summaryrefslogtreecommitdiffstats
path: root/tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook
diff options
context:
space:
mode:
Diffstat (limited to 'tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook')
-rw-r--r--tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook66
1 files changed, 66 insertions, 0 deletions
diff --git a/tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook b/tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook
new file mode 100644
index 00000000000..ab5cf0a03ab
--- /dev/null
+++ b/tde-i18n-es/docs/tdeedu/kstars/geocoords.docbook
@@ -0,0 +1,66 @@
+<sect1 id="ai-geocoords">
+<sect1info>
+<author
+><firstname
+>Jason</firstname
+> <surname
+>Harris</surname
+> </author>
+</sect1info>
+<title
+>Coordenadas geográficas</title>
+<indexterm
+><primary
+>Sistema de coordenadas geográficas</primary
+></indexterm>
+<indexterm
+><primary
+>Longitud</primary
+><see
+>Sistema de coordenadas geográficas</see
+></indexterm>
+<indexterm
+><primary
+>Latitud</primary
+><see
+>Sistema de coordenadas geográficas</see
+></indexterm>
+<para
+>Las posiciones en la Tierra se pueden especificar utilizando un sistema de coordenadas esférico. El sistema de coordenadas geográfico (<quote
+>mapa de la Tierra</quote
+>) está alineado con los ejes de rotación de la Tierra. Define dos ángulos desde el centro de la Tierra. Uno de los ángulos se llama <firstterm
+>latitud</firstterm
+>, y mide el ángulo entre cualquier punto y el ecuador. El otro ángulo, llamado <firstterm
+>longitud</firstterm
+>, mide el ángulo <emphasis
+>a lo largo</emphasis
+> del ecuador desde un punto cualquiera de la Tierra (Greenwich, en Inglaterra, está aceptado como el punto de ángulo 0 en la mayoría de las sociedades modernas). </para
+><para
+>Combinando estos dos ángulos, se puede definir cualquier lugar de la Tierra. Por ejemplo, Baltimore, en Maryland (EE.UU.), tiene una latitud de 39,3 grados norte, y una longitud de 76,6 grados oeste. Así pues, un vector dibujado desde el centro de la Tierra hasta un punto a 39,3 grados por encima del ecuador, y 76,6 grados al oeste de Greenwich (Inglaterra) pasará por Baltimore. </para
+><para
+>El ecuador es, obviamente, una parte importante de este sistema de coordenadas, ya que representa el <emphasis
+>punto cero</emphasis
+> del ángulo de latitud, y está a medio camino entre los polos. El ecuador es el <firstterm
+>plano fundamental</firstterm
+> del sistema de coordenadas geográfico. <link linkend="ai-skycoords"
+>Todos los sistemas de coordenadas esféricos</link
+> definen un plano fundamental de este tipo. </para
+><para
+>Las líneas de latitud constante se denominan <firstterm
+>paralelos</firstterm
+>. Trazan círculos en las superficie de la Tierra, pero el único paralelo que es un <link linkend="ai-greatcircle"
+>círculo mayor</link
+> es el ecuador (latitud = 0 grados). Las líneas de longitud constante se denominan <firstterm
+>meridianos</firstterm
+>. El meridiano que pasa por Greenwich es el <firstterm
+>primer meridiano</firstterm
+> (longitud = 0 grados). A diferencia de los paralelos, todos los meridianos son círculos mayores, y además no son paralelos: se intersectan en los polos norte y sur. </para>
+<tip>
+<para
+>Ejercicio:</para>
+<para
+>¿Cuál es la longitud del polo norte? Su latitud es 90 grados norte. </para>
+<para
+>Es una pregunta engañosa. La longitud no tiene sentido en el polo norte (y tampoco en el polo sur). Tiene todas las longitudes al mismo tiempo. </para>
+</tip>
+</sect1>