summaryrefslogtreecommitdiffstats
path: root/src/sound/AudioTimeStretcher.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/sound/AudioTimeStretcher.cpp')
-rw-r--r--src/sound/AudioTimeStretcher.cpp667
1 files changed, 667 insertions, 0 deletions
diff --git a/src/sound/AudioTimeStretcher.cpp b/src/sound/AudioTimeStretcher.cpp
new file mode 100644
index 0000000..392693e
--- /dev/null
+++ b/src/sound/AudioTimeStretcher.cpp
@@ -0,0 +1,667 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
+
+/*
+ Sonic Visualiser
+ An audio file viewer and annotation editor.
+ Centre for Digital Music, Queen Mary, University of London.
+ This file copyright 2006 Chris Cannam and QMUL.
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version. See the file
+ COPYING included with this distribution for more information.
+*/
+
+#include "AudioTimeStretcher.h"
+
+#include <iostream>
+#include <fstream>
+#include <cassert>
+#include <cstring>
+
+namespace Rosegarden
+{
+
+static double mod(double x, double y) { return x - (y * floor(x / y)); }
+static float modf(float x, float y) { return x - (y * floorf(x / y)); }
+
+static double princarg(double a) { return mod(a + M_PI, -2 * M_PI) + M_PI; }
+static float princargf(float a) { return modf(a + M_PI, -2 * M_PI) + M_PI; }
+
+
+//#define DEBUG_AUDIO_TIME_STRETCHER 1
+
+AudioTimeStretcher::AudioTimeStretcher(size_t sampleRate,
+ size_t channels,
+ float ratio,
+ bool sharpen,
+ size_t maxOutputBlockSize) :
+ m_sampleRate(sampleRate),
+ m_channels(channels),
+ m_maxOutputBlockSize(maxOutputBlockSize),
+ m_ratio(ratio),
+ m_sharpen(sharpen),
+ m_totalCount(0),
+ m_transientCount(0),
+ m_n2sum(0),
+ m_n2total(0),
+ m_adjustCount(50)
+{
+ pthread_mutex_t initialisingMutex = PTHREAD_MUTEX_INITIALIZER;
+ memcpy(&m_mutex, &initialisingMutex, sizeof(pthread_mutex_t));
+
+ initialise();
+}
+
+AudioTimeStretcher::~AudioTimeStretcher()
+{
+ std::cerr << "AudioTimeStretcher::~AudioTimeStretcher" << std::endl;
+
+ std::cerr << "AudioTimeStretcher::~AudioTimeStretcher: actual ratio = " << (m_totalCount > 0 ? (float (m_n2total) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ", nominal = " << getRatio() << ")" << std::endl;
+
+ cleanup();
+
+ pthread_mutex_destroy(&m_mutex);
+}
+
+void
+AudioTimeStretcher::initialise()
+{
+ std::cerr << "AudioTimeStretcher::initialise" << std::endl;
+
+ calculateParameters();
+
+ m_analysisWindow = new SampleWindow<float>(SampleWindow<float>::Hanning, m_wlen);
+ m_synthesisWindow = new SampleWindow<float>(SampleWindow<float>::Hanning, m_wlen);
+
+ m_prevPhase = new float *[m_channels];
+ m_prevAdjustedPhase = new float *[m_channels];
+
+ m_prevTransientMag = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
+ m_prevTransientScore = 0;
+ m_prevTransient = false;
+
+ m_tempbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
+
+ m_time = new float *[m_channels];
+ m_freq = new fftwf_complex *[m_channels];
+ m_plan = new fftwf_plan[m_channels];
+ m_iplan = new fftwf_plan[m_channels];
+
+ m_inbuf = new RingBuffer<float> *[m_channels];
+ m_outbuf = new RingBuffer<float> *[m_channels];
+ m_mashbuf = new float *[m_channels];
+
+ m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
+
+ for (size_t c = 0; c < m_channels; ++c) {
+
+ m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
+ m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
+
+ m_time[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
+ m_freq[c] = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) *
+ (m_wlen / 2 + 1));
+
+ m_plan[c] = fftwf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE);
+ m_iplan[c] = fftwf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE);
+
+ m_outbuf[c] = new RingBuffer<float>
+ ((m_maxOutputBlockSize + m_wlen) * 2);
+ m_inbuf[c] = new RingBuffer<float>
+ (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen);
+
+ std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
+
+
+ m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
+
+ for (size_t i = 0; i < m_wlen; ++i) {
+ m_mashbuf[c][i] = 0.0;
+ }
+
+ for (size_t i = 0; i <= m_wlen/2; ++i) {
+ m_prevPhase[c][i] = 0.0;
+ m_prevAdjustedPhase[c][i] = 0.0;
+ }
+ }
+
+ for (size_t i = 0; i < m_wlen; ++i) {
+ m_modulationbuf[i] = 0.0;
+ }
+
+ for (size_t i = 0; i <= m_wlen/2; ++i) {
+ m_prevTransientMag[i] = 0.0;
+ }
+}
+
+void
+AudioTimeStretcher::calculateParameters()
+{
+ std::cerr << "AudioTimeStretcher::calculateParameters" << std::endl;
+
+ m_wlen = 1024;
+
+ //!!! In transient sharpening mode, we need to pick the window
+ //length so as to be more or less fixed in audio duration (i.e. we
+ //need to exploit the sample rate)
+
+ //!!! have to work out the relationship between wlen and transient
+ //threshold
+
+ if (m_ratio < 1) {
+ if (m_ratio < 0.4) {
+ m_n1 = 1024;
+ m_wlen = 2048;
+ } else if (m_ratio < 0.8) {
+ m_n1 = 512;
+ } else {
+ m_n1 = 256;
+ }
+ if (shouldSharpen()) {
+ m_wlen = 2048;
+ }
+ m_n2 = lrintf(m_n1 * m_ratio);
+ } else {
+ if (m_ratio > 2) {
+ m_n2 = 512;
+ m_wlen = 4096;
+ } else if (m_ratio > 1.6) {
+ m_n2 = 384;
+ m_wlen = 2048;
+ } else {
+ m_n2 = 256;
+ }
+ if (shouldSharpen()) {
+ if (m_wlen < 2048) m_wlen = 2048;
+ }
+ m_n1 = lrintf(m_n2 / m_ratio);
+ if (m_n1 == 0) {
+ m_n1 = 1;
+ m_n2 = m_ratio;
+ }
+ }
+
+ m_transientThreshold = lrintf(m_wlen / 4.5);
+
+ m_totalCount = 0;
+ m_transientCount = 0;
+ m_n2sum = 0;
+ m_n2total = 0;
+ m_n2list.clear();
+
+ std::cerr << "AudioTimeStretcher: channels = " << m_channels
+ << ", ratio = " << m_ratio
+ << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
+ << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl;
+// << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
+}
+
+void
+AudioTimeStretcher::cleanup()
+{
+ std::cerr << "AudioTimeStretcher::cleanup" << std::endl;
+
+ for (size_t c = 0; c < m_channels; ++c) {
+
+ fftwf_destroy_plan(m_plan[c]);
+ fftwf_destroy_plan(m_iplan[c]);
+
+ fftwf_free(m_time[c]);
+ fftwf_free(m_freq[c]);
+
+ fftwf_free(m_mashbuf[c]);
+ fftwf_free(m_prevPhase[c]);
+ fftwf_free(m_prevAdjustedPhase[c]);
+
+ delete m_inbuf[c];
+ delete m_outbuf[c];
+ }
+
+ fftwf_free(m_tempbuf);
+ fftwf_free(m_modulationbuf);
+ fftwf_free(m_prevTransientMag);
+
+ delete[] m_prevPhase;
+ delete[] m_prevAdjustedPhase;
+ delete[] m_inbuf;
+ delete[] m_outbuf;
+ delete[] m_mashbuf;
+ delete[] m_time;
+ delete[] m_freq;
+ delete[] m_plan;
+ delete[] m_iplan;
+
+ delete m_analysisWindow;
+ delete m_synthesisWindow;
+}
+
+void
+AudioTimeStretcher::setRatio(float ratio)
+{
+ pthread_mutex_lock(&m_mutex);
+
+ size_t formerWlen = m_wlen;
+ m_ratio = ratio;
+
+ std::cerr << "AudioTimeStretcher::setRatio: new ratio " << ratio
+ << std::endl;
+
+ calculateParameters();
+
+ if (m_wlen == formerWlen) {
+
+ // This is the only container whose size depends on m_ratio
+
+ RingBuffer<float> **newin = new RingBuffer<float> *[m_channels];
+
+ size_t formerSize = m_inbuf[0]->getSize();
+ size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen;
+
+ std::cerr << "resizing inbuf from " << formerSize << " to "
+ << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
+
+ if (formerSize != newSize) {
+
+ size_t ready = m_inbuf[0]->getReadSpace();
+
+ for (size_t c = 0; c < m_channels; ++c) {
+ newin[c] = new RingBuffer<float>(newSize);
+ }
+
+ if (ready > 0) {
+
+ size_t copy = std::min(ready, newSize);
+ float *tmp = new float[ready];
+
+ for (size_t c = 0; c < m_channels; ++c) {
+ m_inbuf[c]->read(tmp, ready);
+ newin[c]->write(tmp + ready - copy, copy);
+ }
+
+ delete[] tmp;
+ }
+
+ for (size_t c = 0; c < m_channels; ++c) {
+ delete m_inbuf[c];
+ }
+
+ delete[] m_inbuf;
+ m_inbuf = newin;
+ }
+
+ } else {
+
+ std::cerr << "wlen changed" << std::endl;
+ cleanup();
+ initialise();
+ }
+
+ pthread_mutex_unlock(&m_mutex);
+}
+
+size_t
+AudioTimeStretcher::getProcessingLatency() const
+{
+ return getWindowSize() - getInputIncrement();
+}
+
+size_t
+AudioTimeStretcher::getRequiredInputSamples() const
+{
+ size_t rv;
+ pthread_mutex_lock(&m_mutex);
+
+ if (m_inbuf[0]->getReadSpace() >= m_wlen) rv = 0;
+ else rv = m_wlen - m_inbuf[0]->getReadSpace();
+
+ pthread_mutex_unlock(&m_mutex);
+ return rv;
+}
+
+void
+AudioTimeStretcher::putInput(float **input, size_t samples)
+{
+ pthread_mutex_lock(&m_mutex);
+
+ // We need to add samples from input to our internal buffer. When
+ // we have m_windowSize samples in the buffer, we can process it,
+ // move the samples back by m_n1 and write the output onto our
+ // internal output buffer. If we have (samples * ratio) samples
+ // in that, we can write m_n2 of them back to output and return
+ // (otherwise we have to write zeroes).
+
+ // When we process, we write m_wlen to our fixed output buffer
+ // (m_mashbuf). We then pull out the first m_n2 samples from that
+ // buffer, push them into the output ring buffer, and shift
+ // m_mashbuf left by that amount.
+
+ // The processing latency is then m_wlen - m_n2.
+
+ size_t consumed = 0;
+
+ while (consumed < samples) {
+
+ size_t writable = m_inbuf[0]->getWriteSpace();
+ writable = std::min(writable, samples - consumed);
+
+ if (writable == 0) {
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "WARNING: AudioTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl;
+#endif
+ if (m_inbuf[0]->getReadSpace() < m_wlen ||
+ m_outbuf[0]->getWriteSpace() < m_n2) {
+ std::cerr << "WARNING: AudioTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl;
+ break;
+ }
+ } else {
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
+#endif
+
+ for (size_t c = 0; c < m_channels; ++c) {
+ m_inbuf[c]->write(input[c] + consumed, writable);
+ }
+ consumed += writable;
+ }
+
+ while (m_inbuf[0]->getReadSpace() >= m_wlen &&
+ m_outbuf[0]->getWriteSpace() >= m_n2) {
+
+ // We know we have at least m_wlen samples available
+ // in m_inbuf. We need to peek m_wlen of them for
+ // processing, and then read m_n1 to advance the read
+ // pointer.
+
+ for (size_t c = 0; c < m_channels; ++c) {
+
+ size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
+ assert(got == m_wlen);
+
+ analyseBlock(c, m_tempbuf);
+ }
+
+ bool transient = false;
+ if (shouldSharpen()) transient = isTransient();
+
+ size_t n2 = m_n2;
+
+ if (transient) {
+ n2 = m_n1;
+ }
+
+ ++m_totalCount;
+ if (transient) ++m_transientCount;
+
+ m_n2sum += n2;
+ m_n2total += n2;
+
+ if (m_totalCount > 50 && m_transientCount < m_totalCount) {
+
+ int fixed = m_transientCount * m_n1;
+
+ float idealTotal = m_totalCount * m_n1 * m_ratio;
+ float idealSquashy = idealTotal - fixed;
+
+ float squashyCount = m_totalCount - m_transientCount;
+
+ float fn2 = idealSquashy / squashyCount;
+
+ n2 = int(fn2);
+
+ float remainder = fn2 - n2;
+ if (drand48() < remainder) ++n2;
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ if (n2 != m_n2) {
+ std::cerr << m_n2 << " -> " << n2 << " (ideal = " << (idealSquashy / squashyCount) << ")" << std::endl;
+ }
+#endif
+ }
+
+ for (size_t c = 0; c < m_channels; ++c) {
+
+ synthesiseBlock(c, m_mashbuf[c],
+ c == 0 ? m_modulationbuf : 0,
+ m_prevTransient ? m_n1 : m_n2);
+
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
+#endif
+ m_inbuf[c]->skip(m_n1);
+
+ for (size_t i = 0; i < n2; ++i) {
+ if (m_modulationbuf[i] > 0.f) {
+ m_mashbuf[c][i] /= m_modulationbuf[i];
+ }
+ }
+
+ m_outbuf[c]->write(m_mashbuf[c], n2);
+
+ for (size_t i = 0; i < m_wlen - n2; ++i) {
+ m_mashbuf[c][i] = m_mashbuf[c][i + n2];
+ }
+
+ for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
+ m_mashbuf[c][i] = 0.0f;
+ }
+ }
+
+ m_prevTransient = transient;
+
+ for (size_t i = 0; i < m_wlen - n2; ++i) {
+ m_modulationbuf[i] = m_modulationbuf[i + n2];
+ }
+
+ for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
+ m_modulationbuf[i] = 0.0f;
+ }
+
+ if (!transient) m_n2 = n2;
+ }
+
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
+#endif
+ }
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "AudioTimeStretcher::putInput returning" << std::endl;
+#endif
+
+ pthread_mutex_unlock(&m_mutex);
+
+// std::cerr << "ratio: nominal: " << getRatio() << " actual: "
+// << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
+}
+
+size_t
+AudioTimeStretcher::getAvailableOutputSamples() const
+{
+ pthread_mutex_lock(&m_mutex);
+
+ size_t rv = m_outbuf[0]->getReadSpace();
+
+ pthread_mutex_unlock(&m_mutex);
+ return rv;
+}
+
+void
+AudioTimeStretcher::getOutput(float **output, size_t samples)
+{
+ pthread_mutex_lock(&m_mutex);
+
+ if (m_outbuf[0]->getReadSpace() < samples) {
+ std::cerr << "WARNING: AudioTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
+ size_t fill = samples - m_outbuf[0]->getReadSpace();
+ for (size_t c = 0; c < m_channels; ++c) {
+ for (size_t i = 0; i < fill; ++i) {
+ output[c][i] = 0.0;
+ }
+ m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
+ }
+ } else {
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
+#endif
+ for (size_t c = 0; c < m_channels; ++c) {
+ m_outbuf[c]->read(output[c], samples);
+ }
+ }
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "AudioTimeStretcher::getOutput returning" << std::endl;
+#endif
+
+ pthread_mutex_unlock(&m_mutex);
+}
+
+void
+AudioTimeStretcher::analyseBlock(size_t c, float *buf)
+{
+ size_t i;
+
+ // buf contains m_wlen samples
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "AudioTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
+#endif
+
+ m_analysisWindow->cut(buf);
+
+ for (i = 0; i < m_wlen/2; ++i) {
+ float temp = buf[i];
+ buf[i] = buf[i + m_wlen/2];
+ buf[i + m_wlen/2] = temp;
+ }
+
+ for (i = 0; i < m_wlen; ++i) {
+ m_time[c][i] = buf[i];
+ }
+
+ fftwf_execute(m_plan[c]); // m_time -> m_freq
+}
+
+bool
+AudioTimeStretcher::isTransient()
+{
+ int count = 0;
+
+ for (size_t i = 0; i <= m_wlen/2; ++i) {
+
+ float real = 0.f, imag = 0.f;
+
+ for (size_t c = 0; c < m_channels; ++c) {
+ real += m_freq[c][i][0];
+ imag += m_freq[c][i][1];
+ }
+
+ float sqrmag = (real * real + imag * imag);
+
+ if (m_prevTransientMag[i] > 0.f) {
+ float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
+ if (diff > 3.f) ++count;
+ }
+
+ m_prevTransientMag[i] = sqrmag;
+ }
+
+ bool isTransient = false;
+
+// if (count > m_transientThreshold &&
+// count > m_prevTransientScore * 1.2) {
+ if (count > m_prevTransientScore &&
+ count > m_transientThreshold &&
+ count - m_prevTransientScore > m_wlen / 20) {
+ isTransient = true;
+
+#ifdef DEBUG_AUDIO_TIME_STRETCHER
+ std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ", nominal = " << getRatio() << ")" << std::endl;
+// } else {
+// std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl;
+#endif
+ }
+
+ m_prevTransientScore = count;
+
+ return isTransient;
+}
+
+void
+AudioTimeStretcher::synthesiseBlock(size_t c,
+ float *out,
+ float *modulation,
+ size_t lastStep)
+{
+ bool unchanged = (lastStep == m_n1);
+
+ for (size_t i = 0; i <= m_wlen/2; ++i) {
+
+ float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
+ float adjustedPhase = phase;
+
+// float binfreq = float(m_sampleRate * i) / m_wlen;
+
+ if (!unchanged) {
+
+ float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
+ m_freq[c][i][1] * m_freq[c][i][1]);
+
+ float omega = (2 * M_PI * m_n1 * i) / m_wlen;
+
+ float expectedPhase = m_prevPhase[c][i] + omega;
+
+ float phaseError = princargf(phase - expectedPhase);
+
+ float phaseIncrement = (omega + phaseError) / m_n1;
+
+ adjustedPhase = m_prevAdjustedPhase[c][i] +
+ lastStep * phaseIncrement;
+
+ float real = mag * cosf(adjustedPhase);
+ float imag = mag * sinf(adjustedPhase);
+ m_freq[c][i][0] = real;
+ m_freq[c][i][1] = imag;
+ }
+
+ m_prevPhase[c][i] = phase;
+ m_prevAdjustedPhase[c][i] = adjustedPhase;
+ }
+
+ fftwf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
+
+ for (size_t i = 0; i < m_wlen/2; ++i) {
+ float temp = m_time[c][i];
+ m_time[c][i] = m_time[c][i + m_wlen/2];
+ m_time[c][i + m_wlen/2] = temp;
+ }
+
+ for (size_t i = 0; i < m_wlen; ++i) {
+ m_time[c][i] = m_time[c][i] / m_wlen;
+ }
+
+ m_synthesisWindow->cut(m_time[c]);
+
+ for (size_t i = 0; i < m_wlen; ++i) {
+ out[i] += m_time[c][i];
+ }
+
+ if (modulation) {
+
+ float area = m_analysisWindow->getArea();
+
+ for (size_t i = 0; i < m_wlen; ++i) {
+ float val = m_synthesisWindow->getValue(i);
+ modulation[i] += val * area;
+ }
+ }
+}
+
+
+
+}
+