diff options
author | Darrell Anderson <darrella@hushmail.com> | 2014-01-21 22:06:48 -0600 |
---|---|---|
committer | Timothy Pearson <kb9vqf@pearsoncomputing.net> | 2014-01-21 22:06:48 -0600 |
commit | 0b8ca6637be94f7814cafa7d01ad4699672ff336 (patch) | |
tree | d2b55b28893be8b047b4e60514f4a7f0713e0d70 /tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook | |
parent | a1670b07bc16b0decb3e85ee17ae64109cb182c1 (diff) | |
download | tde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.tar.gz tde-i18n-0b8ca6637be94f7814cafa7d01ad4699672ff336.zip |
Beautify docbook files
Diffstat (limited to 'tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook')
-rw-r--r-- | tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook | 32 |
1 files changed, 5 insertions, 27 deletions
diff --git a/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook b/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook index 5d6783ddc24..352f29cda52 100644 --- a/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook +++ b/tde-i18n-en_GB/docs/tdeedu/kstars/greatcircle.docbook @@ -1,32 +1,10 @@ <sect1 id="ai-greatcircle"> <sect1info> -<author -><firstname ->Jason</firstname -> <surname ->Harris</surname -> </author> +<author><firstname>Jason</firstname> <surname>Harris</surname> </author> </sect1info> -<title ->Great Circles</title> -<indexterm -><primary ->Great Circles</primary> -<seealso ->Celestial Sphere</seealso> +<title>Great Circles</title> +<indexterm><primary>Great Circles</primary> +<seealso>Celestial Sphere</seealso> </indexterm> -<para ->Consider a sphere, such as the Earth, or the <link linkend="ai-csphere" ->Celestial Sphere</link ->. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm ->Great Circle</firstterm ->. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para -><para ->Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon" ->Horizon</link ->, the <link linkend="ai-cequator" ->Celestial Equator</link ->, and the <link linkend="ai-ecliptic" ->Ecliptic</link ->. </para> +<para>Consider a sphere, such as the Earth, or the <link linkend="ai-csphere">Celestial Sphere</link>. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm>Great Circle</firstterm>. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para><para>Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon">Horizon</link>, the <link linkend="ai-cequator">Celestial Equator</link>, and the <link linkend="ai-ecliptic">Ecliptic</link>. </para> </sect1> |