summaryrefslogtreecommitdiffstats
path: root/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook
diff options
context:
space:
mode:
authorDarrell Anderson <darrella@hushmail.com>2014-01-21 22:06:48 -0600
committerTimothy Pearson <kb9vqf@pearsoncomputing.net>2014-01-21 22:06:48 -0600
commit0b8ca6637be94f7814cafa7d01ad4699672ff336 (patch)
treed2b55b28893be8b047b4e60514f4a7f0713e0d70 /tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook
parenta1670b07bc16b0decb3e85ee17ae64109cb182c1 (diff)
downloadtde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.tar.gz
tde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.zip
Beautify docbook files
Diffstat (limited to 'tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook')
-rw-r--r--tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook32
1 files changed, 5 insertions, 27 deletions
diff --git a/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook b/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook
index 5d6783ddc24..352f29cda52 100644
--- a/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook
+++ b/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook
@@ -1,32 +1,10 @@
<sect1 id="ai-greatcircle">
<sect1info>
-<author
-><firstname
->Jason</firstname
-> <surname
->Harris</surname
-> </author>
+<author><firstname>Jason</firstname> <surname>Harris</surname> </author>
</sect1info>
-<title
->Great Circles</title>
-<indexterm
-><primary
->Great Circles</primary>
-<seealso
->Celestial Sphere</seealso>
+<title>Great Circles</title>
+<indexterm><primary>Great Circles</primary>
+<seealso>Celestial Sphere</seealso>
</indexterm>
-<para
->Consider a sphere, such as the Earth, or the <link linkend="ai-csphere"
->Celestial Sphere</link
->. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm
->Great Circle</firstterm
->. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para
-><para
->Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon"
->Horizon</link
->, the <link linkend="ai-cequator"
->Celestial Equator</link
->, and the <link linkend="ai-ecliptic"
->Ecliptic</link
->. </para>
+<para>Consider a sphere, such as the Earth, or the <link linkend="ai-csphere">Celestial Sphere</link>. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm>Great Circle</firstterm>. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para><para>Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon">Horizon</link>, the <link linkend="ai-cequator">Celestial Equator</link>, and the <link linkend="ai-ecliptic">Ecliptic</link>. </para>
</sect1>