diff options
Diffstat (limited to 'tde-i18n-pl/docs/tdeedu/kstars/blackbody.docbook')
-rw-r--r-- | tde-i18n-pl/docs/tdeedu/kstars/blackbody.docbook | 124 |
1 files changed, 124 insertions, 0 deletions
diff --git a/tde-i18n-pl/docs/tdeedu/kstars/blackbody.docbook b/tde-i18n-pl/docs/tdeedu/kstars/blackbody.docbook new file mode 100644 index 00000000000..da3a57ea5ad --- /dev/null +++ b/tde-i18n-pl/docs/tdeedu/kstars/blackbody.docbook @@ -0,0 +1,124 @@ +<sect1 id="ai-blackbody"> + +<sect1info> + +<author +><firstname +>Jasem</firstname +> <surname +>Mutlaq</surname +> <affiliation +><address> +</address +></affiliation> +</author> +</sect1info> + +<title +>Promieniowanie ciała doskonale czarnego</title> +<indexterm +><primary +>Promieniowanie ciała doskonale czarnego</primary> +<seealso +>Barwy gwiazd i ich temperatury</seealso> +</indexterm> + +<para +>Termin <firstterm +>ciało czarne</firstterm +> odnosi się do ciemnego obiektu emitującego <firstterm +>promieniowanie termiczne</firstterm +>. Idealne ciało czarne to takie, które pochłania całe padające światło, nie odbija go nawet w najmniejszym stopniu. W temperaturze pokojowej takie ciało miałoby kolor idealnie czarny (stąd nazwa <emphasis +>ciało doskonale czarne</emphasis +>). Jednakże podgrzane do wysokiej temperatury ciało doskonale czarne zaczyna emitować <firstterm +>promieniowanie termiczne</firstterm +>. </para> + +<para +>W rzeczywistości wszystkie obiekty niebieskie emitują promieniowanie termiczne (pod warunkiem, że ich temperatura jest powyżej zera bezwzględnego lub -273,15 stopni Celsjusza), ale żaden z obiektów nie emituje promieniowania idealnie; obiekty emitują/pochłaniają niektóre długości fali świetlnej bardziej niż inne. Takie nierówna efektywność utrudnia studiowanie wzajemnego oddziaływaniaświatła, ciepła i materii przy użyciu normalnych obiektów. </para> + +<para +>Na szczęście istnieje możliwość budowy prawie idealnego ciała czarnego. Należy zastosować skrzynkę z materiału przewodzącego ciepło, takiego jak metal. Skrzynka powinna być szczelnie zamknięta ze wszystkich stron tak, by wnętrze było przestrzenią, do której nie wpada żadne światło z otoczenia. Następnie należy wykonać małą dziurkę gdzieś w skrzynce. Światło wychodzące z tej dziury będzie niemalże idealnie przypominać światło z idealnego ciała czarnego dla temparatury powietrza wewnątrz skrzynki. </para> + +<para +>Na początku XX wieku naukowcy Lord Rayleigh i Max Planck (między innymi) badali promieniowanie ciała doskonale czarnego przy użyciu takiego urządzenia. Po długich badaniach Planck był w stanie empirycznie opisać intensywność światła emitowanego przez ciało czarne w funkcji długości fali. Co więcej, potrafił on opisać, jak będzie się zmieniać widmo po zmianie temperatury. Prace Plancka nad promieniowaniem ciała czarnego są jedną z dziedzin fizyki prowadzącą do powstania wspaniałej nauki: mechaniki kwantowej, ale jest to niestety poza zakresem tego artykułu. </para> + +<para +>Planck i inni odkryli, że przy wzroście temperatury ciała doskonale czarnego całkowita ilość światła emitowanego w czasie jednej sekundy wzrasta. Wierzchołki rozkładu długości fali na wykresie widmowym przesuwają się w stronę kolorów niebieskich (zobacz Rysunek 1). </para> + +<para> +<mediaobject> +<imageobject> +<imagedata fileref="blackbody.png" format="PNG"/> +</imageobject> +<caption +><para +><phrase +>Rysunek 1</phrase +></para +></caption> +</mediaobject> +</para> + +<para +>Na przykład, sztabka żelaza po podgrzaniu do wysokiej temperatury staje się pomarańczowo-czerwona. Jej kolor stopniowo przesuwa się w stronę niebieskiego i białego przy dalszym ogrzewaniu. </para> + +<para +>W 1893 w Niemczech fizyk Wilhelm Wien określił relacje pomiędzy temperaturą ciała doskonale czarnego i długością fali szczytu na wykresie widmowym następującym równaniem: </para> + +<para> +<mediaobject> +<imageobject> +<imagedata fileref="lambda_max.png" format="PNG"/> +</imageobject> +</mediaobject> +</para> + +<para +>gdzie T jest temperarurą w stopniach w skali Kelwina. Prawo Wiena (znane także jako prawo zamiany Wiena) mówi, że długość fali maksymalnej emisji z ciała doskonale czarnego jest odwrotnie proporcjonalna do jego temperatury. Oznacza to, że krótsza długość fali (większa częstotliwość) światła odpowiada większej energii fotonów, czego można spodziewać się po obiektach o wyższej temperaturze. </para> + +<para +>Przykład: Słońce ma średnią temperaturę 5800 K, czyli maksymalna emisja ma miejsce na następującej długości fali: <mediaobject +> <imageobject> +<imagedata fileref="lambda_ex.png" format="PNG"/> +</imageobject> +</mediaobject> +</para> + +<para +>Ta długość fali należy do zielonych barw widma światła widzialnego, ale Słońce emituje fotony na o długości fali: zarówno dłuższej jak i krótszej niż lambda(max) i ludzkie oko odbiera kolor Słońca jako żółty/biały. </para> + +<para +>W 1879 austriacki fizyk Stephan Josef Stefan pokazał, że jasność L ciała doskonale czarnego jest proporcjonalna do czwartej potęgi jego temperatury T. </para> + +<para> +<mediaobject> +<imageobject> +<imagedata fileref="luminosity.png" format="PNG"/> +</imageobject> +</mediaobject> +</para> + +<para +>gdzie A jest powierzchnią, alfa jest stałą proporcjonalności, a T jest temperaturą w skali Kelwina. Gdy dwukrotnie zwiększymy temperaturę (np. ze 1000 K na 2000 K), to wtedy całkowita energia promieniowania ciała doskonale czarnego wzrasta o współczynnik 2^4, czyli 16. </para> + +<para +>Pięć lat później austriacki fizyk Ludwig Boltzman wyprowadził to samo równanie, znane obecnie jako prawo Stefana-Boltzmana. Jeżeli przyjmiemy, że promieńgwiazdy wynosi R, wtedy jasność tego ciała wynosi: </para> + +<para> +<mediaobject> +<imageobject> +<imagedata fileref="luminosity_ex.png" format="PNG"/> +</imageobject> +</mediaobject> +</para> + +<para +>gdzie R jest promieniem gwiazdy w cm, a alfa jest stałą Stefana-Boltzmana, która ma wartość: <mediaobject +> <imageobject> +<imagedata fileref="alpha.png" format="PNG"/> +</imageobject> +</mediaobject> +</para> + +</sect1> |