p->aStack ); + assert( pTos->flags & MEM_Str ); + p->nCallback++; + p->pc = pc+1; + p->azResColumn = (char**)pTos->z; + assert( p->nResColumn==pOp->p1 ); + p->popStack = 1; + p->pTos = pTos; + return SQLITE_ROW; +} + +/* Opcode: SortReset * * * +** +** Remove any elements that remain on the sorter. +*/ +case OP_SortReset: { + sqliteVdbeSorterReset(p); + break; +} + +/* Opcode: FileOpen * * P3 +** +** Open the file named by P3 for reading using the FileRead opcode. +** If P3 is "stdin" then open standard input for reading. +*/ +case OP_FileOpen: { + assert( pOp->p3!=0 ); + if( p->pFile ){ + if( p->pFile!=stdin ) fclose(p->pFile); + p->pFile = 0; + } + if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ + p->pFile = stdin; + }else{ + p->pFile = fopen(pOp->p3, "r"); + } + if( p->pFile==0 ){ + sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0); + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: FileRead P1 P2 P3 +** +** Read a single line of input from the open file (the file opened using +** FileOpen). If we reach end-of-file, jump immediately to P2. If +** we are able to get another line, split the line apart using P3 as +** a delimiter. There should be P1 fields. If the input line contains +** more than P1 fields, ignore the excess. If the input line contains +** fewer than P1 fields, assume the remaining fields contain NULLs. +** +** Input ends if a line consists of just "\.". A field containing only +** "\N" is a null field. The backslash \ character can be used be used +** to escape newlines or the delimiter. +*/ +case OP_FileRead: { + int n, eol, nField, i, c, nDelim; + char *zDelim, *z; + CHECK_FOR_INTERRUPT; + if( p->pFile==0 ) goto fileread_jump; + nField = pOp->p1; + if( nField<=0 ) goto fileread_jump; + if( nField!=p->nField || p->azField==0 ){ + char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); + if( azField==0 ){ goto no_mem; } + p->azField = azField; + p->nField = nField; + } + n = 0; + eol = 0; + while( eol==0 ){ + if( p->zLine==0 || n+200>p->nLineAlloc ){ + char *zLine; + p->nLineAlloc = p->nLineAlloc*2 + 300; + zLine = sqliteRealloc(p->zLine, p->nLineAlloc); + if( zLine==0 ){ + p->nLineAlloc = 0; + sqliteFree(p->zLine); + p->zLine = 0; + goto no_mem; + } + p->zLine = zLine; + } + if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ + eol = 1; + p->zLine[n] = 0; + }else{ + int c; + while( (c = p->zLine[n])!=0 ){ + if( c=='\\' ){ + if( p->zLine[n+1]==0 ) break; + n += 2; + }else if( c=='\n' ){ + p->zLine[n] = 0; + eol = 1; + break; + }else{ + n++; + } + } + } + } + if( n==0 ) goto fileread_jump; + z = p->zLine; + if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ + goto fileread_jump; + } + zDelim = pOp->p3; + if( zDelim==0 ) zDelim = "\t"; + c = zDelim[0]; + nDelim = strlen(zDelim); + p->azField[0] = z; + for(i=1; *z!=0 && i<=nField; i++){ + int from, to; + from = to = 0; + if( z[0]=='\\' && z[1]=='N' + && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ + if( i<=nField ) p->azField[i-1] = 0; + z += 2 + nDelim; + if( i<nField ) p->azField[i] = z; + continue; + } + while( z[from] ){ + if( z[from]=='\\' && z[from+1]!=0 ){ + int tx = z[from+1]; + switch( tx ){ + case 'b': tx = '\b'; break; + case 'f': tx = '\f'; break; + case 'n': tx = '\n'; break; + case 'r': tx = '\r'; break; + case 't': tx = '\t'; break; + case 'v': tx = '\v'; break; + default: break; + } + z[to++] = tx; + from += 2; + continue; + } + if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; + z[to++] = z[from++]; + } + if( z[from] ){ + z[to] = 0; + z += from + nDelim; + if( i<nField ) p->azField[i] = z; + }else{ + z[to] = 0; + z = ""; + } + } + while( i<nField ){ + p->azField[i++] = 0; + } + break; + + /* If we reach end-of-file, or if anything goes wrong, jump here. + ** This code will cause a jump to P2 */ +fileread_jump: + pc = pOp->p2 - 1; + break; +} + +/* Opcode: FileColumn P1 * * +** +** Push onto the stack the P1-th column of the most recently read line +** from the input file. +*/ +case OP_FileColumn: { + int i = pOp->p1; + char *z; + assert( i>=0 && i<p->nField ); + if( p->azField ){ + z = p->azField[i]; + }else{ + z = 0; + } + pTos++; + if( z ){ + pTos->n = strlen(z) + 1; + pTos->z = z; + pTos->flags = MEM_Str | MEM_Ephem; + }else{ + pTos->flags = MEM_Null; + } + break; +} + +/* Opcode: MemStore P1 P2 * +** +** Write the top of the stack into memory location P1. +** P1 should be a small integer since space is allocated +** for all memory locations between 0 and P1 inclusive. +** +** After the data is stored in the memory location, the +** stack is popped once if P2 is 1. If P2 is zero, then +** the original data remains on the stack. +*/ +case OP_MemStore: { + int i = pOp->p1; + Mem *pMem; + assert( pTos>=p->aStack ); + if( i>=p->nMem ){ + int nOld = p->nMem; + Mem *aMem; + p->nMem = i + 5; + aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); + if( aMem==0 ) goto no_mem; + if( aMem!=p->aMem ){ + int j; + for(j=0; j<nOld; j++){ + if( aMem[j].flags & MEM_Short ){ + aMem[j].z = aMem[j].zShort; + } + } + } + p->aMem = aMem; + if( nOld<p->nMem ){ + memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); + } + } + Deephemeralize(pTos); + pMem = &p->aMem[i]; + Release(pMem); + *pMem = *pTos; + if( pMem->flags & MEM_Dyn ){ + if( pOp->p2 ){ + pTos->flags = MEM_Null; + }else{ + pMem->z = sqliteMallocRaw( pMem->n ); + if( pMem->z==0 ) goto no_mem; + memcpy(pMem->z, pTos->z, pMem->n); + } + }else if( pMem->flags & MEM_Short ){ + pMem->z = pMem->zShort; + } + if( pOp->p2 ){ + Release(pTos); + pTos--; + } + break; +} + +/* Opcode: MemLoad P1 * * +** +** Push a copy of the value in memory location P1 onto the stack. +** +** If the value is a string, then the value pushed is a pointer to +** the string that is stored in the memory location. If the memory +** location is subsequently changed (using OP_MemStore) then the +** value pushed onto the stack will change too. +*/ +case OP_MemLoad: { + int i = pOp->p1; + assert( i>=0 && i<p->nMem ); + pTos++; + memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; + if( pTos->flags & MEM_Str ){ + pTos->flags |= MEM_Ephem; + pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); + } + break; +} + +/* Opcode: MemIncr P1 P2 * +** +** Increment the integer valued memory cell P1 by 1. If P2 is not zero +** and the result after the increment is greater than zero, then jump +** to P2. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemIncr: { + int i = pOp->p1; + Mem *pMem; + assert( i>=0 && i<p->nMem ); + pMem = &p->aMem[i]; + assert( pMem->flags==MEM_Int ); + pMem->i++; + if( pOp->p2>0 && pMem->i>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: AggReset * P2 * +** +** Reset the aggregator so that it no longer contains any data. +** Future aggregator elements will contain P2 values each. +*/ +case OP_AggReset: { + sqliteVdbeAggReset(&p->agg); + p->agg.nMem = pOp->p2; + p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); + if( p->agg.apFunc==0 ) goto no_mem; + break; +} + +/* Opcode: AggInit * P2 P3 +** +** Initialize the function parameters for an aggregate function. +** The aggregate will operate out of aggregate column P2. +** P3 is a pointer to the FuncDef structure for the function. +*/ +case OP_AggInit: { + int i = pOp->p2; + assert( i>=0 && i<p->agg.nMem ); + p->agg.apFunc[i] = (FuncDef*)pOp->p3; + break; +} + +/* Opcode: AggFunc * P2 P3 +** +** Execute the step function for an aggregate. The +** function has P2 arguments. P3 is a pointer to the FuncDef +** structure that specifies the function. +** +** The top of the stack must be an integer which is the index of +** the aggregate column that corresponds to this aggregate function. +** Ideally, this index would be another parameter, but there are +** no free parameters left. The integer is popped from the stack. +*/ +case OP_AggFunc: { + int n = pOp->p2; + int i; + Mem *pMem, *pRec; + char **azArgv = p->zArgv; + sqlite_func ctx; + + assert( n>=0 ); + assert( pTos->flags==MEM_Int ); + pRec = &pTos[-n]; + assert( pRec>=p->aStack ); + for(i=0; i<n; i++, pRec++){ + if( pRec->flags & MEM_Null ){ + azArgv[i] = 0; + }else{ + Stringify(pRec); + azArgv[i] = pRec->z; + } + } + i = pTos->i; + assert( i>=0 && i<p->agg.nMem ); + ctx.pFunc = (FuncDef*)pOp->p3; + pMem = &p->agg.pCurrent->aMem[i]; + ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ + ctx.pAgg = pMem->z; + ctx.cnt = ++pMem->i; + ctx.isError = 0; + ctx.isStep = 1; + (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); + pMem->z = ctx.pAgg; + pMem->flags = MEM_AggCtx; + popStack(&pTos, n+1); + if( ctx.isError ){ + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: AggFocus * P2 * +** +** Pop the top of the stack and use that as an aggregator key. If +** an aggregator with that same key already exists, then make the +** aggregator the current aggregator and jump to P2. If no aggregator +** with the given key exists, create one and make it current but +** do not jump. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggFocus: { + AggElem *pElem; + char *zKey; + int nKey; + + assert( pTos>=p->aStack ); + Stringify(pTos); + zKey = pTos->z; + nKey = pTos->n; + pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); + if( pElem ){ + p->agg.pCurrent = pElem; + pc = pOp->p2 - 1; + }else{ + AggInsert(&p->agg, zKey, nKey); + if( sqlite_malloc_failed ) goto no_mem; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: AggSet * P2 * +** +** Move the top of the stack into the P2-th field of the current +** aggregate. String values are duplicated into new memory. +*/ +case OP_AggSet: { + AggElem *pFocus = AggInFocus(p->agg); + Mem *pMem; + int i = pOp->p2; + assert( pTos>=p->aStack ); + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + Deephemeralize(pTos); + pMem = &pFocus->aMem[i]; + Release(pMem); + *pMem = *pTos; + if( pMem->flags & MEM_Dyn ){ + pTos->flags = MEM_Null; + }else if( pMem->flags & MEM_Short ){ + pMem->z = pMem->zShort; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: AggGet * P2 * +** +** Push a new entry onto the stack which is a copy of the P2-th field +** of the current aggregate. Strings are not duplicated so +** string values will be ephemeral. +*/ +case OP_AggGet: { + AggElem *pFocus = AggInFocus(p->agg); + Mem *pMem; + int i = pOp->p2; + if( pFocus==0 ) goto no_mem; + assert( i>=0 && i<p->agg.nMem ); + pTos++; + pMem = &pFocus->aMem[i]; + *pTos = *pMem; + if( pTos->flags & MEM_Str ){ + pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); + pTos->flags |= MEM_Ephem; + } + break; +} + +/* Opcode: AggNext * P2 * +** +** Make the next aggregate value the current aggregate. The prior +** aggregate is deleted. If all aggregate values have been consumed, +** jump to P2. +** +** The order of aggregator opcodes is important. The order is: +** AggReset AggFocus AggNext. In other words, you must execute +** AggReset first, then zero or more AggFocus operations, then +** zero or more AggNext operations. You must not execute an AggFocus +** in between an AggNext and an AggReset. +*/ +case OP_AggNext: { + CHECK_FOR_INTERRUPT; + if( p->agg.pSearch==0 ){ + p->agg.pSearch = sqliteHashFirst(&p->agg.hash); + }else{ + p->agg.pSearch = sqliteHashNext(p->agg.pSearch); + } + if( p->agg.pSearch==0 ){ + pc = pOp->p2 - 1; + } else { + int i; + sqlite_func ctx; + Mem *aMem; + p->agg.pCurrent = sqliteHashData(p->agg.pSearch); + aMem = p->agg.pCurrent->aMem; + for(i=0; i<p->agg.nMem; i++){ + int freeCtx; + if( p->agg.apFunc[i]==0 ) continue; + if( p->agg.apFunc[i]->xFinalize==0 ) continue; + ctx.s.flags = MEM_Null; + ctx.s.z = aMem[i].zShort; + ctx.pAgg = (void*)aMem[i].z; + freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; + ctx.cnt = aMem[i].i; + ctx.isStep = 0; + ctx.pFunc = p->agg.apFunc[i]; + (*p->agg.apFunc[i]->xFinalize)(&ctx); + if( freeCtx ){ + sqliteFree( aMem[i].z ); + } + aMem[i] = ctx.s; + if( aMem[i].flags & MEM_Short ){ + aMem[i].z = aMem[i].zShort; + } + } + } + break; +} + +/* Opcode: SetInsert P1 * P3 +** +** If Set P1 does not exist then create it. Then insert value +** P3 into that set. If P3 is NULL, then insert the top of the +** stack into the set. +*/ +case OP_SetInsert: { + int i = pOp->p1; + if( p->nSet<=i ){ + int k; + Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); + if( aSet==0 ) goto no_mem; + p->aSet = aSet; + for(k=p->nSet; k<=i; k++){ + sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); + } + p->nSet = i+1; + } + if( pOp->p3 ){ + sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); + }else{ + assert( pTos>=p->aStack ); + Stringify(pTos); + sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); + Release(pTos); + pTos--; + } + if( sqlite_malloc_failed ) goto no_mem; + break; +} + +/* Opcode: SetFound P1 P2 * +** +** Pop the stack once and compare the value popped off with the +** contents of set P1. If the element popped exists in set P1, +** then jump to P2. Otherwise fall through. +*/ +case OP_SetFound: { + int i = pOp->p1; + assert( pTos>=p->aStack ); + Stringify(pTos); + if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ + pc = pOp->p2 - 1; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: SetNotFound P1 P2 * +** +** Pop the stack once and compare the value popped off with the +** contents of set P1. If the element popped does not exists in +** set P1, then jump to P2. Otherwise fall through. +*/ +case OP_SetNotFound: { + int i = pOp->p1; + assert( pTos>=p->aStack ); + Stringify(pTos); + if( i<0 || i>=p->nSet || + sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ + pc = pOp->p2 - 1; + } + Release(pTos); + pTos--; + break; +} + +/* Opcode: SetFirst P1 P2 * +** +** Read the first element from set P1 and push it onto the stack. If the +** set is empty, push nothing and jump immediately to P2. This opcode is +** used in combination with OP_SetNext to loop over all elements of a set. +*/ +/* Opcode: SetNext P1 P2 * +** +** Read the next element from set P1 and push it onto the stack. If there +** are no more elements in the set, do not do the push and fall through. +** Otherwise, jump to P2 after pushing the next set element. +*/ +case OP_SetFirst: +case OP_SetNext: { + Set *pSet; + CHECK_FOR_INTERRUPT; + if( pOp->p1<0 || pOp->p1>=p->nSet ){ + if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; + break; + } + pSet = &p->aSet[pOp->p1]; + if( pOp->opcode==OP_SetFirst ){ + pSet->prev = sqliteHashFirst(&pSet->hash); + if( pSet->prev==0 ){ + pc = pOp->p2 - 1; + break; + } + }else{ + assert( pSet->prev ); + pSet->prev = sqliteHashNext(pSet->prev); + if( pSet->prev==0 ){ + break; + }else{ + pc = pOp->p2 - 1; + } + } + pTos++; + pTos->z = sqliteHashKey(pSet->prev); + pTos->n = sqliteHashKeysize(pSet->prev); + pTos->flags = MEM_Str | MEM_Ephem; + break; +} + +/* Opcode: Vacuum * * * +** +** Vacuum the entire database. This opcode will cause other virtual +** machines to be created and run. It may not be called from within +** a transaction. +*/ +case OP_Vacuum: { + if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; + rc = sqliteRunVacuum(&p->zErrMsg, db); + if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; + break; +} + +/* An other opcode is illegal... +*/ +default: { + sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); + sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); + rc = SQLITE_INTERNAL; + break; +} + +/***************************************************************************** +** The cases of the switch statement above this line should all be indented +** by 6 spaces. But the left-most 6 spaces have been removed to improve the +** readability. From this point on down, the normal indentation rules are +** restored. +*****************************************************************************/ + } + +#ifdef VDBE_PROFILE + { + long long elapse = hwtime() - start; + pOp->cycles += elapse; + pOp->cnt++; +#if 0 + fprintf(stdout, "%10lld ", elapse); + sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]); +#endif + } +#endif + + /* The following code adds nothing to the actual functionality + ** of the program. It is only here for testing and debugging. + ** On the other hand, it does burn CPU cycles every time through + ** the evaluator loop. So we can leave it out when NDEBUG is defined. + */ +#ifndef NDEBUG + /* Sanity checking on the top element of the stack */ + if( pTos>=p->aStack ){ + assert( pTos->flags!=0 ); /* Must define some type */ + if( pTos->flags & MEM_Str ){ + int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); + assert( x!=0 ); /* Strings must define a string subtype */ + assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ + assert( pTos->z!=0 ); /* Strings must have a value */ + /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ + assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); + assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); + }else{ + /* Cannot define a string subtype for non-string objects */ + assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); + } + /* MEM_Null excludes all other types */ + assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 ); + } + if( pc<-1 || pc>=p->nOp ){ + sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); + rc = SQLITE_INTERNAL; + } + if( p->trace && pTos>=p->aStack ){ + int i; + fprintf(p->trace, "Stack:"); + for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ + if( pTos[i].flags & MEM_Null ){ + fprintf(p->trace, " NULL"); + }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ + fprintf(p->trace, " si:%d", pTos[i].i); + }else if( pTos[i].flags & MEM_Int ){ + fprintf(p->trace, " i:%d", pTos[i].i); + }else if( pTos[i].flags & MEM_Real ){ + fprintf(p->trace, " r:%g", pTos[i].r); + }else if( pTos[i].flags & MEM_Str ){ + int j, k; + char zBuf[100]; + zBuf[0] = ' '; + if( pTos[i].flags & MEM_Dyn ){ + zBuf[1] = 'z'; + assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); + }else if( pTos[i].flags & MEM_Static ){ + zBuf[1] = 't'; + assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( pTos[i].flags & MEM_Ephem ){ + zBuf[1] = 'e'; + assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); + }else{ + zBuf[1] = 's'; + } + zBuf[2] = '['; + k = 3; + for(j=0; j<20 && j<pTos[i].n; j++){ + int c = pTos[i].z[j]; + if( c==0 && j==pTos[i].n-1 ) break; + if( isprint(c) && !isspace(c) ){ + zBuf[k++] = c; + }else{ + zBuf[k++] = '.'; + } + } + zBuf[k++] = ']'; + zBuf[k++] = 0; + fprintf(p->trace, "%s", zBuf); + }else{ + fprintf(p->trace, " ???"); + } + } + if( rc!=0 ) fprintf(p->trace," rc=%d",rc); + fprintf(p->trace,"\n"); + } +#endif + } /* The end of the for(;;) loop the loops through opcodes */ + + /* If we reach this point, it means that execution is finished. + */ +vdbe_halt: + if( rc ){ + p->rc = rc; + rc = SQLITE_ERROR; + }else{ + rc = SQLITE_DONE; + } + p->magic = VDBE_MAGIC_HALT; + p->pTos = pTos; + return rc; + + /* Jump to here if a malloc() fails. It's hard to get a malloc() + ** to fail on a modern VM computer, so this code is untested. + */ +no_mem: + sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + goto vdbe_halt; + + /* Jump to here for an SQLITE_MISUSE error. + */ +abort_due_to_misuse: + rc = SQLITE_MISUSE; + /* Fall thru into abort_due_to_error */ + + /* Jump to here for any other kind of fatal error. The "rc" variable + ** should hold the error number. + */ +abort_due_to_error: + if( p->zErrMsg==0 ){ + if( sqlite_malloc_failed ) rc = SQLITE_NOMEM; + sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); + } + goto vdbe_halt; + + /* Jump to here if the sqlite_interrupt() API sets the interrupt + ** flag. + */ +abort_due_to_interrupt: + assert( db->flags & SQLITE_Interrupt ); + db->flags &= ~SQLITE_Interrupt; + if( db->magic!=SQLITE_MAGIC_BUSY ){ + rc = SQLITE_MISUSE; + }else{ + rc = SQLITE_INTERRUPT; + } + sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); + goto vdbe_halt; +} |