summaryrefslogtreecommitdiffstats
path: root/python/sip/doc
diff options
context:
space:
mode:
Diffstat (limited to 'python/sip/doc')
-rw-r--r--python/sip/doc/default.css229
-rw-r--r--python/sip/doc/sipref.html5281
-rw-r--r--python/sip/doc/sipref.txt5353
3 files changed, 10863 insertions, 0 deletions
diff --git a/python/sip/doc/default.css b/python/sip/doc/default.css
new file mode 100644
index 00000000..5e077213
--- /dev/null
+++ b/python/sip/doc/default.css
@@ -0,0 +1,229 @@
+/*
+:Author: David Goodger
+:Contact: goodger@users.sourceforge.net
+:date: $Date$
+:version: $Revision$
+:copyright: This stylesheet has been placed in the public domain.
+
+Default cascading style sheet for the HTML output of Docutils.
+*/
+
+.first {
+ margin-top: 0 }
+
+.last {
+ margin-bottom: 0 }
+
+a.toc-backref {
+ text-decoration: none ;
+ color: black }
+
+dt {
+ font-weight: bold }
+
+dd {
+ margin-bottom: 1.5em }
+
+div.abstract {
+ margin: 2em 5em }
+
+div.abstract p.topic-title {
+ font-weight: bold ;
+ text-align: center }
+
+div.attention, div.caution, div.danger, div.error, div.hint,
+div.important, div.note, div.tip, div.warning, div.admonition {
+ margin: 2em ;
+ border: medium outset ;
+ padding: 1em }
+
+div.attention p.admonition-title, div.caution p.admonition-title,
+div.danger p.admonition-title, div.error p.admonition-title,
+div.warning p.admonition-title {
+ color: red ;
+ font-weight: bold ;
+ font-family: sans-serif }
+
+div.hint p.admonition-title, div.important p.admonition-title,
+div.note p.admonition-title, div.tip p.admonition-title,
+div.admonition p.admonition-title {
+ font-weight: bold ;
+ font-family: sans-serif }
+
+div.dedication {
+ margin: 2em 5em ;
+ text-align: center ;
+ font-style: italic }
+
+div.dedication p.topic-title {
+ font-weight: bold ;
+ font-style: normal }
+
+div.figure {
+ margin-left: 2em }
+
+div.footer, div.header {
+ font-size: smaller }
+
+div.sidebar {
+ margin-left: 1em ;
+ border: medium outset ;
+ padding: 0em 1em ;
+ background-color: #ffffee ;
+ width: 40% ;
+ float: right ;
+ clear: right }
+
+div.sidebar p.rubric {
+ font-family: sans-serif ;
+ font-size: medium }
+
+div.system-messages {
+ margin: 5em }
+
+div.system-messages h1 {
+ color: red }
+
+div.system-message {
+ border: medium outset ;
+ padding: 1em }
+
+div.system-message p.system-message-title {
+ color: red ;
+ font-weight: bold }
+
+div.topic {
+ margin: 2em }
+
+h1.title {
+ text-align: center }
+
+h2.subtitle {
+ text-align: center }
+
+hr {
+ width: 75% }
+
+ol.simple, ul.simple {
+ margin-bottom: 1em }
+
+ol.arabic {
+ list-style: decimal }
+
+ol.loweralpha {
+ list-style: lower-alpha }
+
+ol.upperalpha {
+ list-style: upper-alpha }
+
+ol.lowerroman {
+ list-style: lower-roman }
+
+ol.upperroman {
+ list-style: upper-roman }
+
+p.attribution {
+ text-align: right ;
+ margin-left: 50% }
+
+p.caption {
+ font-style: italic }
+
+p.credits {
+ font-style: italic ;
+ font-size: smaller }
+
+p.label {
+ white-space: nowrap }
+
+p.rubric {
+ font-weight: bold ;
+ font-size: larger ;
+ color: maroon ;
+ text-align: center }
+
+p.sidebar-title {
+ font-family: sans-serif ;
+ font-weight: bold ;
+ font-size: larger }
+
+p.sidebar-subtitle {
+ font-family: sans-serif ;
+ font-weight: bold }
+
+p.topic-title {
+ font-weight: bold }
+
+pre.address {
+ margin-bottom: 0 ;
+ margin-top: 0 ;
+ font-family: serif ;
+ font-size: 100% }
+
+pre.line-block {
+ font-family: serif ;
+ font-size: 100% }
+
+pre.literal-block, pre.doctest-block {
+ margin-left: 2em ;
+ margin-right: 2em ;
+ background-color: #eeeeee }
+
+span.classifier {
+ font-family: sans-serif ;
+ font-style: oblique }
+
+span.classifier-delimiter {
+ font-family: sans-serif ;
+ font-weight: bold }
+
+span.interpreted {
+ font-family: sans-serif }
+
+span.option {
+ white-space: nowrap }
+
+span.option-argument {
+ font-style: italic }
+
+span.pre {
+ white-space: pre }
+
+span.problematic {
+ color: red }
+
+table {
+ margin-top: 0.5em ;
+ margin-bottom: 0.5em }
+
+table.citation {
+ border-left: solid thin gray ;
+ padding-left: 0.5ex }
+
+table.docinfo {
+ margin: 2em 4em }
+
+table.footnote {
+ border-left: solid thin black ;
+ padding-left: 0.5ex }
+
+td, th {
+ padding-left: 0.5em ;
+ padding-right: 0.5em ;
+ vertical-align: top }
+
+th.docinfo-name, th.field-name {
+ font-weight: bold ;
+ text-align: left ;
+ white-space: nowrap }
+
+h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt {
+ font-size: 100% }
+
+/*
+tt {
+ background-color: #eeeeee }
+*/
+
+ul.auto-toc {
+ list-style-type: none }
diff --git a/python/sip/doc/sipref.html b/python/sip/doc/sipref.html
new file mode 100644
index 00000000..850fe61f
--- /dev/null
+++ b/python/sip/doc/sipref.html
@@ -0,0 +1,5281 @@
+<?xml version="1.0" encoding="utf-8" ?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+<meta name="generator" content="Docutils 0.4: http://docutils.sourceforge.net/" />
+<title>SIP - A Tool for Generating Python Bindings for C and C++ Libraries</title>
+<meta name="copyright" content="Copyright (c) 2007 Riverbank Computing Limited" />
+<style type="text/css">
+
+/*
+:Author: David Goodger
+:Contact: goodger@users.sourceforge.net
+:Date: $Date$
+:Revision: $Revision$
+:Copyright: This stylesheet has been placed in the public domain.
+
+Default cascading style sheet for the HTML output of Docutils.
+
+See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to
+customize this style sheet.
+*/
+
+/* used to remove borders from tables and images */
+.borderless, table.borderless td, table.borderless th {
+ border: 0 }
+
+table.borderless td, table.borderless th {
+ /* Override padding for "table.docutils td" with "! important".
+ The right padding separates the table cells. */
+ padding: 0 0.5em 0 0 ! important }
+
+.first {
+ /* Override more specific margin styles with "! important". */
+ margin-top: 0 ! important }
+
+.last, .with-subtitle {
+ margin-bottom: 0 ! important }
+
+.hidden {
+ display: none }
+
+a.toc-backref {
+ text-decoration: none ;
+ color: black }
+
+blockquote.epigraph {
+ margin: 2em 5em ; }
+
+dl.docutils dd {
+ margin-bottom: 0.5em }
+
+/* Uncomment (and remove this text!) to get bold-faced definition list terms
+dl.docutils dt {
+ font-weight: bold }
+*/
+
+div.abstract {
+ margin: 2em 5em }
+
+div.abstract p.topic-title {
+ font-weight: bold ;
+ text-align: center }
+
+div.admonition, div.attention, div.caution, div.danger, div.error,
+div.hint, div.important, div.note, div.tip, div.warning {
+ margin: 2em ;
+ border: medium outset ;
+ padding: 1em }
+
+div.admonition p.admonition-title, div.hint p.admonition-title,
+div.important p.admonition-title, div.note p.admonition-title,
+div.tip p.admonition-title {
+ font-weight: bold ;
+ font-family: sans-serif }
+
+div.attention p.admonition-title, div.caution p.admonition-title,
+div.danger p.admonition-title, div.error p.admonition-title,
+div.warning p.admonition-title {
+ color: red ;
+ font-weight: bold ;
+ font-family: sans-serif }
+
+/* Uncomment (and remove this text!) to get reduced vertical space in
+ compound paragraphs.
+div.compound .compound-first, div.compound .compound-middle {
+ margin-bottom: 0.5em }
+
+div.compound .compound-last, div.compound .compound-middle {
+ margin-top: 0.5em }
+*/
+
+div.dedication {
+ margin: 2em 5em ;
+ text-align: center ;
+ font-style: italic }
+
+div.dedication p.topic-title {
+ font-weight: bold ;
+ font-style: normal }
+
+div.figure {
+ margin-left: 2em ;
+ margin-right: 2em }
+
+div.footer, div.header {
+ clear: both;
+ font-size: smaller }
+
+div.line-block {
+ display: block ;
+ margin-top: 1em ;
+ margin-bottom: 1em }
+
+div.line-block div.line-block {
+ margin-top: 0 ;
+ margin-bottom: 0 ;
+ margin-left: 1.5em }
+
+div.sidebar {
+ margin-left: 1em ;
+ border: medium outset ;
+ padding: 1em ;
+ background-color: #ffffee ;
+ width: 40% ;
+ float: right ;
+ clear: right }
+
+div.sidebar p.rubric {
+ font-family: sans-serif ;
+ font-size: medium }
+
+div.system-messages {
+ margin: 5em }
+
+div.system-messages h1 {
+ color: red }
+
+div.system-message {
+ border: medium outset ;
+ padding: 1em }
+
+div.system-message p.system-message-title {
+ color: red ;
+ font-weight: bold }
+
+div.topic {
+ margin: 2em }
+
+h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
+h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
+ margin-top: 0.4em }
+
+h1.title {
+ text-align: center }
+
+h2.subtitle {
+ text-align: center }
+
+hr.docutils {
+ width: 75% }
+
+img.align-left {
+ clear: left }
+
+img.align-right {
+ clear: right }
+
+ol.simple, ul.simple {
+ margin-bottom: 1em }
+
+ol.arabic {
+ list-style: decimal }
+
+ol.loweralpha {
+ list-style: lower-alpha }
+
+ol.upperalpha {
+ list-style: upper-alpha }
+
+ol.lowerroman {
+ list-style: lower-roman }
+
+ol.upperroman {
+ list-style: upper-roman }
+
+p.attribution {
+ text-align: right ;
+ margin-left: 50% }
+
+p.caption {
+ font-style: italic }
+
+p.credits {
+ font-style: italic ;
+ font-size: smaller }
+
+p.label {
+ white-space: nowrap }
+
+p.rubric {
+ font-weight: bold ;
+ font-size: larger ;
+ color: maroon ;
+ text-align: center }
+
+p.sidebar-title {
+ font-family: sans-serif ;
+ font-weight: bold ;
+ font-size: larger }
+
+p.sidebar-subtitle {
+ font-family: sans-serif ;
+ font-weight: bold }
+
+p.topic-title {
+ font-weight: bold }
+
+pre.address {
+ margin-bottom: 0 ;
+ margin-top: 0 ;
+ font-family: serif ;
+ font-size: 100% }
+
+pre.literal-block, pre.doctest-block {
+ margin-left: 2em ;
+ margin-right: 2em ;
+ background-color: #eeeeee }
+
+span.classifier {
+ font-family: sans-serif ;
+ font-style: oblique }
+
+span.classifier-delimiter {
+ font-family: sans-serif ;
+ font-weight: bold }
+
+span.interpreted {
+ font-family: sans-serif }
+
+span.option {
+ white-space: nowrap }
+
+span.pre {
+ white-space: pre }
+
+span.problematic {
+ color: red }
+
+span.section-subtitle {
+ /* font-size relative to parent (h1..h6 element) */
+ font-size: 80% }
+
+table.citation {
+ border-left: solid 1px gray;
+ margin-left: 1px }
+
+table.docinfo {
+ margin: 2em 4em }
+
+table.docutils {
+ margin-top: 0.5em ;
+ margin-bottom: 0.5em }
+
+table.footnote {
+ border-left: solid 1px black;
+ margin-left: 1px }
+
+table.docutils td, table.docutils th,
+table.docinfo td, table.docinfo th {
+ padding-left: 0.5em ;
+ padding-right: 0.5em ;
+ vertical-align: top }
+
+table.docutils th.field-name, table.docinfo th.docinfo-name {
+ font-weight: bold ;
+ text-align: left ;
+ white-space: nowrap ;
+ padding-left: 0 }
+
+h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
+h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
+ font-size: 100% }
+
+tt.docutils {
+ background-color: #eeeeee }
+
+ul.auto-toc {
+ list-style-type: none }
+
+</style>
+</head>
+<body>
+<div class="document" id="sip-a-tool-for-generating-python-bindings-for-c-and-c-libraries">
+<h1 class="title">SIP - A Tool for Generating Python Bindings for C and C++ Libraries</h1>
+<h2 class="subtitle" id="reference-guide">Reference Guide</h2>
+<table class="docinfo" frame="void" rules="none">
+<col class="docinfo-name" />
+<col class="docinfo-content" />
+<tbody valign="top">
+<tr><th class="docinfo-name">Contact:</th>
+<td><a class="first last reference" href="mailto:info&#64;riverbankcomputing.co.uk">info&#64;riverbankcomputing.co.uk</a></td></tr>
+<tr><th class="docinfo-name">Version:</th>
+<td>4.6</td></tr>
+<tr><th class="docinfo-name">Copyright:</th>
+<td>Copyright (c) 2007 Riverbank Computing Limited</td></tr>
+</tbody>
+</table>
+<div class="contents topic">
+<p class="topic-title first"><a id="contents" name="contents">Contents</a></p>
+<ul class="auto-toc simple">
+<li><a class="reference" href="#introduction" id="id22" name="id22">1&nbsp;&nbsp;&nbsp;Introduction</a><ul class="auto-toc">
+<li><a class="reference" href="#license" id="id23" name="id23">1.1&nbsp;&nbsp;&nbsp;License</a></li>
+<li><a class="reference" href="#features" id="id24" name="id24">1.2&nbsp;&nbsp;&nbsp;Features</a></li>
+<li><a class="reference" href="#sip-components" id="id25" name="id25">1.3&nbsp;&nbsp;&nbsp;SIP Components</a></li>
+<li><a class="reference" href="#qt-support" id="id26" name="id26">1.4&nbsp;&nbsp;&nbsp;Qt Support</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#potential-incompatibilities-with-earlier-versions" id="id27" name="id27">2&nbsp;&nbsp;&nbsp;Potential Incompatibilities with Earlier Versions</a><ul class="auto-toc">
+<li><a class="reference" href="#sip-v4-4" id="id28" name="id28">2.1&nbsp;&nbsp;&nbsp;SIP v4.4</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#installing-sip" id="id29" name="id29">3&nbsp;&nbsp;&nbsp;Installing SIP</a><ul class="auto-toc">
+<li><a class="reference" href="#downloading-sip" id="id30" name="id30">3.1&nbsp;&nbsp;&nbsp;Downloading SIP</a></li>
+<li><a class="reference" href="#configuring-sip" id="id31" name="id31">3.2&nbsp;&nbsp;&nbsp;Configuring SIP</a><ul class="auto-toc">
+<li><a class="reference" href="#configuring-sip-using-mingw" id="id32" name="id32">3.2.1&nbsp;&nbsp;&nbsp;Configuring SIP Using MinGW</a></li>
+<li><a class="reference" href="#configuring-sip-using-the-borland-c-compiler" id="id33" name="id33">3.2.2&nbsp;&nbsp;&nbsp;Configuring SIP Using the Borland C++ Compiler</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#building-sip" id="id34" name="id34">3.3&nbsp;&nbsp;&nbsp;Building SIP</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#using-sip" id="id35" name="id35">4&nbsp;&nbsp;&nbsp;Using SIP</a><ul class="auto-toc">
+<li><a class="reference" href="#a-simple-c-example" id="id36" name="id36">4.1&nbsp;&nbsp;&nbsp;A Simple C++ Example</a></li>
+<li><a class="reference" href="#id7" id="id37" name="id37">4.2&nbsp;&nbsp;&nbsp;A Simple C Example</a></li>
+<li><a class="reference" href="#a-more-complex-c-example" id="id38" name="id38">4.3&nbsp;&nbsp;&nbsp;A More Complex C++ Example</a></li>
+<li><a class="reference" href="#ownership-of-objects" id="id39" name="id39">4.4&nbsp;&nbsp;&nbsp;Ownership of Objects</a></li>
+<li><a class="reference" href="#support-for-wide-characters" id="id40" name="id40">4.5&nbsp;&nbsp;&nbsp;Support for Wide Characters</a></li>
+<li><a class="reference" href="#the-python-global-interpreter-lock" id="id41" name="id41">4.6&nbsp;&nbsp;&nbsp;The Python Global Interpreter Lock</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#the-sip-command-line" id="id42" name="id42">5&nbsp;&nbsp;&nbsp;The SIP Command Line</a></li>
+<li><a class="reference" href="#sip-specification-files" id="id43" name="id43">6&nbsp;&nbsp;&nbsp;SIP Specification Files</a><ul class="auto-toc">
+<li><a class="reference" href="#syntax-definition" id="id44" name="id44">6.1&nbsp;&nbsp;&nbsp;Syntax Definition</a></li>
+<li><a class="reference" href="#variable-numbers-of-arguments" id="id45" name="id45">6.2&nbsp;&nbsp;&nbsp;Variable Numbers of Arguments</a></li>
+<li><a class="reference" href="#additional-sip-types" id="id46" name="id46">6.3&nbsp;&nbsp;&nbsp;Additional SIP Types</a><ul class="auto-toc">
+<li><a class="reference" href="#sip-anyslot" id="id47" name="id47">6.3.1&nbsp;&nbsp;&nbsp;SIP_ANYSLOT</a></li>
+<li><a class="reference" href="#sip-pycallable" id="id48" name="id48">6.3.2&nbsp;&nbsp;&nbsp;SIP_PYCALLABLE</a></li>
+<li><a class="reference" href="#sip-pydict" id="id49" name="id49">6.3.3&nbsp;&nbsp;&nbsp;SIP_PYDICT</a></li>
+<li><a class="reference" href="#sip-pylist" id="id50" name="id50">6.3.4&nbsp;&nbsp;&nbsp;SIP_PYLIST</a></li>
+<li><a class="reference" href="#sip-pyobject" id="id51" name="id51">6.3.5&nbsp;&nbsp;&nbsp;SIP_PYOBJECT</a></li>
+<li><a class="reference" href="#sip-pyslice" id="id52" name="id52">6.3.6&nbsp;&nbsp;&nbsp;SIP_PYSLICE</a></li>
+<li><a class="reference" href="#sip-pytuple" id="id53" name="id53">6.3.7&nbsp;&nbsp;&nbsp;SIP_PYTUPLE</a></li>
+<li><a class="reference" href="#sip-pytype" id="id54" name="id54">6.3.8&nbsp;&nbsp;&nbsp;SIP_PYTYPE</a></li>
+<li><a class="reference" href="#sip-qobject" id="id55" name="id55">6.3.9&nbsp;&nbsp;&nbsp;SIP_QOBJECT</a></li>
+<li><a class="reference" href="#sip-rxobj-con" id="id56" name="id56">6.3.10&nbsp;&nbsp;&nbsp;SIP_RXOBJ_CON</a></li>
+<li><a class="reference" href="#sip-rxobj-dis" id="id57" name="id57">6.3.11&nbsp;&nbsp;&nbsp;SIP_RXOBJ_DIS</a></li>
+<li><a class="reference" href="#sip-signal" id="id58" name="id58">6.3.12&nbsp;&nbsp;&nbsp;SIP_SIGNAL</a></li>
+<li><a class="reference" href="#sip-slot" id="id59" name="id59">6.3.13&nbsp;&nbsp;&nbsp;SIP_SLOT</a></li>
+<li><a class="reference" href="#sip-slot-con" id="id60" name="id60">6.3.14&nbsp;&nbsp;&nbsp;SIP_SLOT_CON</a></li>
+<li><a class="reference" href="#sip-slot-dis" id="id61" name="id61">6.3.15&nbsp;&nbsp;&nbsp;SIP_SLOT_DIS</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a class="reference" href="#sip-directives" id="id62" name="id62">7&nbsp;&nbsp;&nbsp;SIP Directives</a><ul class="auto-toc">
+<li><a class="reference" href="#accesscode" id="id63" name="id63">7.1&nbsp;&nbsp;&nbsp;%AccessCode</a></li>
+<li><a class="reference" href="#bigetcharbuffercode" id="id64" name="id64">7.2&nbsp;&nbsp;&nbsp;%BIGetCharBufferCode</a></li>
+<li><a class="reference" href="#bigetreadbuffercode" id="id65" name="id65">7.3&nbsp;&nbsp;&nbsp;%BIGetReadBufferCode</a></li>
+<li><a class="reference" href="#bigetsegcountcode" id="id66" name="id66">7.4&nbsp;&nbsp;&nbsp;%BIGetSegCountCode</a></li>
+<li><a class="reference" href="#bigetwritebuffercode" id="id67" name="id67">7.5&nbsp;&nbsp;&nbsp;%BIGetWriteBufferCode</a></li>
+<li><a class="reference" href="#cmodule" id="id68" name="id68">7.6&nbsp;&nbsp;&nbsp;%CModule</a></li>
+<li><a class="reference" href="#convertfromtypecode" id="id69" name="id69">7.7&nbsp;&nbsp;&nbsp;%ConvertFromTypeCode</a></li>
+<li><a class="reference" href="#converttosubclasscode" id="id70" name="id70">7.8&nbsp;&nbsp;&nbsp;%ConvertToSubClassCode</a></li>
+<li><a class="reference" href="#converttotypecode" id="id71" name="id71">7.9&nbsp;&nbsp;&nbsp;%ConvertToTypeCode</a></li>
+<li><a class="reference" href="#copying" id="id72" name="id72">7.10&nbsp;&nbsp;&nbsp;%Copying</a></li>
+<li><a class="reference" href="#doc" id="id73" name="id73">7.11&nbsp;&nbsp;&nbsp;%Doc</a></li>
+<li><a class="reference" href="#end" id="id74" name="id74">7.12&nbsp;&nbsp;&nbsp;%End</a></li>
+<li><a class="reference" href="#exception" id="id75" name="id75">7.13&nbsp;&nbsp;&nbsp;%Exception</a></li>
+<li><a class="reference" href="#exporteddoc" id="id76" name="id76">7.14&nbsp;&nbsp;&nbsp;%ExportedDoc</a></li>
+<li><a class="reference" href="#exportedheadercode" id="id77" name="id77">7.15&nbsp;&nbsp;&nbsp;%ExportedHeaderCode</a></li>
+<li><a class="reference" href="#feature" id="id78" name="id78">7.16&nbsp;&nbsp;&nbsp;%Feature</a></li>
+<li><a class="reference" href="#gcclearcode" id="id79" name="id79">7.17&nbsp;&nbsp;&nbsp;%GCClearCode</a></li>
+<li><a class="reference" href="#gctraversecode" id="id80" name="id80">7.18&nbsp;&nbsp;&nbsp;%GCTraverseCode</a></li>
+<li><a class="reference" href="#getcode" id="id81" name="id81">7.19&nbsp;&nbsp;&nbsp;%GetCode</a></li>
+<li><a class="reference" href="#if" id="id82" name="id82">7.20&nbsp;&nbsp;&nbsp;%If</a></li>
+<li><a class="reference" href="#import" id="id83" name="id83">7.21&nbsp;&nbsp;&nbsp;%Import</a></li>
+<li><a class="reference" href="#include" id="id84" name="id84">7.22&nbsp;&nbsp;&nbsp;%Include</a></li>
+<li><a class="reference" href="#id14" id="id85" name="id85">7.23&nbsp;&nbsp;&nbsp;%License</a></li>
+<li><a class="reference" href="#mappedtype" id="id86" name="id86">7.24&nbsp;&nbsp;&nbsp;%MappedType</a></li>
+<li><a class="reference" href="#methodcode" id="id87" name="id87">7.25&nbsp;&nbsp;&nbsp;%MethodCode</a></li>
+<li><a class="reference" href="#module" id="id88" name="id88">7.26&nbsp;&nbsp;&nbsp;%Module</a></li>
+<li><a class="reference" href="#modulecode" id="id89" name="id89">7.27&nbsp;&nbsp;&nbsp;%ModuleCode</a></li>
+<li><a class="reference" href="#moduleheadercode" id="id90" name="id90">7.28&nbsp;&nbsp;&nbsp;%ModuleHeaderCode</a></li>
+<li><a class="reference" href="#optionalinclude" id="id91" name="id91">7.29&nbsp;&nbsp;&nbsp;%OptionalInclude</a></li>
+<li><a class="reference" href="#platforms" id="id92" name="id92">7.30&nbsp;&nbsp;&nbsp;%Platforms</a></li>
+<li><a class="reference" href="#postinitialisationcode" id="id93" name="id93">7.31&nbsp;&nbsp;&nbsp;%PostInitialisationCode</a></li>
+<li><a class="reference" href="#preinitialisationcode" id="id94" name="id94">7.32&nbsp;&nbsp;&nbsp;%PreInitialisationCode</a></li>
+<li><a class="reference" href="#raisecode" id="id95" name="id95">7.33&nbsp;&nbsp;&nbsp;%RaiseCode</a></li>
+<li><a class="reference" href="#setcode" id="id96" name="id96">7.34&nbsp;&nbsp;&nbsp;%SetCode</a></li>
+<li><a class="reference" href="#sipoptions" id="id97" name="id97">7.35&nbsp;&nbsp;&nbsp;%SIPOptions</a></li>
+<li><a class="reference" href="#timeline" id="id98" name="id98">7.36&nbsp;&nbsp;&nbsp;%Timeline</a></li>
+<li><a class="reference" href="#typecode" id="id99" name="id99">7.37&nbsp;&nbsp;&nbsp;%TypeCode</a></li>
+<li><a class="reference" href="#typeheadercode" id="id100" name="id100">7.38&nbsp;&nbsp;&nbsp;%TypeHeaderCode</a></li>
+<li><a class="reference" href="#unitcode" id="id101" name="id101">7.39&nbsp;&nbsp;&nbsp;%UnitCode</a></li>
+<li><a class="reference" href="#virtualcatchercode" id="id102" name="id102">7.40&nbsp;&nbsp;&nbsp;%VirtualCatcherCode</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#sip-annotations" id="id103" name="id103">8&nbsp;&nbsp;&nbsp;SIP Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#argument-annotations" id="id104" name="id104">8.1&nbsp;&nbsp;&nbsp;Argument Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#allownone" id="id105" name="id105">8.1.1&nbsp;&nbsp;&nbsp;AllowNone</a></li>
+<li><a class="reference" href="#array" id="id106" name="id106">8.1.2&nbsp;&nbsp;&nbsp;Array</a></li>
+<li><a class="reference" href="#arraysize" id="id107" name="id107">8.1.3&nbsp;&nbsp;&nbsp;ArraySize</a></li>
+<li><a class="reference" href="#constrained" id="id108" name="id108">8.1.4&nbsp;&nbsp;&nbsp;Constrained</a></li>
+<li><a class="reference" href="#getwrapper" id="id109" name="id109">8.1.5&nbsp;&nbsp;&nbsp;GetWrapper</a></li>
+<li><a class="reference" href="#in" id="id110" name="id110">8.1.6&nbsp;&nbsp;&nbsp;In</a></li>
+<li><a class="reference" href="#out" id="id111" name="id111">8.1.7&nbsp;&nbsp;&nbsp;Out</a></li>
+<li><a class="reference" href="#transfer" id="id112" name="id112">8.1.8&nbsp;&nbsp;&nbsp;Transfer</a></li>
+<li><a class="reference" href="#transferback" id="id113" name="id113">8.1.9&nbsp;&nbsp;&nbsp;TransferBack</a></li>
+<li><a class="reference" href="#transferthis" id="id114" name="id114">8.1.10&nbsp;&nbsp;&nbsp;TransferThis</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#class-annotations" id="id115" name="id115">8.2&nbsp;&nbsp;&nbsp;Class Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#abstract" id="id116" name="id116">8.2.1&nbsp;&nbsp;&nbsp;Abstract</a></li>
+<li><a class="reference" href="#delaydtor" id="id117" name="id117">8.2.2&nbsp;&nbsp;&nbsp;DelayDtor</a></li>
+<li><a class="reference" href="#external" id="id118" name="id118">8.2.3&nbsp;&nbsp;&nbsp;External</a></li>
+<li><a class="reference" href="#nodefaultctors" id="id119" name="id119">8.2.4&nbsp;&nbsp;&nbsp;NoDefaultCtors</a></li>
+<li><a class="reference" href="#pyname" id="id120" name="id120">8.2.5&nbsp;&nbsp;&nbsp;PyName</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#enum-annotations" id="id121" name="id121">8.3&nbsp;&nbsp;&nbsp;Enum Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#id17" id="id122" name="id122">8.3.1&nbsp;&nbsp;&nbsp;PyName</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#exception-annotations" id="id123" name="id123">8.4&nbsp;&nbsp;&nbsp;Exception Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#id18" id="id124" name="id124">8.4.1&nbsp;&nbsp;&nbsp;PyName</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#function-annotations" id="id125" name="id125">8.5&nbsp;&nbsp;&nbsp;Function Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#autogen" id="id126" name="id126">8.5.1&nbsp;&nbsp;&nbsp;AutoGen</a></li>
+<li><a class="reference" href="#default" id="id127" name="id127">8.5.2&nbsp;&nbsp;&nbsp;Default</a></li>
+<li><a class="reference" href="#factory" id="id128" name="id128">8.5.3&nbsp;&nbsp;&nbsp;Factory</a></li>
+<li><a class="reference" href="#holdgil" id="id129" name="id129">8.5.4&nbsp;&nbsp;&nbsp;HoldGIL</a></li>
+<li><a class="reference" href="#newthread" id="id130" name="id130">8.5.5&nbsp;&nbsp;&nbsp;NewThread</a></li>
+<li><a class="reference" href="#noderived" id="id131" name="id131">8.5.6&nbsp;&nbsp;&nbsp;NoDerived</a></li>
+<li><a class="reference" href="#numeric" id="id132" name="id132">8.5.7&nbsp;&nbsp;&nbsp;Numeric</a></li>
+<li><a class="reference" href="#posthook" id="id133" name="id133">8.5.8&nbsp;&nbsp;&nbsp;PostHook</a></li>
+<li><a class="reference" href="#prehook" id="id134" name="id134">8.5.9&nbsp;&nbsp;&nbsp;PreHook</a></li>
+<li><a class="reference" href="#id19" id="id135" name="id135">8.5.10&nbsp;&nbsp;&nbsp;PyName</a></li>
+<li><a class="reference" href="#releasegil" id="id136" name="id136">8.5.11&nbsp;&nbsp;&nbsp;ReleaseGIL</a></li>
+<li><a class="reference" href="#id20" id="id137" name="id137">8.5.12&nbsp;&nbsp;&nbsp;TransferBack</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#license-annotations" id="id138" name="id138">8.6&nbsp;&nbsp;&nbsp;License Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#licensee" id="id139" name="id139">8.6.1&nbsp;&nbsp;&nbsp;Licensee</a></li>
+<li><a class="reference" href="#signature" id="id140" name="id140">8.6.2&nbsp;&nbsp;&nbsp;Signature</a></li>
+<li><a class="reference" href="#timestamp" id="id141" name="id141">8.6.3&nbsp;&nbsp;&nbsp;Timestamp</a></li>
+<li><a class="reference" href="#type" id="id142" name="id142">8.6.4&nbsp;&nbsp;&nbsp;Type</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#variable-annotations" id="id143" name="id143">8.7&nbsp;&nbsp;&nbsp;Variable Annotations</a><ul class="auto-toc">
+<li><a class="reference" href="#id21" id="id144" name="id144">8.7.1&nbsp;&nbsp;&nbsp;PyName</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a class="reference" href="#sip-api-for-handwritten-code" id="id145" name="id145">9&nbsp;&nbsp;&nbsp;SIP API for Handwritten Code</a><ul class="auto-toc">
+<li><a class="reference" href="#sip-api-major-nr" id="id146" name="id146">9.1&nbsp;&nbsp;&nbsp;SIP_API_MAJOR_NR</a></li>
+<li><a class="reference" href="#sip-api-minor-nr" id="id147" name="id147">9.2&nbsp;&nbsp;&nbsp;SIP_API_MINOR_NR</a></li>
+<li><a class="reference" href="#sip-block-threads" id="id148" name="id148">9.3&nbsp;&nbsp;&nbsp;SIP_BLOCK_THREADS</a></li>
+<li><a class="reference" href="#sip-ssize-t" id="id149" name="id149">9.4&nbsp;&nbsp;&nbsp;SIP_SSIZE_T</a></li>
+<li><a class="reference" href="#sip-unblock-threads" id="id150" name="id150">9.5&nbsp;&nbsp;&nbsp;SIP_UNBLOCK_THREADS</a></li>
+<li><a class="reference" href="#sip-version" id="id151" name="id151">9.6&nbsp;&nbsp;&nbsp;SIP_VERSION</a></li>
+<li><a class="reference" href="#sip-version-str" id="id152" name="id152">9.7&nbsp;&nbsp;&nbsp;SIP_VERSION_STR</a></li>
+<li><a class="reference" href="#sipbadcatcherresult" id="id153" name="id153">9.8&nbsp;&nbsp;&nbsp;sipBadCatcherResult()</a></li>
+<li><a class="reference" href="#sipbadlengthforslice" id="id154" name="id154">9.9&nbsp;&nbsp;&nbsp;sipBadLengthForSlice()</a></li>
+<li><a class="reference" href="#sipbuildresult" id="id155" name="id155">9.10&nbsp;&nbsp;&nbsp;sipBuildResult()</a></li>
+<li><a class="reference" href="#sipcallmethod" id="id156" name="id156">9.11&nbsp;&nbsp;&nbsp;sipCallMethod()</a></li>
+<li><a class="reference" href="#sipcanconverttoinstance" id="id157" name="id157">9.12&nbsp;&nbsp;&nbsp;sipCanConvertToInstance()</a></li>
+<li><a class="reference" href="#sipcanconverttomappedtype" id="id158" name="id158">9.13&nbsp;&nbsp;&nbsp;sipCanConvertToMappedType()</a></li>
+<li><a class="reference" href="#sipclassname" id="id159" name="id159">9.14&nbsp;&nbsp;&nbsp;sipClassName()</a></li>
+<li><a class="reference" href="#sipconnectrx" id="id160" name="id160">9.15&nbsp;&nbsp;&nbsp;sipConnectRx()</a></li>
+<li><a class="reference" href="#sipconvertfrominstance" id="id161" name="id161">9.16&nbsp;&nbsp;&nbsp;sipConvertFromInstance()</a></li>
+<li><a class="reference" href="#sipconvertfrommappedtype" id="id162" name="id162">9.17&nbsp;&nbsp;&nbsp;sipConvertFromMappedType()</a></li>
+<li><a class="reference" href="#sipconvertfromnamedenum" id="id163" name="id163">9.18&nbsp;&nbsp;&nbsp;sipConvertFromNamedEnum()</a></li>
+<li><a class="reference" href="#sipconvertfromnewinstance" id="id164" name="id164">9.19&nbsp;&nbsp;&nbsp;sipConvertFromNewInstance()</a></li>
+<li><a class="reference" href="#sipconvertfromsequenceindex" id="id165" name="id165">9.20&nbsp;&nbsp;&nbsp;sipConvertFromSequenceIndex()</a></li>
+<li><a class="reference" href="#sipconvertfromsliceobject" id="id166" name="id166">9.21&nbsp;&nbsp;&nbsp;sipConvertFromSliceObject()</a></li>
+<li><a class="reference" href="#sipconverttocpp" id="id167" name="id167">9.22&nbsp;&nbsp;&nbsp;sipConvertToCpp()</a></li>
+<li><a class="reference" href="#sipconverttoinstance" id="id168" name="id168">9.23&nbsp;&nbsp;&nbsp;sipConvertToInstance()</a></li>
+<li><a class="reference" href="#sipconverttomappedtype" id="id169" name="id169">9.24&nbsp;&nbsp;&nbsp;sipConvertToMappedType()</a></li>
+<li><a class="reference" href="#sipdisconnectrx" id="id170" name="id170">9.25&nbsp;&nbsp;&nbsp;sipDisconnectRx()</a></li>
+<li><a class="reference" href="#sipemitsignal" id="id171" name="id171">9.26&nbsp;&nbsp;&nbsp;sipEmitSignal()</a></li>
+<li><a class="reference" href="#sipexportsymbol" id="id172" name="id172">9.27&nbsp;&nbsp;&nbsp;sipExportSymbol()</a></li>
+<li><a class="reference" href="#sipfindclass" id="id173" name="id173">9.28&nbsp;&nbsp;&nbsp;sipFindClass()</a></li>
+<li><a class="reference" href="#sipfindmappedtype" id="id174" name="id174">9.29&nbsp;&nbsp;&nbsp;sipFindMappedType()</a></li>
+<li><a class="reference" href="#sipfindnamedenum" id="id175" name="id175">9.30&nbsp;&nbsp;&nbsp;sipFindNamedEnum()</a></li>
+<li><a class="reference" href="#sipforceconverttoinstance" id="id176" name="id176">9.31&nbsp;&nbsp;&nbsp;sipForceConvertToInstance()</a></li>
+<li><a class="reference" href="#sipforceconverttomappedtype" id="id177" name="id177">9.32&nbsp;&nbsp;&nbsp;sipForceConvertToMappedType()</a></li>
+<li><a class="reference" href="#sipfree" id="id178" name="id178">9.33&nbsp;&nbsp;&nbsp;sipFree()</a></li>
+<li><a class="reference" href="#sipgetsender" id="id179" name="id179">9.34&nbsp;&nbsp;&nbsp;sipGetSender()</a></li>
+<li><a class="reference" href="#sipgetwrapper" id="id180" name="id180">9.35&nbsp;&nbsp;&nbsp;sipGetWrapper()</a></li>
+<li><a class="reference" href="#sipimportsymbol" id="id181" name="id181">9.36&nbsp;&nbsp;&nbsp;sipImportSymbol()</a></li>
+<li><a class="reference" href="#sipinttypeclassmap" id="id182" name="id182">9.37&nbsp;&nbsp;&nbsp;sipIntTypeClassMap</a></li>
+<li><a class="reference" href="#sipissubclassinstance" id="id183" name="id183">9.38&nbsp;&nbsp;&nbsp;sipIsSubClassInstance()</a></li>
+<li><a class="reference" href="#siplong-asunsignedlong" id="id184" name="id184">9.39&nbsp;&nbsp;&nbsp;sipLong_AsUnsignedLong()</a></li>
+<li><a class="reference" href="#sipmalloc" id="id185" name="id185">9.40&nbsp;&nbsp;&nbsp;sipMalloc()</a></li>
+<li><a class="reference" href="#sipmapinttoclass" id="id186" name="id186">9.41&nbsp;&nbsp;&nbsp;sipMapIntToClass()</a></li>
+<li><a class="reference" href="#sipmapstringtoclass" id="id187" name="id187">9.42&nbsp;&nbsp;&nbsp;sipMapStringToClass()</a></li>
+<li><a class="reference" href="#sipparseresult" id="id188" name="id188">9.43&nbsp;&nbsp;&nbsp;sipParseResult()</a></li>
+<li><a class="reference" href="#sipreleaseinstance" id="id189" name="id189">9.44&nbsp;&nbsp;&nbsp;sipReleaseInstance()</a></li>
+<li><a class="reference" href="#sipreleasemappedtype" id="id190" name="id190">9.45&nbsp;&nbsp;&nbsp;sipReleaseMappedType()</a></li>
+<li><a class="reference" href="#sipstringtypeclassmap" id="id191" name="id191">9.46&nbsp;&nbsp;&nbsp;sipStringTypeClassMap</a></li>
+<li><a class="reference" href="#siptransfer" id="id192" name="id192">9.47&nbsp;&nbsp;&nbsp;sipTransfer()</a></li>
+<li><a class="reference" href="#siptransferback" id="id193" name="id193">9.48&nbsp;&nbsp;&nbsp;sipTransferBack()</a></li>
+<li><a class="reference" href="#siptransferto" id="id194" name="id194">9.49&nbsp;&nbsp;&nbsp;sipTransferTo()</a></li>
+<li><a class="reference" href="#sipwrapper" id="id195" name="id195">9.50&nbsp;&nbsp;&nbsp;sipWrapper</a></li>
+<li><a class="reference" href="#sipwrapper-check" id="id196" name="id196">9.51&nbsp;&nbsp;&nbsp;sipWrapper_Check()</a></li>
+<li><a class="reference" href="#sipwrappertype" id="id197" name="id197">9.52&nbsp;&nbsp;&nbsp;sipWrapperType</a></li>
+<li><a class="reference" href="#generated-type-convertors" id="id198" name="id198">9.53&nbsp;&nbsp;&nbsp;Generated Type Convertors</a></li>
+<li><a class="reference" href="#generated-type-objects" id="id199" name="id199">9.54&nbsp;&nbsp;&nbsp;Generated Type Objects</a></li>
+<li><a class="reference" href="#generated-named-enum-type-objects" id="id200" name="id200">9.55&nbsp;&nbsp;&nbsp;Generated Named Enum Type Objects</a></li>
+<li><a class="reference" href="#generated-derived-classes" id="id201" name="id201">9.56&nbsp;&nbsp;&nbsp;Generated Derived Classes</a></li>
+<li><a class="reference" href="#generated-exception-objects" id="id202" name="id202">9.57&nbsp;&nbsp;&nbsp;Generated Exception Objects</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#using-the-sip-module-in-applications" id="id203" name="id203">10&nbsp;&nbsp;&nbsp;Using the SIP Module in Applications</a></li>
+<li><a class="reference" href="#the-sip-build-system" id="id204" name="id204">11&nbsp;&nbsp;&nbsp;The SIP Build System</a><ul class="auto-toc">
+<li><a class="reference" href="#sipconfig-functions" id="id205" name="id205">11.1&nbsp;&nbsp;&nbsp;<tt class="docutils literal"><span class="pre">sipconfig</span></tt> Functions</a></li>
+<li><a class="reference" href="#sipconfig-classes" id="id206" name="id206">11.2&nbsp;&nbsp;&nbsp;<tt class="docutils literal"><span class="pre">sipconfig</span></tt> Classes</a></li>
+</ul>
+</li>
+<li><a class="reference" href="#building-your-extension-with-distutils" id="id207" name="id207">12&nbsp;&nbsp;&nbsp;Building Your Extension with distutils</a></li>
+<li><a class="reference" href="#builtin-modules-and-custom-interpreters" id="id208" name="id208">13&nbsp;&nbsp;&nbsp;Builtin Modules and Custom Interpreters</a></li>
+</ul>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id22" id="introduction" name="introduction">1&nbsp;&nbsp;&nbsp;Introduction</a></h1>
+<p>This is the reference guide for SIP 4.6. SIP is a tool for
+automatically generating <a class="reference" href="http://www.python.org">Python</a> bindings for C and
+C++ libraries. SIP was originally developed in 1998 for
+<a class="reference" href="http://www.riverbankcomputing.co.uk/pyqt/">PyQt</a> - the Python bindings for
+the Qt GUI toolkit - but is suitable for generating bindings for any C or C++
+library.</p>
+<p>This version of SIP generates bindings for Python v2.3 or later.</p>
+<p>There are many other similar tools available. One of the original such tools
+is <a class="reference" href="http://www.swig.org">SWIG</a> and, in fact, SIP is so called because it
+started out as a small SWIG. Unlike SWIG, SIP is specifically designed for
+bringing together Python and C/C++ and goes to great lengths to make the
+integration as tight as possible.</p>
+<p>The homepage for SIP is <a class="reference" href="http://www.riverbankcomputing.co.uk/sip/">http://www.riverbankcomputing.co.uk/sip/</a>. Here you
+will always find the latest stable version, current development snapshots, and
+the latest version of this documentation.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id23" id="license" name="license">1.1&nbsp;&nbsp;&nbsp;License</a></h2>
+<p>SIP is licensed under the same terms as Python itself. SIP places no
+restrictions on the license you may apply to the bindings you create.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id24" id="features" name="features">1.2&nbsp;&nbsp;&nbsp;Features</a></h2>
+<p>SIP, and the bindings it produces, have the following features.</p>
+<blockquote>
+<ul class="simple">
+<li>bindings are fast to load and minimise memory consumption especially when
+only a small sub-set of a large library is being used</li>
+<li>automatic conversion between standard Python and C/C++ data types</li>
+<li>overloading of functions and methods with different argument signatures</li>
+<li>access to a C++ class's protected methods</li>
+<li>the ability to define a Python class that is a sub-class of a C++ class,
+including abstract C++ classes</li>
+<li>Python sub-classes can implement the <tt class="docutils literal"><span class="pre">__dtor__(self)</span></tt> method which
+will be called from the C++ class's virtual destructor</li>
+<li>support for ordinary C++ functions, class methods, static class methods,
+virtual class methods and abstract class methods</li>
+<li>the ability to re-implement C++ virtual and abstract methods in Python</li>
+<li>support for global and class variables</li>
+<li>support for global and class operators</li>
+<li>support for C++ namespaces</li>
+<li>support for C++ templates</li>
+<li>support for C++ exceptions and wrapping them as Python exceptions</li>
+<li>the ability to define mappings between C++ classes and similar Python
+data types that are automatically invoked</li>
+<li>the ability to automatically exploit any available run time type
+information to ensure that the class of a Python instance object matches
+the class of the corresponding C++ instance</li>
+<li>full support of the Python global interpreter lock, including the ability
+to specify that a C++ function of method may block, therefore allowing
+the lock to be released and other Python threads to run</li>
+<li>support for the concept of ownership of a C++ instance (i.e. what part of
+the code is responsible for calling the instance's destructor) and how
+the ownership may change during the execution of an application</li>
+<li>the ability to generate bindings for a C++ class library that itself is
+built on another C++ class library which also has had bindings generated
+so that the different bindings integrate and share code properly</li>
+<li>a sophisticated versioning system that allows the full lifetime of a C++
+class library, including any platform specific or optional features, to
+be described in a single set of specification files</li>
+<li>the ability to include documentation in the specification files which can
+be extracted and subsequently processed by external tools</li>
+<li>the ability to include copyright notices and licensing information in the
+specification files that is automatically included in all generated
+source code</li>
+<li>a build system, written in Python, that you can extend to configure,
+compile and install your own bindings without worrying about platform
+specific issues</li>
+<li>support for building your extensions using distutils</li>
+<li>SIP, and the bindings it produces, runs under UNIX, Linux, Windows and
+MacOS/X</li>
+</ul>
+</blockquote>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id25" id="sip-components" name="sip-components">1.3&nbsp;&nbsp;&nbsp;SIP Components</a></h2>
+<p>SIP comprises a number of different components.</p>
+<blockquote>
+<ul class="simple">
+<li>The SIP code generator (<tt class="docutils literal"><span class="pre">sip</span></tt> or <tt class="docutils literal"><span class="pre">sip.exe</span></tt>). This processes <tt class="docutils literal"><span class="pre">.sip</span></tt>
+specification files and generates C or C++ bindings. It is covered in
+detail in <a class="reference" href="#using-sip">Using SIP</a>.</li>
+<li>The SIP header file (<tt class="docutils literal"><span class="pre">sip.h</span></tt>). This contains definitions and data
+structures needed by the generated C and C++ code.</li>
+<li>The SIP module (<tt class="docutils literal"><span class="pre">sip.so</span></tt> or <tt class="docutils literal"><span class="pre">sip.pyd</span></tt>). This is a Python extension
+module that is imported automatically by SIP generated bindings and
+provides them with some common utility functions. See also <a class="reference" href="#using-the-sip-module-in-applications">Using the
+SIP Module in Applications</a>.</li>
+<li>The SIP build system (<tt class="docutils literal"><span class="pre">sipconfig.py</span></tt>). This is a pure Python module
+that is created when SIP is configured and encapsulates all the necessary
+information about your system including relevant directory names,
+compiler and linker flags, and version numbers. It also includes several
+Python classes and functions which help you write configuration scripts
+for your own bindings. It is covered in detail in <a class="reference" href="#the-sip-build-system">The SIP Build
+System</a>.</li>
+<li>The SIP distutils extension (<tt class="docutils literal"><span class="pre">sipdistutils.py</span></tt>). This is a distutils
+extension that can be used to build your extension modules using
+distutils and is an alternative to writing configuration scripts with the
+SIP build system. This can be as simple as adding your .sip files to the
+list of files needed to build the extension module. It is covered in
+detail in <a class="reference" href="#building-your-extension-with-distutils">Building Your Extension with distutils</a>.</li>
+</ul>
+</blockquote>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id26" id="qt-support" name="qt-support">1.4&nbsp;&nbsp;&nbsp;Qt Support</a></h2>
+<p>SIP has specific support for the creation of bindings based on Trolltech's Qt
+toolkit.</p>
+<p>The SIP code generator understands the signal/slot type safe callback mechanism
+that Qt uses to connect objects together. This allows applications to define
+new Python signals, and allows any Python callable object to be used as a slot.</p>
+<p>SIP itself does not require Qt to be installed.</p>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id27" id="potential-incompatibilities-with-earlier-versions" name="potential-incompatibilities-with-earlier-versions">2&nbsp;&nbsp;&nbsp;Potential Incompatibilities with Earlier Versions</a></h1>
+<div class="section">
+<h2><a class="toc-backref" href="#id28" id="sip-v4-4" name="sip-v4-4">2.1&nbsp;&nbsp;&nbsp;SIP v4.4</a></h2>
+<blockquote>
+<ul class="simple">
+<li>The <tt class="docutils literal"><span class="pre">SIP_BUILD</span></tt> C preprocessor symbol has been removed.</li>
+<li><a class="reference" href="#sipconverttocpp">sipConvertToCpp()</a>, <a class="reference" href="#sipissubclassinstance">sipIsSubClassInstance()</a> and the old <a class="reference" href="#generated-type-convertors">Generated
+Type Convertors</a> have been deprecated. The functions
+<a class="reference" href="#sipcanconverttoinstance">sipCanConvertToInstance()</a>, <a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a>,
+<a class="reference" href="#sipforceconverttoinstance">sipForceConvertToInstance()</a>, <a class="reference" href="#sipconvertfrominstance">sipConvertFromInstance()</a>,
+<a class="reference" href="#sipconvertfromnewinstance">sipConvertFromNewInstance()</a>, <a class="reference" href="#sipcanconverttomappedtype">sipCanConvertToMappedType()</a>,
+<a class="reference" href="#sipconverttomappedtype">sipConvertToMappedType()</a>, <a class="reference" href="#sipforceconverttomappedtype">sipForceConvertToMappedType()</a> and
+<a class="reference" href="#sipconvertfrommappedtype">sipConvertFromMappedType()</a> should be used instead. Handwritten
+<a class="reference" href="#convertfromtypecode">%ConvertFromTypeCode</a> and <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> now has the
+responsibility for using these to implement the <tt class="docutils literal"><span class="pre">Transfer</span></tt> and
+<tt class="docutils literal"><span class="pre">TransferBack</span></tt> annotations.</li>
+</ul>
+</blockquote>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id29" id="installing-sip" name="installing-sip">3&nbsp;&nbsp;&nbsp;Installing SIP</a></h1>
+<div class="section">
+<h2><a class="toc-backref" href="#id30" id="downloading-sip" name="downloading-sip">3.1&nbsp;&nbsp;&nbsp;Downloading SIP</a></h2>
+<p>You can get the latest release of the SIP source code from
+<a class="reference" href="http://www.riverbankcomputing.co.uk/sip/download.php">http://www.riverbankcomputing.co.uk/sip/download.php</a>.</p>
+<p>SIP is also included with all of the major Linux distributions. However, it
+may be a version or two out of date.</p>
+<p>You may also find more up to date pre-compiled binaries on
+<a class="reference" href="http://sourceforge.net/project/showfiles.php?group_id=61057">SourceForge</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id31" id="configuring-sip" name="configuring-sip">3.2&nbsp;&nbsp;&nbsp;Configuring SIP</a></h2>
+<p>After unpacking the source package (either a <tt class="docutils literal"><span class="pre">.tar.gz</span></tt> or a <tt class="docutils literal"><span class="pre">.zip</span></tt> file
+depending on your platform) you should then check for any <tt class="docutils literal"><span class="pre">README</span></tt> files
+that relate to your platform.</p>
+<p>Next you need to configure SIP by executing the <tt class="docutils literal"><span class="pre">configure.py</span></tt> script. For
+example:</p>
+<pre class="literal-block">
+python configure.py
+</pre>
+<p>This assumes that the Python interpreter is on your path. Something like the
+following may be appropriate on Windows:</p>
+<pre class="literal-block">
+c:\python25\python configure.py
+</pre>
+<p>If you have multiple versions of Python installed then make sure you use the
+interpreter for which you wish SIP to generate bindings for.</p>
+<p>The full set of command line options is:</p>
+<table class="docutils option-list" frame="void" rules="none">
+<col class="option" />
+<col class="description" />
+<tbody valign="top">
+<tr><td class="option-group">
+<kbd><span class="option">-h</span></kbd></td>
+<td>Display a help message.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-a</span></kbd></td>
+<td>Export all symbols in any SIP generated module and the SIP module
+itself. This was the default behaviour of SIP prior to v4.2.
+Normally only a module's inititialisation function is exported. This
+option is deprecated as the <tt class="docutils literal"><span class="pre">ModuleMakefile</span></tt> class of <a class="reference" href="#the-sip-build-system">The SIP Build
+System</a> allows this to be specified on a per module basis.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-b <var>dir</var></span></kbd></td>
+<td>The SIP code generator will be installed in the directory <tt class="docutils literal"><span class="pre">dir</span></tt>.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-d <var>dir</var></span></kbd></td>
+<td>The SIP module will be installed in the directory <tt class="docutils literal"><span class="pre">dir</span></tt>.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-e <var>dir</var></span></kbd></td>
+<td>The SIP header file will be installed in the directory <tt class="docutils literal"><span class="pre">dir</span></tt>.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-k</span></kbd></td>
+<td>The SIP module will be built as a static library. This is useful when
+building the SIP module as a Python builtin (see
+<a class="reference" href="#builtin-modules-and-custom-interpreters">Builtin Modules and Custom Interpreters</a>).</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-n</span></kbd></td>
+<td>The SIP code generator and module will be built as universal binaries
+under MacOS/X.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-p <var>plat</var></span></kbd></td>
+<td>Explicitly specify the platform/compiler to be used by the build
+system, otherwise a platform specific default will be used. The
+<tt class="docutils literal"><span class="pre">-h</span></tt> option will display all the supported platform/compilers and
+the default.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-u</span></kbd></td>
+<td>The SIP module will be built with debugging symbols.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-v <var>dir</var></span></kbd></td>
+<td>By default <tt class="docutils literal"><span class="pre">.sip</span></tt> files will be installed in the directory <tt class="docutils literal"><span class="pre">dir</span></tt>.</td></tr>
+</tbody>
+</table>
+<p>The configure.py script takes many other options that allows the build system
+to be finely tuned. These are of the form <tt class="docutils literal"><span class="pre">name=value</span></tt> or <tt class="docutils literal"><span class="pre">name+=value</span></tt>.
+The <tt class="docutils literal"><span class="pre">-h</span></tt> option will display each supported <tt class="docutils literal"><span class="pre">name</span></tt>, although not all are
+applicable to all platforms.</p>
+<p>The <tt class="docutils literal"><span class="pre">name=value</span></tt> form means that <tt class="docutils literal"><span class="pre">value</span></tt> will replace the existing value of
+<tt class="docutils literal"><span class="pre">name</span></tt>.</p>
+<p>The <tt class="docutils literal"><span class="pre">name+=value</span></tt> form means that <tt class="docutils literal"><span class="pre">value</span></tt> will be appended to the existing
+value of <tt class="docutils literal"><span class="pre">name</span></tt>.</p>
+<p>For example, the following will disable support for C++ exceptions (and so
+reduce the size of module binaries) when used with GCC:</p>
+<pre class="literal-block">
+python configure.py CXXFLAGS+=-fno-exceptions
+</pre>
+<p>A pure Python module called <tt class="docutils literal"><span class="pre">sipconfig.py</span></tt> is generated by <tt class="docutils literal"><span class="pre">configure.py</span></tt>.
+This defines each <tt class="docutils literal"><span class="pre">name</span></tt> and its corresponding <tt class="docutils literal"><span class="pre">value</span></tt>. Looking at it will
+give you a good idea of how the build system uses the different options. It is
+covered in detail in <a class="reference" href="#the-sip-build-system">The SIP Build System</a>.</p>
+<div class="section">
+<h3><a class="toc-backref" href="#id32" id="configuring-sip-using-mingw" name="configuring-sip-using-mingw">3.2.1&nbsp;&nbsp;&nbsp;Configuring SIP Using MinGW</a></h3>
+<p>SIP, and the modules it generates, can be built with MinGW, the Windows port of
+GCC. You must use the <tt class="docutils literal"><span class="pre">-p</span></tt> command line option to specify the correct
+platform. For example:</p>
+<pre class="literal-block">
+c:\python25\python configure.py -p win32-g++
+</pre>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id33" id="configuring-sip-using-the-borland-c-compiler" name="configuring-sip-using-the-borland-c-compiler">3.2.2&nbsp;&nbsp;&nbsp;Configuring SIP Using the Borland C++ Compiler</a></h3>
+<p>SIP, and the modules it generates, can be built with the free Borland C++
+compiler. You must use the <tt class="docutils literal"><span class="pre">-p</span></tt> command line option to specify the correct
+platform. For example:</p>
+<pre class="literal-block">
+c:\python25\python configure.py -p win32-borland
+</pre>
+<p>You must also make sure you have a Borland-compatible version of the Python
+library. If you are using the standard Python distribution (built using the
+Microsoft compiler) then you must convert the format of the Python library.
+For example:</p>
+<pre class="literal-block">
+coff2omf python25.lib python25_bcpp.lib
+</pre>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id34" id="building-sip" name="building-sip">3.3&nbsp;&nbsp;&nbsp;Building SIP</a></h2>
+<p>The next step is to build SIP by running your platform's <tt class="docutils literal"><span class="pre">make</span></tt> command. For
+example:</p>
+<pre class="literal-block">
+make
+</pre>
+<p>The final step is to install SIP by running the following command:</p>
+<pre class="literal-block">
+make install
+</pre>
+<p>(Depending on your system you may require root or administrator privileges.)</p>
+<p>This will install the various SIP components.</p>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id35" id="using-sip" name="using-sip">4&nbsp;&nbsp;&nbsp;Using SIP</a></h1>
+<p>Bindings are generated by the SIP code generator from a number of specification
+files, typically with a <tt class="docutils literal"><span class="pre">.sip</span></tt> extension. Specification files look very
+similar to C and C++ header files, but often with additional information (in
+the form of a <em>directive</em> or an <em>annotation</em>) and code so that the bindings
+generated can be finely tuned.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id36" id="a-simple-c-example" name="a-simple-c-example">4.1&nbsp;&nbsp;&nbsp;A Simple C++ Example</a></h2>
+<p>We start with a simple example. Let's say you have a (fictional) C++ library
+that implements a single class called <tt class="docutils literal"><span class="pre">Word</span></tt>. The class has one constructor
+that takes a <tt class="docutils literal"><span class="pre">\0</span></tt> terminated character string as its single argument. The
+class has one method called <tt class="docutils literal"><span class="pre">reverse()</span></tt> which takes no arguments and returns
+a <tt class="docutils literal"><span class="pre">\0</span></tt> terminated character string. The interface to the class is defined in
+a header file called <tt class="docutils literal"><span class="pre">word.h</span></tt> which might look something like this:</p>
+<pre class="literal-block">
+// Define the interface to the word library.
+
+class Word {
+ const char *the_word;
+
+public:
+ Word(const char *w);
+
+ char *reverse() const;
+};
+</pre>
+<p>The corresponding SIP specification file would then look something like this:</p>
+<pre class="literal-block">
+// Define the SIP wrapper to the word library.
+
+%Module word 0
+
+class Word {
+
+%TypeHeaderCode
+#include &lt;word.h&gt;
+%End
+
+public:
+ Word(const char *w);
+
+ char *reverse() const;
+};
+</pre>
+<p>Obviously a SIP specification file looks very much like a C++ (or C) header
+file, but SIP does not include a full C++ parser. Let's look at the
+differences between the two files.</p>
+<blockquote>
+<ul class="simple">
+<li>The <a class="reference" href="#module">%Module</a> directive has been added <a class="footnote-reference" href="#id4" id="id1" name="id1">[1]</a>. This is used to name the
+Python module that is being created and to give it a <em>generation</em> number.
+In this example these are <tt class="docutils literal"><span class="pre">word</span></tt> and <tt class="docutils literal"><span class="pre">0</span></tt> respectively. The
+generation number is effectively the version number of the module.</li>
+<li>The <a class="reference" href="#typeheadercode">%TypeHeaderCode</a> directive has been added. The text between this
+and the following <a class="reference" href="#end">%End</a> directive is included literally in the code
+that SIP generates. Normally it is used, as in this case, to
+<tt class="docutils literal"><span class="pre">#include</span></tt> the corresponding C++ (or C) header file <a class="footnote-reference" href="#id5" id="id2" name="id2">[2]</a>.</li>
+<li>The declaration of the private variable <tt class="docutils literal"><span class="pre">this_word</span></tt> has been removed.
+SIP does not support access to either private or protected instance
+variables.</li>
+</ul>
+</blockquote>
+<p>If we want to we can now generate the C++ code in the current directory by
+running the following command:</p>
+<pre class="literal-block">
+sip -c . word.sip
+</pre>
+<p>However, that still leaves us with the task of compiling the generated code and
+linking it against all the necessary libraries. It's much easier to use the
+SIP build system to do the whole thing.</p>
+<p>Using the SIP build system is simply a matter of writing a small Python script.
+In this simple example we will assume that the <tt class="docutils literal"><span class="pre">word</span></tt> library we are wrapping
+and it's header file are installed in standard system locations and will be
+found by the compiler and linker without having to specify any additional
+flags. In a more realistic example your Python script may take command line
+options, or search a set of directories to deal with different configurations
+and installations.</p>
+<p>This is the simplest script (conventionally called <tt class="docutils literal"><span class="pre">configure.py</span></tt>):</p>
+<pre class="literal-block">
+import os
+import sipconfig
+
+# The name of the SIP build file generated by SIP and used by the build
+# system.
+build_file = &quot;word.sbf&quot;
+
+# Get the SIP configuration information.
+config = sipconfig.Configuration()
+
+# Run SIP to generate the code.
+os.system(&quot; &quot;.join([config.sip_bin, &quot;-c&quot;, &quot;.&quot;, &quot;-b&quot;, build_file, &quot;word.sip&quot;]))
+
+# Create the Makefile.
+makefile = sipconfig.SIPModuleMakefile(config, build_file)
+
+# Add the library we are wrapping. The name doesn't include any platform
+# specific prefixes or extensions (e.g. the &quot;lib&quot; prefix on UNIX, or the
+# &quot;.dll&quot; extension on Windows).
+makefile.extra_libs = [&quot;word&quot;]
+
+# Generate the Makefile itself.
+makefile.generate()
+</pre>
+<p>Hopefully this script is self-documenting. The key parts are the
+<tt class="docutils literal"><span class="pre">Configuration</span></tt> and <tt class="docutils literal"><span class="pre">SIPModuleMakefile</span></tt> classes. The build system contains
+other Makefile classes, for example to build programs or to call other
+Makefiles in sub-directories.</p>
+<p>After running the script (using the Python interpreter the extension module is
+being created for) the generated C++ code and <tt class="docutils literal"><span class="pre">Makefile</span></tt> will be in the
+current directory.</p>
+<p>To compile and install the extension module, just run the following
+commands <a class="footnote-reference" href="#id6" id="id3" name="id3">[3]</a>:</p>
+<pre class="literal-block">
+make
+make install
+</pre>
+<p>That's all there is to it.</p>
+<p>See <a class="reference" href="#building-your-extension-with-distutils">Building Your Extension with distutils</a> for an example of how to build
+this example using distutils.</p>
+<table class="docutils footnote" frame="void" id="id4" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id1" name="id4">[1]</a></td><td>All SIP directives start with a <tt class="docutils literal"><span class="pre">%</span></tt> as the first non-whitespace
+character of a line.</td></tr>
+</tbody>
+</table>
+<table class="docutils footnote" frame="void" id="id5" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id2" name="id5">[2]</a></td><td>SIP includes many code directives like this. They differ in where the
+supplied code is placed by SIP in the generated code.</td></tr>
+</tbody>
+</table>
+<table class="docutils footnote" frame="void" id="id6" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id3" name="id6">[3]</a></td><td>On Windows you might run <tt class="docutils literal"><span class="pre">nmake</span></tt> or <tt class="docutils literal"><span class="pre">mingw32-make</span></tt> instead.</td></tr>
+</tbody>
+</table>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id37" id="id7" name="id7">4.2&nbsp;&nbsp;&nbsp;A Simple C Example</a></h2>
+<p>Let's now look at a very similar example of wrapping a fictional C library:</p>
+<pre class="literal-block">
+/* Define the interface to the word library. */
+
+struct Word {
+ const char *the_word;
+};
+
+struct Word *create_word(const char *w);
+char *reverse(struct Word *word);
+</pre>
+<p>The corresponding SIP specification file would then look something like this:</p>
+<pre class="literal-block">
+/* Define the SIP wrapper to the word library. */
+
+%CModule word 0
+
+struct Word {
+
+%TypeHeaderCode
+#include &lt;word.h&gt;
+%End
+
+ const char *the_word;
+};
+
+struct Word *create_word(const char *w) /Factory/;
+char *reverse(struct Word *word);
+</pre>
+<p>Again, let's look at the differences between the two files.</p>
+<blockquote>
+<ul class="simple">
+<li>The <a class="reference" href="#cmodule">%CModule</a> directive has been added. This has the same syntax as
+the <a class="reference" href="#module">%Module</a> directive used in the previous example but tells SIP that
+the library being wrapped is implemented in C rather than C++.</li>
+<li>The <a class="reference" href="#typeheadercode">%TypeHeaderCode</a> directive has been added.</li>
+<li>The <a class="reference" href="#factory">Factory</a> annotation has been added to the <tt class="docutils literal"><span class="pre">create_word()</span></tt> function.
+This tells SIP that a newly created structure is being returned and it is
+owned by Python.</li>
+</ul>
+</blockquote>
+<p>The <tt class="docutils literal"><span class="pre">configure.py</span></tt> build system script described in the previous example can
+be used for this example without change.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id38" id="a-more-complex-c-example" name="a-more-complex-c-example">4.3&nbsp;&nbsp;&nbsp;A More Complex C++ Example</a></h2>
+<p>In this last example we will wrap a fictional C++ library that contains a class
+that is derived from a Qt class. This will demonstrate how SIP allows a class
+hierarchy to be split across multiple Python extension modules, and will
+introduce SIP's versioning system.</p>
+<p>The library contains a single C++ class called <tt class="docutils literal"><span class="pre">Hello</span></tt> which is derived from
+Qt's <tt class="docutils literal"><span class="pre">QLabel</span></tt> class. It behaves just like <tt class="docutils literal"><span class="pre">QLabel</span></tt> except that the text
+in the label is hard coded to be <tt class="docutils literal"><span class="pre">Hello</span> <span class="pre">World</span></tt>. To make the example more
+interesting we'll also say that the library only supports Qt v3.0 and later,
+and also includes a function called <tt class="docutils literal"><span class="pre">setDefault()</span></tt> that is not implemented
+in the Windows version of the library.</p>
+<p>The <tt class="docutils literal"><span class="pre">hello.h</span></tt> header file looks something like this:</p>
+<pre class="literal-block">
+// Define the interface to the hello library.
+
+#include &lt;qlabel.h&gt;
+#include &lt;qwidget.h&gt;
+#include &lt;qstring.h&gt;
+
+class Hello : public QLabel {
+ // This is needed by the Qt Meta-Object Compiler.
+ Q_OBJECT
+
+public:
+ Hello(QWidget *parent, const char *name = 0, WFlags f = 0);
+
+private:
+ // Prevent instances from being copied.
+ Hello(const Hello &amp;);
+ Hello &amp;operator=(const Hello &amp;);
+};
+
+#if !defined(Q_OS_WIN)
+void setDefault(const QString &amp;def);
+#endif
+</pre>
+<p>The corresponding SIP specification file would then look something like this:</p>
+<pre class="literal-block">
+// Define the SIP wrapper to the hello library.
+
+%Module hello 0
+
+%Import qt/qtmod.sip
+
+%If (Qt_3_0_0 -)
+
+class Hello : QLabel {
+
+%TypeHeaderCode
+#include &lt;hello.h&gt;
+%End
+
+public:
+ Hello(QWidget *parent /TransferThis/, const char *name = 0, WFlags f = 0);
+
+private:
+ Hello(const Hello &amp;);
+};
+
+%If (!WS_WIN)
+void setDefault(const QString &amp;def);
+%End
+
+%End
+</pre>
+<p>Again we look at the differences, but we'll skip those that we've looked at in
+previous examples.</p>
+<blockquote>
+<ul class="simple">
+<li>The <a class="reference" href="#import">%Import</a> directive has been added to specify that we are extending
+the class hierarchy defined in the file <tt class="docutils literal"><span class="pre">qt/qtmod.sip</span></tt>. This file is
+part of PyQt. The build system will take care of finding the file's
+exact location.</li>
+<li>The <a class="reference" href="#if">%If</a> directive has been added to specify that
+everything <a class="footnote-reference" href="#id11" id="id8" name="id8">[4]</a> up to the matching <a class="reference" href="#end">%End</a> directive only applies to Qt
+v3.0 and later. <tt class="docutils literal"><span class="pre">Qt_3_0_0</span></tt> is a <em>tag</em> defined in <tt class="docutils literal"><span class="pre">qtmod.sip</span></tt> <a class="footnote-reference" href="#id12" id="id9" name="id9">[5]</a>
+using the <a class="reference" href="#timeline">%Timeline</a> directive. <a class="reference" href="#timeline">%Timeline</a> is used to define a tag
+for each version of a library's API you are wrapping allowing you to
+maintain all the different versions in a single SIP specification. The
+build system provides support to <tt class="docutils literal"><span class="pre">configure.py</span></tt> scripts for working out
+the correct tags to use according to which version of the library is
+actually installed.</li>
+<li>The <tt class="docutils literal"><span class="pre">public</span></tt> keyword used in defining the super-classes has been
+removed. This is not supported by SIP.</li>
+<li>The <a class="reference" href="#transferthis">TransferThis</a> annotation has been added to the first argument
+of the constructor. It specifies that if the argument is not 0 (i.e. the
+<tt class="docutils literal"><span class="pre">Hello</span></tt> instance being constructed has a parent) then ownership of the
+instance is transferred from Python to C++. It is needed because Qt
+maintains objects (i.e. instances derived from the <tt class="docutils literal"><span class="pre">QObject</span></tt> class) in
+a hierachy. When an object is destroyed all of its children are also
+automatically destroyed. It is important, therefore, that the Python
+garbage collector doesn't also try and destroy them. This is covered in
+more detail in <a class="reference" href="#ownership-of-objects">Ownership of Objects</a>. SIP provides many other
+annotations that can be applied to arguments, functions and classes.
+Multiple annotations are separated by commas. Annotations may have
+values.</li>
+<li>The <tt class="docutils literal"><span class="pre">=</span></tt> operator has been removed. This operator is not supported by
+SIP.</li>
+<li>The <a class="reference" href="#if">%If</a> directive has been added to specify that everything up to the
+matching <a class="reference" href="#end">%End</a> directive does not apply to Windows. <tt class="docutils literal"><span class="pre">WS_WIN</span></tt> is
+another tag defined by PyQt, this time using the <a class="reference" href="#platforms">%Platforms</a> directive.
+Tags defined by the <a class="reference" href="#platforms">%Platforms</a> directive are mutually exclusive, i.e.
+only one may be valid at a time <a class="footnote-reference" href="#id13" id="id10" name="id10">[6]</a>.</li>
+</ul>
+</blockquote>
+<p>One question you might have at this point is why bother to define the private
+copy constructor when it can never be called from Python? The answer is to
+prevent the automatic generation of a public copy constructor.</p>
+<p>We now look at the <tt class="docutils literal"><span class="pre">configure.py</span></tt> script. This is a little different to the
+script in the previous examples for two related reasons.</p>
+<p>Firstly, PyQt includes a pure Python module called <tt class="docutils literal"><span class="pre">pyqtconfig</span></tt> that extends
+the SIP build system for modules, like our example, that build on top of PyQt.
+It deals with the details of which version of Qt is being used (i.e. it
+determines what the correct tags are) and where it is installed. This is
+called a module's configuration module.</p>
+<p>Secondly, we generate a configuration module (called <tt class="docutils literal"><span class="pre">helloconfig</span></tt>) for our
+own <tt class="docutils literal"><span class="pre">hello</span></tt> module. There is no need to do this, but if there is a chance
+that somebody else might want to extend your C++ library then it would make
+life easier for them.</p>
+<p>Now we have two scripts. First the <tt class="docutils literal"><span class="pre">configure.py</span></tt> script:</p>
+<pre class="literal-block">
+import os
+import sipconfig
+import pyqtconfig
+
+# The name of the SIP build file generated by SIP and used by the build
+# system.
+build_file = &quot;hello.sbf&quot;
+
+# Get the PyQt configuration information.
+config = pyqtconfig.Configuration()
+
+# Get the extra SIP flags needed by the imported qt module. Note that
+# this normally only includes those flags (-x and -t) that relate to SIP's
+# versioning system.
+qt_sip_flags = config.pyqt_qt_sip_flags
+
+# Run SIP to generate the code. Note that we tell SIP where to find the qt
+# module's specification files using the -I flag.
+os.system(&quot; &quot;.join([config.sip_bin, &quot;-c&quot;, &quot;.&quot;, &quot;-b&quot;, build_file, &quot;-I&quot;, config.pyqt_sip_dir, qt_sip_flags, &quot;hello.sip&quot;]))
+
+# We are going to install the SIP specification file for this module and
+# its configuration module.
+installs = []
+
+installs.append([&quot;hello.sip&quot;, os.path.join(config.default_sip_dir, &quot;hello&quot;)])
+
+installs.append([&quot;helloconfig.py&quot;, config.default_mod_dir])
+
+# Create the Makefile. The QtModuleMakefile class provided by the
+# pyqtconfig module takes care of all the extra preprocessor, compiler and
+# linker flags needed by the Qt library.
+makefile = pyqtconfig.QtModuleMakefile(
+ configuration=config,
+ build_file=build_file,
+ installs=installs
+)
+
+# Add the library we are wrapping. The name doesn't include any platform
+# specific prefixes or extensions (e.g. the &quot;lib&quot; prefix on UNIX, or the
+# &quot;.dll&quot; extension on Windows).
+makefile.extra_libs = [&quot;hello&quot;]
+
+# Generate the Makefile itself.
+makefile.generate()
+
+# Now we create the configuration module. This is done by merging a Python
+# dictionary (whose values are normally determined dynamically) with a
+# (static) template.
+content = {
+ # Publish where the SIP specifications for this module will be
+ # installed.
+ &quot;hello_sip_dir&quot;: config.default_sip_dir,
+
+ # Publish the set of SIP flags needed by this module. As these are the
+ # same flags needed by the qt module we could leave it out, but this
+ # allows us to change the flags at a later date without breaking
+ # scripts that import the configuration module.
+ &quot;hello_sip_flags&quot;: qt_sip_flags
+}
+
+# This creates the helloconfig.py module from the helloconfig.py.in
+# template and the dictionary.
+sipconfig.create_config_module(&quot;helloconfig.py&quot;, &quot;helloconfig.py.in&quot;, content)
+</pre>
+<p>Next we have the <tt class="docutils literal"><span class="pre">helloconfig.py.in</span></tt> template script:</p>
+<pre class="literal-block">
+import pyqtconfig
+
+# These are installation specific values created when Hello was configured.
+# The following line will be replaced when this template is used to create
+# the final configuration module.
+# &#64;SIP_CONFIGURATION&#64;
+
+class Configuration(pyqtconfig.Configuration):
+ &quot;&quot;&quot;The class that represents Hello configuration values.
+ &quot;&quot;&quot;
+ def __init__(self, sub_cfg=None):
+ &quot;&quot;&quot;Initialise an instance of the class.
+
+ sub_cfg is the list of sub-class configurations. It should be None
+ when called normally.
+ &quot;&quot;&quot;
+ # This is all standard code to be copied verbatim except for the
+ # name of the module containing the super-class.
+ if sub_cfg:
+ cfg = sub_cfg
+ else:
+ cfg = []
+
+ cfg.append(_pkg_config)
+
+ pyqtconfig.Configuration.__init__(self, cfg)
+
+class HelloModuleMakefile(pyqtconfig.QtModuleMakefile):
+ &quot;&quot;&quot;The Makefile class for modules that %Import hello.
+ &quot;&quot;&quot;
+ def finalise(self):
+ &quot;&quot;&quot;Finalise the macros.
+ &quot;&quot;&quot;
+ # Make sure our C++ library is linked.
+ self.extra_libs.append(&quot;hello&quot;)
+
+ # Let the super-class do what it needs to.
+ pyqtconfig.QtModuleMakefile.finalise(self)
+</pre>
+<p>Again, we hope that the scripts are self documenting.</p>
+<table class="docutils footnote" frame="void" id="id11" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id8" name="id11">[4]</a></td><td>Some parts of a SIP specification aren't subject to version control.</td></tr>
+</tbody>
+</table>
+<table class="docutils footnote" frame="void" id="id12" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id9" name="id12">[5]</a></td><td>Actually in <tt class="docutils literal"><span class="pre">versions.sip</span></tt>. PyQt uses the <a class="reference" href="#include">%Include</a> directive to
+split the SIP specification for Qt across a large number of separate
+<tt class="docutils literal"><span class="pre">.sip</span></tt> files.</td></tr>
+</tbody>
+</table>
+<table class="docutils footnote" frame="void" id="id13" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id10" name="id13">[6]</a></td><td>Tags can also be defined by the <a class="reference" href="#feature">%Feature</a> directive. These tags are
+not mutually exclusive, i.e. any number may be valid at a time.</td></tr>
+</tbody>
+</table>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id39" id="ownership-of-objects" name="ownership-of-objects">4.4&nbsp;&nbsp;&nbsp;Ownership of Objects</a></h2>
+<p>When a C++ instance is wrapped a corresponding Python object is created. The
+Python object behaves as you would expect in regard to garbage collection - it
+is garbage collected when its reference count reaches zero. What then happens
+to the corresponding C++ instance? The obvious answer might be that the
+instance's destructor is called. However the library API may say that when the
+instance is passed to a particular function, the library takes ownership of the
+instance, i.e. responsibility for calling the instance's destructor is
+transferred from the SIP generated module to the library.</p>
+<p>Ownership of an instance may also be associated with another instance. The
+implication being that the owned instance will automatically be destroyed if
+the owning instance is destroyed. SIP keeps track of these relationships to
+ensure that Python's cyclic garbage collector can detect and break any
+reference cycles between the owning and owned instances. The association is
+implemented as the owning instance taking a reference to the owned instance.</p>
+<p>The <a class="reference" href="#transferthis">TransferThis</a>, <a class="reference" href="#transfer">Transfer</a> and TransferBack annotations are used to specify
+where, and it what direction, transfers of ownership happen. It is very
+important that these are specified correctly to avoid crashes (where both
+Python and C++ call the destructor) and memory leaks (where neither Python and
+C++ call the destructor).</p>
+<p>This applies equally to C structures where the structure is returned to the
+heap using the <tt class="docutils literal"><span class="pre">free()</span></tt> function.</p>
+<p>See also <a class="reference" href="#siptransferto">sipTransferTo()</a> and <a class="reference" href="#siptransferback">sipTransferBack()</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id40" id="support-for-wide-characters" name="support-for-wide-characters">4.5&nbsp;&nbsp;&nbsp;Support for Wide Characters</a></h2>
+<p>SIP v4.6 introduced support for wide characters (i.e. the <tt class="docutils literal"><span class="pre">wchar_t</span></tt> type).
+Python's C API includes support for converting between unicode objects and wide
+character strings and arrays. When converting from a unicode object to wide
+characters SIP creates the string or array on the heap (using memory allocated
+using <a class="reference" href="#sipmalloc">sipMalloc()</a>). This then raises the problem of how this memory is
+subsequently freed.</p>
+<p>The following describes how SIP handles this memory in the different situations
+where this is an issue.</p>
+<blockquote>
+<ul class="simple">
+<li>When a wide string or array is passed to a function or method then the
+memory is freed (using <a class="reference" href="#sipfree">sipFree()</a>) after than function or method
+returns.</li>
+<li>When a wide string or array is returned from a virtual method then SIP
+does not free the memory until the next time the method is called.</li>
+<li>When an assignment is made to a wide string or array instance variable
+then SIP does not first free the instance's current string or array.</li>
+</ul>
+</blockquote>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id41" id="the-python-global-interpreter-lock" name="the-python-global-interpreter-lock">4.6&nbsp;&nbsp;&nbsp;The Python Global Interpreter Lock</a></h2>
+<p>Python's Global Interpretor Lock (GIL) must be acquired before calls can be
+made to the Python API. It should also be released when a potentially
+blocking call to C/C++ library is made in order to allow other Python threads
+to be executed. In addition, some C/C++ libraries may implement their own
+locking strategies that conflict with the GIL causing application deadlocks.
+SIP provides ways of specifying when the GIL is released and acquired to
+ensure that locking problems can be avoided.</p>
+<p>SIP always ensures that the GIL is acquired before making calls to the Python
+API. By default SIP does not release the GIL when making calls to the C/C++
+library being wrapped. The <a class="reference" href="#releasegil">ReleaseGIL</a> annotation can be used to override
+this behaviour when required.</p>
+<p>If SIP is given the <tt class="docutils literal"><span class="pre">-g</span></tt> command line option then the default behaviour is
+changed and SIP releases the GIL every time is makes calls to the C/C++
+library being wrapped. The <a class="reference" href="#holdgil">HoldGIL</a> annotation can be used to override this
+behaviour when required.</p>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id42" id="the-sip-command-line" name="the-sip-command-line">5&nbsp;&nbsp;&nbsp;The SIP Command Line</a></h1>
+<p>The syntax of the SIP command line is:</p>
+<pre class="literal-block">
+sip [options] [specification]
+</pre>
+<p><tt class="docutils literal"><span class="pre">specification</span></tt> is the name of the specification file for the module. If it
+is omitted then <tt class="docutils literal"><span class="pre">stdin</span></tt> is used.</p>
+<p>The full set of command line options is:</p>
+<table class="docutils option-list" frame="void" rules="none">
+<col class="option" />
+<col class="description" />
+<tbody valign="top">
+<tr><td class="option-group">
+<kbd><span class="option">-h</span></kbd></td>
+<td>Display a help message.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-V</span></kbd></td>
+<td>Display the SIP version number.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-a <var>file</var></span></kbd></td>
+<td>The name of the QScintilla API file to generate. This file contains a
+description of the module API in a form that the QScintilla editor
+component can use for auto-completion and call tips. (The file may
+also be used by the SciTE editor but must be sorted first.) By default
+the file is not generated.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-b <var>file</var></span></kbd></td>
+<td>The name of the build file to generate. This file contains the
+information about the module needed by the SIP build system to generate
+a platform and compiler specific Makefile for the module. By default
+the file is not generated.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-c <var>dir</var></span></kbd></td>
+<td>The name of the directory (which must exist) into which all of the
+generated C or C++ code is placed. By default no code is generated.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-d <var>file</var></span></kbd></td>
+<td>The name of the documentation file to generate. Documentation is
+included in specification files using the <a class="reference" href="#doc">%Doc</a> and <a class="reference" href="#exporteddoc">%ExportedDoc</a>
+directives. By default the file is not generated.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-e</span></kbd></td>
+<td>Support for C++ exceptions is enabled. This causes all calls to C++
+code to be enclosed in <tt class="docutils literal"><span class="pre">try</span></tt>/<tt class="docutils literal"><span class="pre">catch</span></tt> blocks and C++ exceptions to
+be converted to Python exceptions. By default exception support is
+disabled.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-g</span></kbd></td>
+<td>The Python GIL is released before making any calls to the C/C++ library
+being wrapped and reacquired afterwards. See <a class="reference" href="#the-python-global-interpreter-lock">The Python Global
+Interpreter Lock</a> and the <a class="reference" href="#releasegil">ReleaseGIL</a> and <a class="reference" href="#holdgil">HoldGIL</a> annotations.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-I <var>dir</var></span></kbd></td>
+<td>The directory is added to the list of directories searched when looking
+for a specification file given in an <a class="reference" href="#include">%Include</a> or <a class="reference" href="#import">%Import</a>
+directive. This option may be given any number of times.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-j <var>number</var></span></kbd></td>
+<td>The generated code is split into the given number of files. This make
+it easier to use the parallel build facility of most modern
+implementations of <tt class="docutils literal"><span class="pre">make</span></tt>. By default 1 file is generated for each C
+structure or C++ class.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-r</span></kbd></td>
+<td>Debugging statements that trace the execution of the bindings are
+automatically generated. By default the statements are not generated.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-s <var>suffix</var></span></kbd></td>
+<td>The suffix to use for generated C or C++ source files. By default
+<tt class="docutils literal"><span class="pre">.c</span></tt> is used for C and <tt class="docutils literal"><span class="pre">.cpp</span></tt> for C++.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-t <var>tag</var></span></kbd></td>
+<td>The SIP version tag (declared using a <a class="reference" href="#timeline">%Timeline</a> directive) or the
+SIP platform tag (declared using the <a class="reference" href="#platforms">%Platforms</a> directive) to
+generate code for. This option may be given any number of times so
+long as the tags do not conflict.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-w</span></kbd></td>
+<td>The display of warning messages is enabled. By default warning
+messages are disabled.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-x <var>feature</var></span></kbd></td>
+<td>The feature (declared using the <a class="reference" href="#feature">%Feature</a> directive) is disabled.</td></tr>
+<tr><td class="option-group">
+<kbd><span class="option">-z <var>file</var></span></kbd></td>
+<td>The name of a file containing more command line options.</td></tr>
+</tbody>
+</table>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id43" id="sip-specification-files" name="sip-specification-files">6&nbsp;&nbsp;&nbsp;SIP Specification Files</a></h1>
+<p>A SIP specification consists of some C/C++ type and function declarations and
+some directives. The declarations may contain annotations which provide SIP
+with additional information that cannot be expressed in C/C++. SIP does not
+include a full C/C++ parser.</p>
+<p>It is important to understand that a SIP specification describes the Python
+API, i.e. the API available to the Python programmer when they <tt class="docutils literal"><span class="pre">import</span></tt> the
+generated module. It does not have to accurately represent the underlying
+C/C++ library. There is nothing wrong with omitting functions that make
+little sense in a Python context, or adding functions implemented with
+handwritten code that have no C/C++ equivalent. It is even possible (and
+sometimes necessary) to specify a different super-class hierarchy for a C++
+class. All that matters is that the generated code compiles properly.</p>
+<p>In most cases the Python API matches the C/C++ API. In some cases handwritten
+code (see <a class="reference" href="#methodcode">%MethodCode</a>) is used to map from one to the other without SIP
+having to know the details itself. However, there are a few cases where SIP
+generates a thin wrapper around a C++ method or constructor (see <a class="reference" href="#generated-derived-classes">Generated
+Derived Classes</a>) and needs to know the exact C++ signature. To deal with
+these cases SIP allows two signatures to be specified. For example:</p>
+<pre class="literal-block">
+class Klass
+{
+public:
+ // The Python signature is a tuple, but the underlying C++ signature
+ // is a 2 element array.
+ Klass(SIP_PYTUPLE) [(int *)];
+%MethodCode
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, &quot;ii&quot;, &amp;iarr[0], &amp;iarr[1]))
+ {
+ // Note that we use the SIP generated derived class
+ // constructor.
+ Py_BEGIN_ALLOW_THREADS
+ sipCpp = new sipKlass(iarr);
+ Py_END_ALLOW_THREADS
+ }
+%End
+};
+</pre>
+<div class="section">
+<h2><a class="toc-backref" href="#id44" id="syntax-definition" name="syntax-definition">6.1&nbsp;&nbsp;&nbsp;Syntax Definition</a></h2>
+<p>The following is a semi-formal description of the syntax of a specification
+file.</p>
+<pre class="literal-block">
+<em>specification</em> ::= {<em>module-statement</em>}
+
+<em>module-statement</em> ::= [<em>module-directive</em> | <em>statement</em>]
+
+<em>module-directive</em> ::= [<a class="reference" href="#cmodule">%CModule</a> | <a class="reference" href="#copying">%Copying</a> | <a class="reference" href="#doc">%Doc</a> |
+ <a class="reference" href="#exporteddoc">%ExportedDoc</a> | <a class="reference" href="#exportedheadercode">%ExportedHeaderCode</a> | <a class="reference" href="#feature">%Feature</a> |
+ <a class="reference" href="#import">%Import</a> | <a class="reference" href="#include">%Include</a> | <a class="reference" href="#id14">%License</a> | <a class="reference" href="#mappedtype">%MappedType</a> |
+ <em>mapped-type-template</em> | <a class="reference" href="#module">%Module</a> | <a class="reference" href="#modulecode">%ModuleCode</a> |
+ <a class="reference" href="#moduleheadercode">%ModuleHeaderCode</a> | <a class="reference" href="#optionalinclude">%OptionalInclude</a> | <a class="reference" href="#platforms">%Platforms</a> |
+ <a class="reference" href="#preinitialisationcode">%PreInitialisationCode</a> | <a class="reference" href="#postinitialisationcode">%PostInitialisationCode</a> |
+ <em>sip-option-list</em> | <a class="reference" href="#timeline">%Timeline</a> | <a class="reference" href="#unitcode">%UnitCode</a>]
+
+<em>sip-option-list</em> :: <a class="reference" href="#sipoptions">%SIPOptions</a> <tt class="docutils literal"><span class="pre">(</span></tt> <em>option-list</em> <tt class="docutils literal"><span class="pre">)</span></tt>
+
+<em>option-list</em> ::= <em>option</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>option-list</em>]
+
+<em>statement</em> :: [<em>class-statement</em> | <em>function</em> | <em>variable</em>]
+
+<em>class-statement</em> :: [<a class="reference" href="#if">%If</a> | <em>class</em> | <em>class-template</em> | <em>enum</em> |
+ <em>namespace</em> | <em>opaque-class</em> | <em>operator</em> | <em>struct</em> | <em>typedef</em> |
+ <em>exception</em>]
+
+<em>class</em> ::= <tt class="docutils literal"><span class="pre">class</span></tt> <em>name</em> [<tt class="docutils literal"><span class="pre">:</span></tt> <em>super-classes</em>] [<em>class-annotations</em>]
+ <tt class="docutils literal"><span class="pre">{</span></tt> {<em>class-line</em>} <tt class="docutils literal"><span class="pre">};</span></tt>
+
+<em>super-classes</em> ::= <em>name</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>super-classes</em>]
+
+<em>class-line</em> ::= [<em>class-statement</em> | <a class="reference" href="#bigetreadbuffercode">%BIGetReadBufferCode</a> |
+ <a class="reference" href="#bigetwritebuffercode">%BIGetWriteBufferCode</a> | <a class="reference" href="#bigetsegcountcode">%BIGetSegCountCode</a> |
+ <a class="reference" href="#bigetcharbuffercode">%BIGetCharBufferCode</a> | <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> |
+ <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> | <a class="reference" href="#gcclearcode">%GCClearCode</a> | <a class="reference" href="#gctraversecode">%GCTraverseCode</a> |
+ <a class="reference" href="#typecode">%TypeCode</a> | <a class="reference" href="#typeheadercode">%TypeHeaderCode</a> | <em>constructor</em> | <em>destructor</em> |
+ <em>method</em> | <em>static-method</em> | <em>virtual-method</em> | <em>special-method</em> |
+ <em>operator</em> | <em>virtual-operator</em> | <em>class-variable</em> | <tt class="docutils literal"><span class="pre">public:</span></tt> |
+ <tt class="docutils literal"><span class="pre">public</span> <span class="pre">slots:</span></tt> | <tt class="docutils literal"><span class="pre">protected:</span></tt> | <tt class="docutils literal"><span class="pre">protected</span> <span class="pre">slots:</span></tt> |
+ <tt class="docutils literal"><span class="pre">private:</span></tt> | <tt class="docutils literal"><span class="pre">private</span> <span class="pre">slots:</span></tt> | <tt class="docutils literal"><span class="pre">signals:</span></tt>]
+
+<em>constructor</em> ::= [<tt class="docutils literal"><span class="pre">explicit</span></tt>] <em>name</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+ [<em>exceptions</em>] [<em>function-annotations</em>]
+ [<em>c++-constructor-signature</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+
+<em>c++-constructor-signature</em> ::= <tt class="docutils literal"><span class="pre">[(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)]</span></tt>
+
+<em>destructor</em> ::= [<tt class="docutils literal"><span class="pre">virtual</span></tt>] <tt class="docutils literal"><span class="pre">~</span></tt> <em>name</em> <tt class="docutils literal"><span class="pre">()</span></tt> [<em>exceptions</em>] [<tt class="docutils literal"><span class="pre">=</span> <span class="pre">0</span></tt>]
+ [<em>function-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+ [<a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a>]
+
+<em>method</em> ::= <em>type</em> <em>name</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt> [<tt class="docutils literal"><span class="pre">const</span></tt>]
+ [<em>exceptions</em>] [<tt class="docutils literal"><span class="pre">=</span> <span class="pre">0</span></tt>] [<em>function-annotations</em>] [<em>c++-signature</em>]
+ <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+
+<em>c++-signature</em> ::= <tt class="docutils literal"><span class="pre">[</span></tt> <em>type</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)]</span></tt>
+
+<em>static-method</em> ::= <tt class="docutils literal"><span class="pre">static</span></tt> <em>function</em>
+
+<em>virtual-method</em> ::= <tt class="docutils literal"><span class="pre">virtual</span></tt> <em>type</em> <em>name</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+ [<tt class="docutils literal"><span class="pre">const</span></tt>] [<em>exceptions</em>] [<tt class="docutils literal"><span class="pre">=</span> <span class="pre">0</span></tt>] [<em>function-annotations</em>]
+ [<em>c++-signature</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>] [<a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a>]
+
+<em>special-method</em> ::= <em>type</em> <em>special-method-name</em>
+ <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt> [<em>function-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt>
+ [<a class="reference" href="#methodcode">%MethodCode</a>]
+
+<em>special-method-name</em> ::= [ <tt class="docutils literal"><span class="pre">__abs__</span></tt> | <tt class="docutils literal"><span class="pre">__add__</span></tt> | <tt class="docutils literal"><span class="pre">__and__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__call__</span></tt> | <tt class="docutils literal"><span class="pre">__cmp__</span></tt> | <tt class="docutils literal"><span class="pre">__contains__</span></tt> | <tt class="docutils literal"><span class="pre">__delitem__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__div__</span></tt> | <tt class="docutils literal"><span class="pre">__eq__</span></tt> | <tt class="docutils literal"><span class="pre">__float__</span></tt> | <tt class="docutils literal"><span class="pre">__ge__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__getitem__</span></tt> | <tt class="docutils literal"><span class="pre">__gt__</span></tt> | <tt class="docutils literal"><span class="pre">__hash__</span></tt> | <tt class="docutils literal"><span class="pre">__iadd__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__iand__</span></tt> | <tt class="docutils literal"><span class="pre">__idiv__</span></tt> | <tt class="docutils literal"><span class="pre">__ilshift__</span></tt> | <tt class="docutils literal"><span class="pre">__imod__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__imul__</span></tt> | <tt class="docutils literal"><span class="pre">__int__</span></tt> | <tt class="docutils literal"><span class="pre">__invert__</span></tt> | <tt class="docutils literal"><span class="pre">__ior__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__irshift__</span></tt> | <tt class="docutils literal"><span class="pre">__isub__</span></tt> | <tt class="docutils literal"><span class="pre">__ixor__</span></tt> | <tt class="docutils literal"><span class="pre">__le__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__len__</span></tt> | <tt class="docutils literal"><span class="pre">__long__</span></tt> | <tt class="docutils literal"><span class="pre">__lshift__</span></tt> | <tt class="docutils literal"><span class="pre">__lt__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__mod__</span></tt> | <tt class="docutils literal"><span class="pre">__mul__</span></tt> | <tt class="docutils literal"><span class="pre">__ne__</span></tt> | <tt class="docutils literal"><span class="pre">__neg__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__nonzero__</span></tt> | <tt class="docutils literal"><span class="pre">__or__</span></tt> | <tt class="docutils literal"><span class="pre">__pos__</span></tt> | <tt class="docutils literal"><span class="pre">__repr__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__rshift__</span></tt> | <tt class="docutils literal"><span class="pre">__setitem__</span></tt> | <tt class="docutils literal"><span class="pre">__str__</span></tt> | <tt class="docutils literal"><span class="pre">__sub__</span></tt> |
+ <tt class="docutils literal"><span class="pre">__xor__</span></tt>]
+
+<em>operator</em> ::= <em>operator-type</em>
+ <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt> [<tt class="docutils literal"><span class="pre">const</span></tt>] [<em>exceptions</em>]
+ [<em>function-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+
+<em>virtual-operator</em> ::= <tt class="docutils literal"><span class="pre">virtual</span></tt> <em>operator-type</em>
+ <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt> [<tt class="docutils literal"><span class="pre">const</span></tt>] [<em>exceptions</em>] [<tt class="docutils literal"><span class="pre">=</span> <span class="pre">0</span></tt>]
+ [<em>function-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+ [<a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a>]
+
+<em>operatator-type</em> ::= [ <em>operator-function</em> | <em>operator-cast</em> ]
+
+<em>operator-function</em> ::= <em>type</em> <tt class="docutils literal"><span class="pre">operator</span></tt> <em>operator-name</em>
+
+<em>operator-cast</em> ::= <tt class="docutils literal"><span class="pre">operator</span></tt> <em>type</em>
+
+<em>operator-name</em> ::= [<tt class="docutils literal"><span class="pre">+</span></tt> | <tt class="docutils literal"><span class="pre">-</span></tt> | <tt class="docutils literal"><span class="pre">*</span></tt> | <tt class="docutils literal"><span class="pre">/</span></tt> | <tt class="docutils literal"><span class="pre">%</span></tt> | <tt class="docutils literal"><span class="pre">&amp;</span></tt> |
+ <tt class="docutils literal"><span class="pre">|</span></tt> | <tt class="docutils literal"><span class="pre">^</span></tt> | <tt class="docutils literal"><span class="pre">&lt;&lt;</span></tt> | <tt class="docutils literal"><span class="pre">&gt;&gt;</span></tt> | <tt class="docutils literal"><span class="pre">+=</span></tt> | <tt class="docutils literal"><span class="pre">-=</span></tt> | <tt class="docutils literal"><span class="pre">*=</span></tt> |
+ <tt class="docutils literal"><span class="pre">/=</span></tt> | <tt class="docutils literal"><span class="pre">%=</span></tt> | <tt class="docutils literal"><span class="pre">&amp;=</span></tt> | <tt class="docutils literal"><span class="pre">|=</span></tt> | <tt class="docutils literal"><span class="pre">^=</span></tt> | <tt class="docutils literal"><span class="pre">&lt;&lt;=</span></tt> | <tt class="docutils literal"><span class="pre">&gt;&gt;=</span></tt> |
+ <tt class="docutils literal"><span class="pre">~</span></tt> | <tt class="docutils literal"><span class="pre">()</span></tt> | <tt class="docutils literal"><span class="pre">[]</span></tt> | <tt class="docutils literal"><span class="pre">&lt;</span></tt> | <tt class="docutils literal"><span class="pre">&lt;=</span></tt> | <tt class="docutils literal"><span class="pre">==</span></tt> | <tt class="docutils literal"><span class="pre">!=</span></tt> |
+ <tt class="docutils literal"><span class="pre">&gt;</span></tt> | <tt class="docutils literal"><span class="pre">&gt;&gt;=</span></tt>]
+
+<em>class-variable</em> ::= [<tt class="docutils literal"><span class="pre">static</span></tt>] <em>variable</em>
+
+<em>class-template</em> :: = <tt class="docutils literal"><span class="pre">template</span></tt> <tt class="docutils literal"><span class="pre">&lt;</span></tt> <em>type-list</em> <tt class="docutils literal"><span class="pre">&gt;</span></tt> <em>class</em>
+
+<em>mapped-type-template</em> :: = <tt class="docutils literal"><span class="pre">template</span></tt> <tt class="docutils literal"><span class="pre">&lt;</span></tt> <em>type-list</em> <tt class="docutils literal"><span class="pre">&gt;</span></tt>
+ <a class="reference" href="#mappedtype">%MappedType</a>
+
+<em>enum</em> ::= <tt class="docutils literal"><span class="pre">enum</span></tt> [<em>name</em>] [<em>enum-annotations</em>] <tt class="docutils literal"><span class="pre">{</span></tt> {<em>enum-line</em>} <tt class="docutils literal"><span class="pre">};</span></tt>
+
+<em>enum-line</em> ::= [<a class="reference" href="#if">%If</a> | <em>name</em> [<em>enum-annotations</em>] <tt class="docutils literal"><span class="pre">,</span></tt>
+
+<em>function</em> ::= <em>type</em> <em>name</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>argument-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt> [<em>exceptions</em>]
+ [<em>function-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#methodcode">%MethodCode</a>]
+
+<em>namespace</em> ::= <tt class="docutils literal"><span class="pre">namespace</span></tt> <em>name</em> <tt class="docutils literal"><span class="pre">{</span></tt> {<em>namespace-line</em>} <tt class="docutils literal"><span class="pre">};</span></tt>
+
+<em>namespace-line</em> ::= [<a class="reference" href="#typeheadercode">%TypeHeaderCode</a> | <em>statement</em>]
+
+<em>opaque-class</em> ::= <tt class="docutils literal"><span class="pre">class</span></tt> <em>scoped-name</em> <tt class="docutils literal"><span class="pre">;</span></tt>
+
+<em>struct</em> ::= <tt class="docutils literal"><span class="pre">struct</span></tt> <em>name</em> <tt class="docutils literal"><span class="pre">{</span></tt> {<em>class-line</em>} <tt class="docutils literal"><span class="pre">};</span></tt>
+
+<em>typedef</em> ::= <tt class="docutils literal"><span class="pre">typedef</span></tt> [<em>typed-name</em> | <em>function-pointer</em>] <tt class="docutils literal"><span class="pre">;</span></tt>
+
+<em>variable</em>::= <em>typed-name</em> [<em>variable-annotations</em>] <tt class="docutils literal"><span class="pre">;</span></tt> [<a class="reference" href="#accesscode">%AccessCode</a>]
+ [<a class="reference" href="#getcode">%GetCode</a>] [<a class="reference" href="#setcode">%SetCode</a>]
+
+<em>exception</em> ::= <a class="reference" href="#exception">%Exception</a> <em>exception-name</em> [<em>exception-base</em>] <tt class="docutils literal"><span class="pre">{</span></tt>
+ [<a class="reference" href="#typeheadercode">%TypeHeaderCode</a>] <a class="reference" href="#raisecode">%RaiseCode</a> <cite>};`</cite>
+
+<em>exception-name</em> ::= <em>scoped-name</em>
+
+<em>exception-base</em> ::= <tt class="docutils literal"><span class="pre">(</span></tt> [<em>exception-name</em> | <em>python-exception</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+
+<em>python-exception</em> ::= [<tt class="docutils literal"><span class="pre">SIP_Exception</span></tt> | <tt class="docutils literal"><span class="pre">SIP_StopIteration</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_StandardError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_ArithmeticError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_LookupError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_AssertionError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_AttributeError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_EOFError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_FloatingPointError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_EnvironmentError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_IOError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_OSError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_ImportError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_IndexError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_KeyError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_KeyboardInterrupt</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_MemoryError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_NameError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_OverflowError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_RuntimeError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_NotImplementedError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_SyntaxError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_IndentationError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_TabError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_ReferenceError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_SystemError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_SystemExit</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_TypeError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_UnboundLocalError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_UnicodeError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_UnicodeEncodeError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_UnicodeDecodeError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_UnicodeTranslateError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_ValueError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_ZeroDivisionError</span></tt> |
+ <tt class="docutils literal"><span class="pre">SIP_WindowsError</span></tt> | <tt class="docutils literal"><span class="pre">SIP_VMSError</span></tt>]
+
+<em>exceptions</em> ::= <tt class="docutils literal"><span class="pre">throw</span> <span class="pre">(</span></tt> [<em>exception-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+
+<em>exception-list</em> ::= <em>scoped-name</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>exception-list</em>]
+
+<em>argument-list</em> ::= <em>argument</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>argument-list</em>] [<tt class="docutils literal"><span class="pre">,</span></tt> <tt class="docutils literal"><span class="pre">...</span></tt>]
+
+<em>argument</em> ::= [<em>type</em> [<em>name</em>] [<em>argument-annotations</em>]
+ [<em>default-value</em>] | <a class="reference" href="#sip-anyslot">SIP_ANYSLOT</a> [<em>default-value</em>] | <a class="reference" href="#sip-qobject">SIP_QOBJECT</a> |
+ <a class="reference" href="#sip-rxobj-con">SIP_RXOBJ_CON</a> | <a class="reference" href="#sip-rxobj-dis">SIP_RXOBJ_DIS</a> | <a class="reference" href="#sip-signal">SIP_SIGNAL</a> [<em>default-value</em>] |
+ <a class="reference" href="#sip-slot">SIP_SLOT</a> [<em>default-value</em>] | <a class="reference" href="#sip-slot-con">SIP_SLOT_CON</a> | <a class="reference" href="#sip-slot-dis">SIP_SLOT_DIS</a>]
+
+<em>default-value</em> ::= <tt class="docutils literal"><span class="pre">=</span></tt> <em>expression</em>
+
+<em>expression</em> ::= [<em>value</em> | <em>value</em> <em>binary-operator</em> <em>expression</em>]
+
+<em>value</em> ::= [<em>unary-operator</em>] <em>simple-value</em>
+
+<em>simple-value</em> ::= [<em>scoped-name</em> | <em>function-call</em> | <em>real-value</em> |
+ <em>integer-value</em> | <em>boolean-value</em> | <em>string-value</em> |
+ <em>character-value</em>]
+
+<em>typed-name</em>::= <em>type</em> <em>name</em>
+
+<em>function-pointer</em>::= <em>type</em> <tt class="docutils literal"><span class="pre">(*</span></tt> <em>name</em> <tt class="docutils literal"><span class="pre">)(</span></tt> [<em>type-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+
+<em>type-list</em> ::= <em>type</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>type-list</em>]
+
+<em>function-call</em> ::= <em>scoped-name</em> <tt class="docutils literal"><span class="pre">(</span></tt> [<em>value-list</em>] <tt class="docutils literal"><span class="pre">)</span></tt>
+
+<em>value-list</em> ::= <em>value</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>value-list</em>]
+
+<em>real-value</em> ::= a floating point number
+
+<em>integer-value</em> ::= a number
+
+<em>boolean-value</em> ::= [<tt class="docutils literal"><span class="pre">true</span></tt> | <tt class="docutils literal"><span class="pre">false</span></tt>]
+
+<em>string-value</em> ::= <tt class="docutils literal"><span class="pre">&quot;</span></tt> {<em>character</em>} <tt class="docutils literal"><span class="pre">&quot;</span></tt>
+
+<em>character-value</em> ::= <tt class="docutils literal"><span class="pre">`</span></tt> <em>character</em> <tt class="docutils literal"><span class="pre">`</span></tt>
+
+<em>unary-operator</em> ::= [<tt class="docutils literal"><span class="pre">!</span></tt> | <tt class="docutils literal"><span class="pre">~</span></tt> | <tt class="docutils literal"><span class="pre">-</span></tt> | <tt class="docutils literal"><span class="pre">+</span></tt>]
+
+<em>binary-operator</em> ::= [<tt class="docutils literal"><span class="pre">-</span></tt> | <tt class="docutils literal"><span class="pre">+</span></tt> | <tt class="docutils literal"><span class="pre">*</span></tt> | <tt class="docutils literal"><span class="pre">/</span></tt> | <tt class="docutils literal"><span class="pre">&amp;</span></tt> | <tt class="docutils literal"><span class="pre">|</span></tt>]
+
+<em>argument-annotations</em> ::= see <a class="reference" href="#argument-annotations">Argument Annotations</a>
+
+<em>class-annotations</em> ::= see <a class="reference" href="#class-annotations">Class Annotations</a>
+
+<em>enum-annotations</em> ::= see <a class="reference" href="#enum-annotations">Enum Annotations</a>
+
+<em>function-annotations</em> ::= see <a class="reference" href="#function-annotations">Function Annotations</a>
+
+<em>variable-annotations</em> ::= see <a class="reference" href="#variable-annotations">Variable Annotations</a>
+
+<em>type</em> ::= [<tt class="docutils literal"><span class="pre">const</span></tt>] <em>base-type</em> {<tt class="docutils literal"><span class="pre">*</span></tt>} [<tt class="docutils literal"><span class="pre">&amp;</span></tt>]
+
+<em>type-list</em> ::= <em>type</em> [<tt class="docutils literal"><span class="pre">,</span></tt> <em>type-list</em>]
+
+<em>base-type</em> ::= [<em>scoped-name</em> | <em>template</em> | <tt class="docutils literal"><span class="pre">struct</span></tt> <em>scoped-name</em> |
+ <tt class="docutils literal"><span class="pre">short</span></tt> | <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt> | <tt class="docutils literal"><span class="pre">int</span></tt> | <tt class="docutils literal"><span class="pre">unsigned</span></tt> |
+ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt> | <tt class="docutils literal"><span class="pre">long</span></tt> | <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt> | <tt class="docutils literal"><span class="pre">float</span></tt> |
+ <tt class="docutils literal"><span class="pre">double</span></tt> | <tt class="docutils literal"><span class="pre">bool</span></tt> | <tt class="docutils literal"><span class="pre">char</span></tt> | <tt class="docutils literal"><span class="pre">signed</span> <span class="pre">char</span></tt> |
+ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span></tt> | <tt class="docutils literal"><span class="pre">void</span></tt> | <tt class="docutils literal"><span class="pre">wchar_t</span></tt> | <a class="reference" href="#sip-pycallable">SIP_PYCALLABLE</a> |
+ <a class="reference" href="#sip-pydict">SIP_PYDICT</a> | <a class="reference" href="#sip-pylist">SIP_PYLIST</a> | <a class="reference" href="#sip-pyobject">SIP_PYOBJECT</a> | <a class="reference" href="#sip-pyslice">SIP_PYSLICE</a> |
+ <a class="reference" href="#sip-pytuple">SIP_PYTUPLE</a> | <a class="reference" href="#sip-pytype">SIP_PYTYPE</a>]
+
+<em>scoped-name</em> ::= <em>name</em> [<tt class="docutils literal"><span class="pre">::</span></tt> <em>scoped-name</em>]
+
+<em>template</em> ::= <em>scoped-name</em> <tt class="docutils literal"><span class="pre">&lt;</span></tt> <em>type-list</em> <tt class="docutils literal"><span class="pre">&gt;</span></tt>
+
+<em>name</em> ::= _A-Za-z {_A-Za-z0-9}
+</pre>
+<p>Here is a short list of differences between C++ and the subset supported by
+SIP that might trip you up.</p>
+<blockquote>
+<ul class="simple">
+<li>SIP does not support the use of <tt class="docutils literal"><span class="pre">[]</span></tt> in types. Use pointers instead.</li>
+<li>A global <tt class="docutils literal"><span class="pre">operator</span></tt> can only be defined if its first argument is a
+class or a named enum that has been wrapped in the same module.</li>
+<li>Variables declared outside of a class are effectively read-only.</li>
+<li>A class's list of super-classes doesn't not include any access specifier
+(e.g. <tt class="docutils literal"><span class="pre">public</span></tt>).</li>
+</ul>
+</blockquote>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id45" id="variable-numbers-of-arguments" name="variable-numbers-of-arguments">6.2&nbsp;&nbsp;&nbsp;Variable Numbers of Arguments</a></h2>
+<p>SIP supports the use of <tt class="docutils literal"><span class="pre">...</span></tt> as the last part of a function signature. Any
+remaining arguments are collected as a Python tuple.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id46" id="additional-sip-types" name="additional-sip-types">6.3&nbsp;&nbsp;&nbsp;Additional SIP Types</a></h2>
+<p>SIP supports a number of additional data types that can be used in Python
+signatures.</p>
+<div class="section">
+<h3><a class="toc-backref" href="#id47" id="sip-anyslot" name="sip-anyslot">6.3.1&nbsp;&nbsp;&nbsp;SIP_ANYSLOT</a></h3>
+<p>This is both a <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> and a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is used as the type
+of the member instead of <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> in functions that implement the
+connection or disconnection of an explicitly generated signal to a slot.
+Handwritten code must be provided to interpret the conversion correctly.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id48" id="sip-pycallable" name="sip-pycallable">6.3.2&nbsp;&nbsp;&nbsp;SIP_PYCALLABLE</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python callable object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id49" id="sip-pydict" name="sip-pydict">6.3.3&nbsp;&nbsp;&nbsp;SIP_PYDICT</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python dictionary object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id50" id="sip-pylist" name="sip-pylist">6.3.4&nbsp;&nbsp;&nbsp;SIP_PYLIST</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python list object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id51" id="sip-pyobject" name="sip-pyobject">6.3.5&nbsp;&nbsp;&nbsp;SIP_PYOBJECT</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> of any Python type.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id52" id="sip-pyslice" name="sip-pyslice">6.3.6&nbsp;&nbsp;&nbsp;SIP_PYSLICE</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python slice object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id53" id="sip-pytuple" name="sip-pytuple">6.3.7&nbsp;&nbsp;&nbsp;SIP_PYTUPLE</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python tuple object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id54" id="sip-pytype" name="sip-pytype">6.3.8&nbsp;&nbsp;&nbsp;SIP_PYTYPE</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> that is a Python type object.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id55" id="sip-qobject" name="sip-qobject">6.3.9&nbsp;&nbsp;&nbsp;SIP_QOBJECT</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">QObject</span> <span class="pre">*</span></tt> that is a C++ instance of a class derived from Qt's
+<tt class="docutils literal"><span class="pre">QObject</span></tt> class.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id56" id="sip-rxobj-con" name="sip-rxobj-con">6.3.10&nbsp;&nbsp;&nbsp;SIP_RXOBJ_CON</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">QObject</span> <span class="pre">*</span></tt> that is a C++ instance of a class derived from Qt's
+<tt class="docutils literal"><span class="pre">QObject</span></tt> class. It is used as the type of the receiver instead of <tt class="docutils literal"><span class="pre">const</span>
+<span class="pre">QObject</span> <span class="pre">*</span></tt> in functions that implement a connection to a slot.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id57" id="sip-rxobj-dis" name="sip-rxobj-dis">6.3.11&nbsp;&nbsp;&nbsp;SIP_RXOBJ_DIS</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">QObject</span> <span class="pre">*</span></tt> that is a C++ instance of a class derived from Qt's
+<tt class="docutils literal"><span class="pre">QObject</span></tt> class. It is used as the type of the receiver instead of <tt class="docutils literal"><span class="pre">const</span>
+<span class="pre">QObject</span> <span class="pre">*</span></tt> in functions that implement a disconnection from a slot.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id58" id="sip-signal" name="sip-signal">6.3.12&nbsp;&nbsp;&nbsp;SIP_SIGNAL</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> that is used as the type of the signal instead of
+<tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> in functions that implement the connection or disconnection
+of an explicitly generated signal to a slot.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id59" id="sip-slot" name="sip-slot">6.3.13&nbsp;&nbsp;&nbsp;SIP_SLOT</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> that is used as the type of the member instead of
+<tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> in functions that implement the connection or disconnection
+of an explicitly generated signal to a slot.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id60" id="sip-slot-con" name="sip-slot-con">6.3.14&nbsp;&nbsp;&nbsp;SIP_SLOT_CON</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> that is used as the type of the member instead of
+<tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> in functions that implement the connection of an internally
+generated signal to a slot. The type includes a comma separated list of types
+that is the C++ signature of of the signal.</p>
+<p>To take an example, <tt class="docutils literal"><span class="pre">QAccel::connectItem()</span></tt> connects an internally generated
+signal to a slot. The signal is emitted when the keyboard accelerator is
+activated and it has a single integer argument that is the ID of the
+accelerator. The C++ signature is:</p>
+<pre class="literal-block">
+bool connectItem(int id, const QObject *receiver, const char *member);
+</pre>
+<p>The corresponding SIP specification is:</p>
+<pre class="literal-block">
+bool connectItem(int, SIP_RXOBJ_CON, SIP_SLOT_CON(int));
+</pre>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id61" id="sip-slot-dis" name="sip-slot-dis">6.3.15&nbsp;&nbsp;&nbsp;SIP_SLOT_DIS</a></h3>
+<p>This is a <tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> that is used as the type of the member instead of
+<tt class="docutils literal"><span class="pre">const</span> <span class="pre">char</span> <span class="pre">*</span></tt> in functions that implement the disconnection of an
+internally generated signal to a slot. The type includes a comma separated
+list of types that is the C++ signature of of the signal.</p>
+</div>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id62" id="sip-directives" name="sip-directives">7&nbsp;&nbsp;&nbsp;SIP Directives</a></h1>
+<p>In this section we describe each of the directives that can be used in
+specification files. All directives begin with <tt class="docutils literal"><span class="pre">%</span></tt> as the first
+non-whitespace character in a line.</p>
+<p>Some directives have arguments or contain blocks of code or documentation. In
+the following descriptions these are shown in <em>italics</em>. Optional arguments
+are enclosed in [<em>brackets</em>].</p>
+<p>Some directives are used to specify handwritten code. Handwritten code must
+not define names that start with the prefix <tt class="docutils literal"><span class="pre">sip</span></tt>.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id63" id="accesscode" name="accesscode">7.1&nbsp;&nbsp;&nbsp;%AccessCode</a></h2>
+<pre class="literal-block">
+%AccessCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used immediately after the declaration of an instance of a
+wrapped class or structure, or a pointer to such an instance. You use it to
+provide handwritten code that overrides the default behaviour.</p>
+<p>For example:</p>
+<pre class="literal-block">
+class Klass;
+
+Klass *klassInstance;
+%AccessCode
+ // In this contrived example the C++ library we are wrapping defines
+ // klassInstance as Klass ** (which SIP doesn't support) so we
+ // explicitly dereference it.
+ if (klassInstance &amp;&amp; *klassInstance)
+ return *klassInstance;
+
+ // This will get converted to None.
+ return 0;
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id64" id="bigetcharbuffercode" name="bigetcharbuffercode">7.2&nbsp;&nbsp;&nbsp;%BIGetCharBufferCode</a></h2>
+<pre class="literal-block">
+%BIGetCharBufferCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive (along with <a class="reference" href="#bigetreadbuffercode">%BIGetReadBufferCode</a>, <a class="reference" href="#bigetsegcountcode">%BIGetSegCountCode</a> and
+<a class="reference" href="#bigetwritebuffercode">%BIGetWriteBufferCode</a>) is used to specify code that implements Python's
+buffer interface. See the section <a class="reference" href="http://www.python.org/dev/doc/devel/api/buffer-structs.html">Buffer Object Structures</a> for the
+details.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>void **sipPtrPtr</dt>
+<dd>This is the pointer used to return the address of the character buffer.</dd>
+<dt>SIP_SSIZE_T sipRes</dt>
+<dd>The handwritten code should set this to the length of the character buffer
+or -1 if there was an error.</dd>
+<dt>SIP_SSIZE_T sipSegment</dt>
+<dd>This is the number of the segment of the character buffer.</dd>
+<dt>PyObject *sipSelf</dt>
+<dd>This is the Python object that wraps the the structure or class instance,
+i.e. <tt class="docutils literal"><span class="pre">self</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id65" id="bigetreadbuffercode" name="bigetreadbuffercode">7.3&nbsp;&nbsp;&nbsp;%BIGetReadBufferCode</a></h2>
+<pre class="literal-block">
+%BIGetReadBufferCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive (along with <a class="reference" href="#bigetcharbuffercode">%BIGetCharBufferCode</a>, <a class="reference" href="#bigetsegcountcode">%BIGetSegCountCode</a> and
+<a class="reference" href="#bigetwritebuffercode">%BIGetWriteBufferCode</a>) is used to specify code that implements Python's
+buffer interface.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>void **sipPtrPtr</dt>
+<dd>This is the pointer used to return the address of the read buffer.</dd>
+<dt>SIP_SSIZE_T sipRes</dt>
+<dd>The handwritten code should set this to the length of the read buffer or
+-1 if there was an error.</dd>
+<dt>SIP_SSIZE_T sipSegment</dt>
+<dd>This is the number of the segment of the read buffer.</dd>
+<dt>PyObject *sipSelf</dt>
+<dd>This is the Python object that wraps the the structure or class instance,
+i.e. <tt class="docutils literal"><span class="pre">self</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id66" id="bigetsegcountcode" name="bigetsegcountcode">7.4&nbsp;&nbsp;&nbsp;%BIGetSegCountCode</a></h2>
+<pre class="literal-block">
+%BIGetSegCountCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive (along with <a class="reference" href="#bigetcharbuffercode">%BIGetCharBufferCode</a>, <a class="reference" href="#bigetreadbuffercode">%BIGetReadBufferCode</a> and
+<a class="reference" href="#bigetwritebuffercode">%BIGetWriteBufferCode</a>) is used to specify code that implements Python's
+buffer interface.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>SIP_SSIZE_T *sipLenPtr</dt>
+<dd>This is the pointer used to return the total length in bytes of all
+segments of the buffer.</dd>
+<dt>SIP_SSIZE_T sipRes</dt>
+<dd>The handwritten code should set this to the number of segments that make
+up the buffer.</dd>
+<dt>PyObject *sipSelf</dt>
+<dd>This is the Python object that wraps the the structure or class instance,
+i.e. <tt class="docutils literal"><span class="pre">self</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id67" id="bigetwritebuffercode" name="bigetwritebuffercode">7.5&nbsp;&nbsp;&nbsp;%BIGetWriteBufferCode</a></h2>
+<pre class="literal-block">
+%BIGetWriteBufferCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive (along with <a class="reference" href="#bigetcharbuffercode">%BIGetCharBufferCode</a>, <a class="reference" href="#bigetreadbuffercode">%BIGetReadBufferCode</a>
+and <a class="reference" href="#bigetsegcountcode">%BIGetSegCountCode</a> is used to specify code that implements Python's
+buffer interface.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>void **sipPtrPtr</dt>
+<dd>This is the pointer used to return the address of the write buffer.</dd>
+<dt>SIP_SSIZE_T sipRes</dt>
+<dd>The handwritten code should set this to the length of the write buffer or
+-1 if there was an error.</dd>
+<dt>SIP_SSIZE_T sipSegment</dt>
+<dd>This is the number of the segment of the write buffer.</dd>
+<dt>PyObject *sipSelf</dt>
+<dd>This is the Python object that wraps the the structure or class instance,
+i.e. <tt class="docutils literal"><span class="pre">self</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id68" id="cmodule" name="cmodule">7.6&nbsp;&nbsp;&nbsp;%CModule</a></h2>
+<pre class="literal-block">
+%CModule <em>name</em> [<em>version</em>]
+</pre>
+<p>This directive is used to identify that the library being wrapped is a C
+library and to define the name of the module and it's optional version number.</p>
+<p>See the <a class="reference" href="#module">%Module</a> directive for an explanation of the version number.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%CModule dbus 1
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id69" id="convertfromtypecode" name="convertfromtypecode">7.7&nbsp;&nbsp;&nbsp;%ConvertFromTypeCode</a></h2>
+<pre class="literal-block">
+%ConvertFromTypeCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used as part of the <a class="reference" href="#mappedtype">%MappedType</a> directive to specify the
+handwritten code that converts an instance of a mapped type to a Python
+object.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the instance of the mapped type to be converted. It
+will never be zero as the conversion from zero to <tt class="docutils literal"><span class="pre">Py_None</span></tt> is handled
+before the handwritten code is called.</dd>
+<dt>PyObject *sipTransferObj</dt>
+<dd>This specifies any desired ownership changes to the returned object. If it
+is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the ownership should be left unchanged. If it is
+<tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership should be transferred to Python. Otherwise
+ownership should be transferred to C/C++ and the returned object associated
+with <em>sipTransferObj</em>. The code can choose to interpret these changes in
+any way. For example, if the code is converting a C++ container of wrapped
+classes to a Python list it is likely that the ownership changes should be
+made to each element of the list.</dd>
+</dl>
+<p>The handwritten code must explicitly return a <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt>. If there was an
+error then a Python exception must be raised and <tt class="docutils literal"><span class="pre">NULL</span></tt> returned.</p>
+<p>The following example converts a <tt class="docutils literal"><span class="pre">QList&lt;QWidget</span> <span class="pre">*&gt;</span></tt> instance to a Python
+list of <tt class="docutils literal"><span class="pre">QWidget</span></tt> instances:</p>
+<pre class="literal-block">
+%ConvertFromTypeCode
+ PyObject *l;
+
+ // Create the Python list of the correct length.
+ if ((l = PyList_New(sipCpp -&gt; size())) == NULL)
+ return NULL;
+
+ // Go through each element in the C++ instance and convert it to a
+ // wrapped QWidget.
+ for (int i = 0; i &lt; sipCpp -&gt; size(); ++i)
+ {
+ QWidget *w = sipCpp -&gt; at(i);
+ PyObject *wobj;
+
+ // Get the Python wrapper for the QWidget instance, creating a new
+ // one if necessary, and handle any ownership transfer.
+ if ((wobj = sipConvertFromInstance(w, sipClass_QWidget, sipTransferObj)) == NULL)
+ {
+ // There was an error so garbage collect the Python list.
+ Py_DECREF(l);
+ return NULL;
+ }
+
+ // Add the wrapper to the list.
+ PyList_SET_ITEM(l, i, wobj);
+ }
+
+ // Return the Python list.
+ return l;
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id70" id="converttosubclasscode" name="converttosubclasscode">7.8&nbsp;&nbsp;&nbsp;%ConvertToSubClassCode</a></h2>
+<pre class="literal-block">
+%ConvertToSubClassCode
+ <em>code</em>
+%End
+</pre>
+<p>When SIP needs to wrap a C++ class instance it first checks to make sure it
+hasn't already done so. If it has then it just returns a new reference to the
+corresponding Python object. Otherwise it creates a new Python object of the
+appropriate type. In C++ a function may be defined to return an instance of a
+certain class, but can often return a sub-class instead.</p>
+<p>This directive is used to specify handwritten code that exploits any available
+real-time type information (RTTI) to see if there is a more specific Python
+type that can be used when wrapping the C++ instance. The RTTI may be
+provided by the compiler or by the C++ instance itself.</p>
+<p>The directive is included in the specification of one of the classes that the
+handwritten code handles the type conversion for. It doesn't matter which
+one, but a sensible choice would be the one at the root of that class
+hierarchy in the module.</p>
+<p>Note that if a class hierarchy extends over a number of modules then this
+directive should be used in each of those modules to handle the part of the
+hierarchy defined in that module. SIP will ensure that the different pieces
+of code are called in the right order to determine the most specific Python
+type to use.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the C++ class instance.</dd>
+<dt>void **sipCppRet</dt>
+<dd>When the sub-class is derived from more than one super-class then it is
+possible that the C++ address of the instance as the sub-class is
+different to that of the super-class. If so, then this must be set to the
+C++ address of the instance when cast (usually using <tt class="docutils literal"><span class="pre">static_cast</span></tt>)
+from the super-class to the sub-class.</dd>
+<dt>sipWrapperType *sipClass</dt>
+<dd>The handwritten code must set this to the SIP generated Python type object
+that corresponds to the class instance. (The type object for class
+<tt class="docutils literal"><span class="pre">Klass</span></tt> is <tt class="docutils literal"><span class="pre">sipClass_Klass</span></tt>.) If the RTTI of the class instance isn't
+recognised then <tt class="docutils literal"><span class="pre">sipClass</span></tt> must be set to <tt class="docutils literal"><span class="pre">NULL</span></tt>. The code doesn't
+have to recognise the exact class, only the most specific sub-class that
+it can.</dd>
+</dl>
+<p>The handwritten code must not explicitly return.</p>
+<p>The following example shows the sub-class conversion code for <tt class="docutils literal"><span class="pre">QEvent</span></tt> based
+class hierarchy in PyQt:</p>
+<pre class="literal-block">
+class QEvent
+{
+%ConvertToSubClassCode
+ // QEvent sub-classes provide a unique type ID.
+ switch (sipCpp -&gt; type())
+ {
+ case QEvent::Timer:
+ sipClass = sipClass_QTimerEvent;
+ break;
+
+ case QEvent::KeyPress:
+ case QEvent::KeyRelease:
+ sipClass = sipClass_QKeyEvent;
+ break;
+
+ // Skip the remaining event types to keep the example short.
+
+ default:
+ // We don't recognise the type.
+ sipClass = NULL;
+ }
+%End
+
+ // The rest of the class specification.
+
+};
+</pre>
+<p>The SIP API includes the <a class="reference" href="#sipmapinttoclass">sipMapIntToClass()</a> and <a class="reference" href="#sipmapstringtoclass">sipMapStringToClass()</a>
+functions that convert integer and string based RTTI to Python type objects
+based on ordered lookup tables.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id71" id="converttotypecode" name="converttotypecode">7.9&nbsp;&nbsp;&nbsp;%ConvertToTypeCode</a></h2>
+<pre class="literal-block">
+%ConvertToTypeCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify the handwritten code that converts a Python
+object to a mapped type instance and to handle any ownership transfers. It is
+used as part of the <a class="reference" href="#mappedtype">%MappedType</a> directive and as part of a class
+specification. The code is also called to determine if the Python object is of
+the correct type prior to conversion.</p>
+<p>When used as part of a class specification it can automatically convert
+additional types of Python object. For example, PyQt uses it in the
+specification of the <tt class="docutils literal"><span class="pre">QString</span></tt> class to allow Python string objects and
+unicode objects to be used wherever <tt class="docutils literal"><span class="pre">QString</span></tt> instances are expected.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt>int *sipIsErr</dt>
+<dd>If this is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the code is being asked to check the type of the
+Python object. The check must not have any side effects. Otherwise the
+code is being asked to convert the Python object and a non-zero value
+should be returned through this pointer if an error occurred during the
+conversion.</dd>
+<dt>PyObject *sipPy</dt>
+<dd>This is the Python object to be converted.</dd>
+<dt><em>type</em> **sipCppPtr</dt>
+<dd>This is a pointer through which the address of the mapped type instance (or
+zero if appropriate) is returned. Its value is undefined if <tt class="docutils literal"><span class="pre">sipIsErr</span></tt>
+is <tt class="docutils literal"><span class="pre">NULL</span></tt>.</dd>
+<dt>PyObject *sipTransferObj</dt>
+<dd>This specifies any desired ownership changes to <em>sipPy</em>. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt>
+then the ownership should be left unchanged. If it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then
+ownership should be transferred to Python. Otherwise ownership should be
+transferred to C/C++ and <em>sipPy</em> associated with <em>sipTransferObj</em>. The
+code can choose to interpret these changes in any way.</dd>
+</dl>
+<p>The handwritten code must explicitly return an <tt class="docutils literal"><span class="pre">int</span></tt> the meaning of which
+depends on the value of <tt class="docutils literal"><span class="pre">sipIsErr</span></tt>.</p>
+<p>If <tt class="docutils literal"><span class="pre">sipIsErr</span></tt> is <tt class="docutils literal"><span class="pre">NULL</span></tt> then a non-zero value is returned if the Python
+object has a type that can be converted to the mapped type. Otherwise zero is
+returned.</p>
+<p>If <tt class="docutils literal"><span class="pre">sipIsErr</span></tt> is not <tt class="docutils literal"><span class="pre">NULL</span></tt> then a combination of the following flags is
+returned.</p>
+<blockquote>
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">SIP_TEMPORARY</span></tt> is set to indicate that the returned instance is a
+temporary and should be released to avoid a memory leak.</li>
+<li><tt class="docutils literal"><span class="pre">SIP_DERIVED_CLASS</span></tt> is set to indicate that the type of the
+returned instance is a derived class. See <a class="reference" href="#generated-derived-classes">Generated Derived
+Classes</a>.</li>
+</ul>
+</blockquote>
+<p>The following example converts a Python list of <tt class="docutils literal"><span class="pre">QPoint</span></tt> instances to a
+<tt class="docutils literal"><span class="pre">QList&lt;QPoint&gt;</span></tt> instance:</p>
+<pre class="literal-block">
+%ConvertToTypeCode
+ // See if we are just being asked to check the type of the Python
+ // object.
+ if (!sipIsErr)
+ {
+ // Checking whether or not None has been passed instead of a list
+ // has already been done.
+ if (!PyList_Check(sipPy))
+ return 0;
+
+ // Check the type of each element. We specify SIP_NOT_NONE to
+ // disallow None because it is a list of QPoint, not of a pointer
+ // to a QPoint, so None isn't appropriate.
+ for (int i = 0; i &lt; PyList_GET_SIZE(sipPy); ++i)
+ if (!sipCanConvertToInstance(PyList_GET_ITEM(sipPy, i),
+ sipClass_QPoint, SIP_NOT_NONE))
+ return 0;
+
+ // The type is valid.
+ return 1;
+ }
+
+ // Create the instance on the heap.
+ QList&lt;QPoint&gt; *ql = new QList&lt;QPoint&gt;;
+
+ for (int i = 0; i &lt; PyList_GET_SIZE(sipPy); ++i)
+ {
+ QPoint *qp;
+ int state;
+
+ // Get the address of the element's C++ instance. Note that, in
+ // this case, we don't apply any ownership changes to the list
+ // elements, only to the list itself.
+ qp = reinterpret_cast&lt;QPoint *&gt;(sipConvertToInstance(
+ PyList_GET_ITEM(sipPy, i),
+ sipClass_QPoint, 0,
+ SIP_NOT_NONE,
+ &amp;state, sipIsErr));
+
+ // Deal with any errors.
+ if (*sipIsErr)
+ {
+ sipReleaseInstance(qp, sipClass_QPoint, state);
+
+ // Tidy up.
+ delete ql;
+
+ // There is no temporary instance.
+ return 0;
+ }
+
+ ql -&gt; append(*qp);
+
+ // A copy of the QPoint was appended to the list so we no longer
+ // need it. It may be a temporary instance that should be
+ // destroyed, or a wrapped instance that should not be destroyed.
+ // sipReleaseInstance() will do the right thing.
+ sipReleaseInstance(qp, sipClass_QPoint, state);
+ }
+
+ // Return the instance.
+ *sipCppPtr = ql;
+
+ // The instance should be regarded as temporary (and be destroyed as
+ // soon as it has been used) unless it has been transferred from
+ // Python. sipGetState() is a convenience function that implements
+ // this common transfer behaviour.
+ return sipGetState(sipTransferObj);
+%End
+</pre>
+<p>When used in a class specification the handwritten code replaces the code that
+would normally be automatically generated. This means that the handwritten
+code must also handle instances of the class itself and not just the additional
+types that are being supported. This should be done by making calls to
+<a class="reference" href="#sipcanconverttoinstance">sipCanConvertToInstance()</a> to check the object type and
+<a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a> to convert the object. The <tt class="docutils literal"><span class="pre">SIP_NO_CONVERTORS</span></tt>
+flag <em>must</em> be passed to both these functions to prevent recursive calls to the
+handwritten code.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id72" id="copying" name="copying">7.10&nbsp;&nbsp;&nbsp;%Copying</a></h2>
+<pre class="literal-block">
+%Copying
+ <em>text</em>
+%End
+</pre>
+<p>This directive is used to specify some arbitrary text that will be included at
+the start of all source files generated by SIP. It is normally used to
+include copyright and licensing terms.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Copying
+Copyright (c) 2007 Riverbank Computing Limited
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id73" id="doc" name="doc">7.11&nbsp;&nbsp;&nbsp;%Doc</a></h2>
+<pre class="literal-block">
+%Doc
+ <em>text</em>
+%End
+</pre>
+<p>This directive is used to specify some arbitrary text that will be extracted
+by SIP when the <tt class="docutils literal"><span class="pre">-d</span></tt> command line option is used. The directive can be
+specified any number of times and SIP will concatenate all the separate pieces
+of text in the order that it sees them.</p>
+<p>Documentation that is specified using this directive is local to the module in
+which it appears. It is ignored by modules that <a class="reference" href="#import">%Import</a> it. Use the
+<a class="reference" href="#exporteddoc">%ExportedDoc</a> directive for documentation that should be included by all
+modules that <a class="reference" href="#import">%Import</a> this one.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Doc
+&lt;h1&gt;An Example&lt;/h1&gt;
+&lt;p&gt;
+This fragment of documentation is HTML and is local to the module in
+which it is defined.
+&lt;/p&gt;
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id74" id="end" name="end">7.12&nbsp;&nbsp;&nbsp;%End</a></h2>
+<p>This isn't a directive in itself, but is used to terminate a number of
+directives that allow a block of handwritten code or text to be specified.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id75" id="exception" name="exception">7.13&nbsp;&nbsp;&nbsp;%Exception</a></h2>
+<pre class="literal-block">
+%Exception <em>name</em> [(<em>base-exception)]
+{
+ [*header-code</em>]
+ <em>raise-code</em>
+};
+</pre>
+<p>This directive is used to define new Python exceptions, or to provide a stub
+for existing Python exceptions. It allows handwritten code to be provided
+that implements the translation between C++ exceptions and Python exceptions.
+The arguments to <tt class="docutils literal"><span class="pre">throw</span> <span class="pre">()</span></tt> specifiers must either be names of classes or the
+names of Python exceptions defined by this directive.</p>
+<p><em>name</em> is the name of the exception.</p>
+<p><em>base-exception</em> is the optional base exception. This may be either one of
+the standard Python exceptions or one defined with a previous <a class="reference" href="#exception">%Exception</a>
+directive.</p>
+<p><em>header-code</em> is the optional <a class="reference" href="#typeheadercode">%TypeHeaderCode</a> used to specify any external
+interface to the exception being defined.</p>
+<p><em>raise-code</em> is the <a class="reference" href="#raisecode">%RaiseCode</a> used to specify the handwritten code that
+converts a reference to the C++ exception to the Python exception.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Exception std::exception(SIP_Exception) /PyName=StdException/
+{
+%TypeHeaderCode
+#include &lt;exception&gt;
+%End
+%RaiseCode
+ const char *detail = sipExceptionReference.what();
+
+ SIP_BLOCK_THREADS
+ PyErr_SetString(sipException_StdException, detail);
+ SIP_UNBLOCK_THREADS
+%End
+};
+</pre>
+<p>In this example we map the standard C++ exception to a new Python exception.
+The new exception is called <tt class="docutils literal"><span class="pre">StdException</span></tt> and is derived from the standard
+Python exception <tt class="docutils literal"><span class="pre">Exception</span></tt>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id76" id="exporteddoc" name="exporteddoc">7.14&nbsp;&nbsp;&nbsp;%ExportedDoc</a></h2>
+<pre class="literal-block">
+%ExportedDoc
+ <em>text</em>
+%End
+</pre>
+<p>This directive is used to specify some arbitrary text that will be extracted
+by SIP when the <tt class="docutils literal"><span class="pre">-d</span></tt> command line option is used. The directive can be
+specified any number of times and SIP will concatenate all the separate pieces
+of text in the order that it sees them.</p>
+<p>Documentation that is specified using this directive will also be included by
+modules that <a class="reference" href="#import">%Import</a> it.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%ExportedDoc
+==========
+An Example
+==========
+
+This fragment of documentation is reStructuredText and will appear in the
+module in which it is defined and all modules that %Import it.
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id77" id="exportedheadercode" name="exportedheadercode">7.15&nbsp;&nbsp;&nbsp;%ExportedHeaderCode</a></h2>
+<pre class="literal-block">
+%ExportedHeaderCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code, typically the declarations
+of types, that is placed in a header file that is included by all generated
+code for all modules. It should not include function declarations because
+Python modules should not explicitly call functions in another Python module.</p>
+<p>See also <a class="reference" href="#modulecode">%ModuleCode</a> and <a class="reference" href="#moduleheadercode">%ModuleHeaderCode</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id78" id="feature" name="feature">7.16&nbsp;&nbsp;&nbsp;%Feature</a></h2>
+<pre class="literal-block">
+%Feature <em>name</em>
+</pre>
+<p>This directive is used to declare a feature. Features (along with
+<a class="reference" href="#platforms">%Platforms</a> and <a class="reference" href="#timeline">%Timeline</a>) are used by the <a class="reference" href="#if">%If</a> directive to control
+whether or not parts of a specification are processed or ignored.</p>
+<p>Features are mutually independent of each other - any combination of features
+may be enabled or disable. By default all features are enabled. The SIP
+<tt class="docutils literal"><span class="pre">-x</span></tt> command line option is used to disable a feature.</p>
+<p>If a feature is enabled then SIP will automatically generate a corresponding C
+preprocessor symbol for use by handwritten code. The symbol is the name of
+the feature prefixed by <tt class="docutils literal"><span class="pre">SIP_FEATURE_</span></tt>.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Feature FOO_SUPPORT
+
+%If (FOO_SUPPORT)
+void foo();
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id79" id="gcclearcode" name="gcclearcode">7.17&nbsp;&nbsp;&nbsp;%GCClearCode</a></h2>
+<pre class="literal-block">
+%GCClearCode
+ <em>code</em>
+%End
+</pre>
+<p>Python has a cyclic garbage collector which can identify and release unneeded
+objects even when their reference counts are not zero. If a wrapped C
+structure or C++ class keeps its own reference to a Python object then, if the
+garbage collector is to do its job, it needs to provide some handwritten code
+to traverse and potentially clear those embedded references.</p>
+<p>See the section <em>Supporting cyclic garbage collection</em> in <a class="reference" href="http://www.python.org/dev/doc/devel/ext/">Embedding and
+Extending the Python Interpreter</a>
+for the details.</p>
+<p>This directive is used to specify the code that clears any embedded references.
+(See <a class="reference" href="#gctraversecode">%GCTraverseCode</a> for specifying the code that traverses any embedded
+references.)</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>int sipRes</dt>
+<dd>The handwritten code should set this to the result to be returned.</dd>
+</dl>
+<p>The following simplified example is taken from PyQt. The <tt class="docutils literal"><span class="pre">QCustomEvent</span></tt>
+class allows arbitary data to be attached to the event. In PyQt this data is
+always a Python object and so should be handled by the garbage collector:</p>
+<pre class="literal-block">
+%GCClearCode
+ PyObject *obj;
+
+ // Get the object.
+ obj = reinterpret_cast&lt;PyObject *&gt;(sipCpp -&gt; data());
+
+ // Clear the pointer.
+ sipCpp -&gt; setData(0);
+
+ // Clear the reference.
+ Py_XDECREF(obj);
+
+ // Report no error.
+ sipRes = 0;
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id80" id="gctraversecode" name="gctraversecode">7.18&nbsp;&nbsp;&nbsp;%GCTraverseCode</a></h2>
+<pre class="literal-block">
+%GCTraverseCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify the code that traverses any embedded
+references for Python's cyclic garbage collector. (See <a class="reference" href="#gcclearcode">%GCClearCode</a> for a
+full explanation.)</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class.</dd>
+<dt>visitproc sipVisit</dt>
+<dd>This is the visit function provided by the garbage collector.</dd>
+<dt>void *sipArg</dt>
+<dd>This is the argument to the visit function provided by the garbage
+collector.</dd>
+<dt>int sipRes</dt>
+<dd>The handwritten code should set this to the result to be returned.</dd>
+</dl>
+<p>The following simplified example is taken from PyQt's <tt class="docutils literal"><span class="pre">QCustomEvent</span></tt> class:</p>
+<pre class="literal-block">
+%GCTraverseCode
+ PyObject *obj;
+
+ // Get the object.
+ obj = reinterpret_cast&lt;PyObject *&gt;(sipCpp -&gt; data());
+
+ // Call the visit function if there was an object.
+ if (obj)
+ sipRes = sipVisit(obj, sipArg);
+ else
+ sipRes = 0;
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id81" id="getcode" name="getcode">7.19&nbsp;&nbsp;&nbsp;%GetCode</a></h2>
+<pre class="literal-block">
+%GetCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used after the declaration of a C++ class variable or C
+structure member to specify handwritten code to convert it to a Python object.
+It is usually used to handle types that SIP cannot deal with automatically.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class. It is not made available if the
+variable being wrapped is a static class variable.</dd>
+<dt>PyObject *sipPy</dt>
+<dd>The handwritten code must set this to the Python representation of the
+class variable or structure member. If there is an error then the code
+must raise an exception and set this to <tt class="docutils literal"><span class="pre">NULL</span></tt>.</dd>
+</dl>
+<p>For example:</p>
+<pre class="literal-block">
+struct Entity
+{
+ /*
+ * In this contrived example the C library we are wrapping actually
+ * defines this as char buffer[100] which SIP cannot handle
+ * automatically.
+ */
+ char *buffer;
+%GetCode
+ sipPy = PyString_FromStringAndSize(sipCpp -&gt; buffer, 100);
+%End
+%SetCode
+ char *ptr;
+ int length;
+
+ if (PyString_AsStringAndSize(sipPy, &amp;ptr, &amp;length) == -1)
+ sipErr = 1;
+ else if (length != 100)
+ {
+ /*
+ * Raise an exception because the length isn't exactly right.
+ */
+
+ PyErr_SetString(PyExc_ValueError, &quot;an Entity.buffer must be exactly 100 bytes&quot;);
+ sipErr = 1;
+ }
+ else
+ memcpy(sipCpp -&gt; buffer, ptr, 100);
+%End
+}
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id82" id="if" name="if">7.20&nbsp;&nbsp;&nbsp;%If</a></h2>
+<pre class="literal-block">
+%If (<em>expression</em>)
+ <em>specification</em>
+%End
+</pre>
+<p>where</p>
+<pre class="literal-block">
+<em>expression</em> ::= [<em>ored-qualifiers</em> | <em>range</em>]
+
+<em>ored-qualifiers</em> ::= [<em>qualifier</em> | <em>qualifier</em> <tt class="docutils literal"><span class="pre">||</span></tt> <em>ored-qualifiers</em>]
+
+<em>qualifier</em> ::= [<tt class="docutils literal"><span class="pre">!</span></tt>] [<em>feature</em> | <em>platform</em>]
+
+<em>range</em> ::= [<em>version</em>] <tt class="docutils literal"><span class="pre">-</span></tt> [<em>version</em>]
+</pre>
+<p>This directive is used in conjunction with features (see <a class="reference" href="#feature">%Feature</a>),
+platforms (see <a class="reference" href="#platforms">%Platforms</a>) and versions (see <a class="reference" href="#timeline">%Timeline</a>) to control
+whether or not parts of a specification are processed or not.</p>
+<p>A <em>range</em> of versions means all versions starting with the lower bound up to
+but excluding the upper bound. If the lower bound is omitted then it is
+interpreted as being before the earliest version. If the upper bound is
+omitted then it is interpreted as being after the latest version.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Feature SUPPORT_FOO
+%Platforms {WIN32_PLATFORM POSIX_PLATFORM MACOS_PLATFORM}
+%Timeline {V1_0 V1_1 V2_0 V3_0}
+
+%If (!SUPPORT_FOO)
+ // Process this if the SUPPORT_FOO feature is disabled.
+%End
+
+%If (POSIX_PLATFORM || MACOS_PLATFORM)
+ // Process this if either the POSIX_PLATFORM or MACOS_PLATFORM
+ // platforms are enabled.
+%End
+
+%If (V1_0 - V2_0)
+ // Process this if either V1_0 or V1_1 is enabled.
+%End
+
+%If (V2_0 - )
+ // Process this if either V2_0 or V3_0 is enabled.
+%End
+
+%If ( - )
+ // Always process this.
+%End
+</pre>
+<p>Note that this directive is not implemented as a preprocessor. Only the
+following parts of a specification are affected by it:</p>
+<blockquote>
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">class</span></tt></li>
+<li><a class="reference" href="#convertfromtypecode">%ConvertFromTypeCode</a></li>
+<li><a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a></li>
+<li><a class="reference" href="#converttotypecode">%ConvertToTypeCode</a></li>
+<li><tt class="docutils literal"><span class="pre">enum</span></tt></li>
+<li><a class="reference" href="#exportedheadercode">%ExportedHeaderCode</a></li>
+<li>functions</li>
+<li><a class="reference" href="#gcclearcode">%GCClearCode</a></li>
+<li><a class="reference" href="#gctraversecode">%GCTraverseCode</a></li>
+<li><a class="reference" href="#if">%If</a></li>
+<li><a class="reference" href="#mappedtype">%MappedType</a></li>
+<li><a class="reference" href="#methodcode">%MethodCode</a></li>
+<li><a class="reference" href="#modulecode">%ModuleCode</a></li>
+<li><a class="reference" href="#moduleheadercode">%ModuleHeaderCode</a></li>
+<li><tt class="docutils literal"><span class="pre">namespace</span></tt></li>
+<li><a class="reference" href="#postinitialisationcode">%PostInitialisationCode</a></li>
+<li><a class="reference" href="#preinitialisationcode">%PreInitialisationCode</a></li>
+<li><tt class="docutils literal"><span class="pre">struct</span></tt></li>
+<li><tt class="docutils literal"><span class="pre">typedef</span></tt></li>
+<li><a class="reference" href="#typecode">%TypeCode</a></li>
+<li><a class="reference" href="#typeheadercode">%TypeHeaderCode</a></li>
+<li><a class="reference" href="#unitcode">%UnitCode</a></li>
+<li>variables</li>
+<li><a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a></li>
+</ul>
+</blockquote>
+<p>Also note that the only way to specify the logical and of qualifiers is to use
+nested <a class="reference" href="#if">%If</a> directives.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id83" id="import" name="import">7.21&nbsp;&nbsp;&nbsp;%Import</a></h2>
+<pre class="literal-block">
+%Import <em>filename</em>
+</pre>
+<p>This directive is used to import the specification of another module. This is
+needed if the current module makes use of any types defined in the imported
+module, e.g. as an argument to a function, or to sub-class.</p>
+<p>If <em>filename</em> cannot be opened then SIP prepends <em>filename</em> with the name of
+the directory containing the current specification file (i.e. the one
+containing the <a class="reference" href="#import">%Import</a> directive) and tries again. If this also fails then
+SIP prepends <em>filename</em> with each of the directories, in turn, specified by
+the <tt class="docutils literal"><span class="pre">-I</span></tt> command line option.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Import qt/qtmod.sip
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id84" id="include" name="include">7.22&nbsp;&nbsp;&nbsp;%Include</a></h2>
+<pre class="literal-block">
+%Include <em>filename</em>
+</pre>
+<p>This directive is used to include contents of another file as part of the
+specification of the current module. It is the equivalent of the C
+preprocessor's <tt class="docutils literal"><span class="pre">#include</span></tt> directive and is used to structure a large module
+specification into manageable pieces.</p>
+<p><a class="reference" href="#include">%Include</a> follows the same search process as <a class="reference" href="#import">%Import</a> when trying to open
+<em>filename</em>.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Include qwidget.sip
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id85" id="id14" name="id14">7.23&nbsp;&nbsp;&nbsp;%License</a></h2>
+<pre class="literal-block">
+%License /<em>license-annotations</em>/
+</pre>
+<p>This directive is used to specify the contents of an optional license
+dictionary. The license dictionary is called <tt class="docutils literal"><span class="pre">__license__</span></tt> and is stored in
+the module dictionary. The elements of the dictionary are specified using the
+<a class="reference" href="#licensee">Licensee</a>, <a class="reference" href="#signature">Signature</a>, <a class="reference" href="#timestamp">Timestamp</a> and <a class="reference" href="#type">Type</a> annotations. Only the <a class="reference" href="#type">Type</a>
+annotation is compulsory.</p>
+<p>Note that this directive isn't an attempt to impose any licensing restrictions
+on a module. It is simply a method for easily embedding licensing information
+in a module so that it is accessible to Python scripts.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%License /Type=&quot;GPL&quot;/
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id86" id="mappedtype" name="mappedtype">7.24&nbsp;&nbsp;&nbsp;%MappedType</a></h2>
+<pre class="literal-block">
+template&lt;<em>type-list</em>&gt;
+%MappedType <em>type</em>
+{
+ [<em>header-code</em>]
+ [<em>convert-to-code</em>]
+ [<em>convert-from-code</em>]
+};
+
+%MappedType <em>type</em>
+{
+ [<em>header-code</em>]
+ [<em>convert-to-code</em>]
+ [<em>convert-from-code</em>]
+};
+</pre>
+<p>This directive is used to define an automatic mapping between a C or C++ type
+and a Python type. It can be used as part of a template, or to map a specific
+type.</p>
+<p>When used as part of a template <em>type</em> cannot itself refer to a template. Any
+occurrences of any of the type names (but not any <tt class="docutils literal"><span class="pre">*</span></tt> or <tt class="docutils literal"><span class="pre">&amp;</span></tt>) in
+<em>type-list</em> will be replaced by the actual type names used when the template is
+instantiated. Template mapped types are instantiated automatically as required
+(unlike template classes which are only instantiated using <tt class="docutils literal"><span class="pre">typedef</span></tt>).</p>
+<p>Any explicit mapped type will be used in preference to any template that maps
+the same type, ie. a template will not be automatically instantiated if there
+is an explicit mapped type.</p>
+<p><em>header-code</em> is the <a class="reference" href="#typeheadercode">%TypeHeaderCode</a> used to specify the library interface
+to the type being mapped.</p>
+<p><em>convert-to-code</em> is the <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> used to specify the handwritten
+code that converts a Python object to an instance of the mapped type.</p>
+<p><em>convert-from-code</em> is the <a class="reference" href="#convertfromtypecode">%ConvertFromTypeCode</a> used to specify the
+handwritten code that converts an instance of the mapped type to a Python
+object.</p>
+<p>For example:</p>
+<pre class="literal-block">
+template&lt;Type *&gt;
+%MappedType QList
+{
+%TypeHeaderCode
+// Include the library interface to the type being mapped.
+#include &lt;qlist.h&gt;
+%End
+
+%ConvertToTypeCode
+ // See if we are just being asked to check the type of the Python
+ // object.
+ if (sipIsErr == NULL)
+ {
+ // Check it is a list.
+ if (!PyList_Check(sipPy))
+ return 0;
+
+ // Now check each element of the list is of the type we expect.
+ // The template is for a pointer type so we don't disallow None.
+ for (int i = 0; i &lt; PyList_GET_SIZE(sipPy); ++i)
+ if (!sipCanConvertToInstance(PyList_GET_ITEM(sipPy, i),
+ sipClass_Type, 0))
+ return 0;
+
+ return 1;
+ }
+
+ // Create the instance on the heap.
+ QList&lt;Type *&gt; *ql = new QList&lt;Type *&gt;;
+
+ for (int i = 0; i &lt; PyList_GET_SIZE(sipPy); ++i)
+ {
+ // Use the SIP API to convert the Python object to the
+ // corresponding C++ instance. Note that we apply any ownership
+ // transfer to the list itself, not the individual elements.
+ Type *t = reinterpret_cast&lt;Type *&gt;(sipConvertToInstance(
+ PyList_GET_ITEM(sipPy, i),
+ sipClass_Type, 0, 0, 0,
+ sipIsErr));
+
+ if (*sipIsErr)
+ {
+ // Tidy up.
+ delete ql;
+
+ // There is nothing on the heap.
+ return 0;
+ }
+
+ // Add the pointer to the C++ instance.
+ ql -&gt; append(t);
+ }
+
+ // Return the instance on the heap.
+ *sipCppPtr = ql;
+
+ // Apply the normal transfer.
+ return sipGetState(sipTransferObj);
+%End
+
+%ConvertFromTypeCode
+ PyObject *l;
+
+ // Create the Python list of the correct length.
+ if ((l = PyList_New(sipCpp -&gt; size())) == NULL)
+ return NULL;
+
+ // Go through each element in the C++ instance and convert it to the
+ // corresponding Python object.
+ for (int i = 0; i &lt; sipCpp -&gt; size(); ++i)
+ {
+ Type *t = sipCpp -&gt; at(i);
+ PyObject *tobj;
+
+ if ((tobj = sipConvertFromInstance(t, sipClass_Type, sipTransferObj)) == NULL)
+ {
+ // There was an error so garbage collect the Python list.
+ Py_DECREF(l);
+ return NULL;
+ }
+
+ PyList_SET_ITEM(l, i, tobj);
+ }
+
+ // Return the Python list.
+ return l;
+%End
+}
+</pre>
+<p>Using this we can use, for example, <tt class="docutils literal"><span class="pre">QList&lt;QObject</span> <span class="pre">*&gt;</span></tt> throughout the
+module's specification files (and in any module that imports this one). The
+generated code will automatically map this to and from a Python list of QObject
+instances when appropriate.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id87" id="methodcode" name="methodcode">7.25&nbsp;&nbsp;&nbsp;%MethodCode</a></h2>
+<pre class="literal-block">
+%MethodCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used as part of the specification of a global function, class
+method, operator, constructor or destructor to specify handwritten code that
+replaces the normally generated call to the function being wrapped. It is
+usually used to handle argument types and results that SIP cannot deal with
+automatically.</p>
+<p>The specified code is embedded in-line after the function's arguments have
+been successfully converted from Python objects to their C or C++ equivalents.
+The specified code must not include any <tt class="docutils literal"><span class="pre">return</span></tt> statements.</p>
+<p>In the context of a destructor the specified code is embedded in-line in the
+Python type's deallocation function. Unlike other contexts it supplements
+rather than replaces the normally generated code, so it must not include code
+to return the C structure or C++ class instance to the heap. The code is only
+called if ownership of the structure or class is with Python.</p>
+<p>The specified code must also handle the Python Global Interpreter Lock (GIL).
+If compatibility with SIP v3.x is required then the GIL must be released
+immediately before the C++ call and reacquired immediately afterwards as shown
+in this example fragment:</p>
+<pre class="literal-block">
+Py_BEGIN_ALLOW_THREADS
+sipCpp -&gt; foo();
+Py_END_ALLOW_THREADS
+</pre>
+<p>If compatibility with SIP v3.x is not required then this is optional but
+should be done if the C++ function might block the current thread or take a
+significant amount of time to execute. (See <a class="reference" href="#the-python-global-interpreter-lock">The Python Global Interpreter
+Lock</a> and the <a class="reference" href="#releasegil">ReleaseGIL</a> and <a class="reference" href="#holdgil">HoldGIL</a> annotations.)</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> a0</dt>
+<dd><p class="first">There is a variable for each argument of the Python signature (excluding
+any <tt class="docutils literal"><span class="pre">self</span></tt> argument) named <tt class="docutils literal"><span class="pre">a0</span></tt>, <tt class="docutils literal"><span class="pre">a1</span></tt>, etc. The <em>type</em> of the
+variable is the same as the type defined in the specification with the
+following exceptions:</p>
+<ul class="simple">
+<li>if the argument is only used to return a value (e.g. it is an <tt class="docutils literal"><span class="pre">int</span> <span class="pre">*</span></tt>
+without an <a class="reference" href="#in">In</a> annotation) then the type has one less level of
+indirection (e.g. it will be an <tt class="docutils literal"><span class="pre">int</span></tt>)</li>
+<li>if the argument is a structure or class (or a reference or a pointer to a
+structure or class) then <em>type</em> will always be a pointer to the structure
+or class.</li>
+</ul>
+<p class="last">Note that handwritten code for destructors never has any arguments.</p>
+</dd>
+<dt>PyObject *a0Wrapper</dt>
+<dd>This variable is made available only if the corresponding argument wraps a
+C structure or C++ class instance and the <a class="reference" href="#getwrapper">GetWrapper</a> annotation is
+specified. The variable is a pointer to the Python object that wraps the
+argument.</dd>
+<dt><em>type</em> *sipCpp</dt>
+<dd>If the directive is used in the context of a class constructor then this
+must be set by the handwritten code to the constructed instance. In any
+other context then this is a pointer to the C structure or C++ class
+instance. Its <em>type</em> is a pointer to the structure or class.</dd>
+<dt>int sipIsErr</dt>
+<dd><p class="first">The handwritten code should set this to a non-zero value, and raise an
+appropriate Python exception, if an error is detected.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">sipIsErr</span></tt> is not provided for destructors.</p>
+</dd>
+<dt><em>type</em> sipRes</dt>
+<dd><p class="first">The handwritten code should set this to the result to be returned. The
+<em>type</em> of the variable is the same as the type defined in the Python
+signature in the specification with the following exception:</p>
+<ul class="simple">
+<li>if the argument is a structure or class (or a reference or a pointer to a
+structure or class) then <em>type</em> will always be a pointer to the structure
+or class.</li>
+</ul>
+<p class="last"><tt class="docutils literal"><span class="pre">sipRes</span></tt> is not provided for inplace operators (e.g. <tt class="docutils literal"><span class="pre">+=</span></tt> or
+<tt class="docutils literal"><span class="pre">__imul__</span></tt>) as their results are handled automatically, nor for class
+constructors.</p>
+</dd>
+<dt>PyObject *sipSelf</dt>
+<dd>If the directive is used in the context of a class constructor or method
+then this is the Python object that wraps the the structure or class
+instance, i.e. <tt class="docutils literal"><span class="pre">self</span></tt>.</dd>
+<dt>bool sipSelfWasArg</dt>
+<dd><p class="first">This is only made available for non-abstract, virtual methods. It is set
+if <tt class="docutils literal"><span class="pre">self</span></tt> was explicitly passed as the first argument of the method
+rather than being bound to the method. In other words, the call was:</p>
+<pre class="literal-block">
+Klass.foo(self, ...)
+</pre>
+<p>rather than:</p>
+<pre class="last literal-block">
+self.foo(...)
+</pre>
+</dd>
+</dl>
+<p>The following is a complete example:</p>
+<pre class="literal-block">
+class Klass
+{
+public:
+ virtual int foo(SIP_PYTUPLE);
+%MethodCode
+ // The C++ API takes a 2 element array of integers but passing a
+ // two element tuple is more Pythonic.
+
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, &quot;ii&quot;, &amp;iarr[0], &amp;iarr[1]))
+ {
+ Py_BEGIN_ALLOW_THREADS
+ sipRes = sipSelfWasArg ? sipCpp -&gt; Klass::foo(iarr)
+ : sipCpp -&gt; foo(iarr);
+ Py_END_ALLOW_THREADS
+ }
+ else
+ {
+ // PyArg_ParseTuple() will have raised the exception.
+ sipIsErr = 1;
+ }
+%End
+};
+</pre>
+<p>As the example is a virtual method <a class="footnote-reference" href="#id16" id="id15" name="id15">[7]</a>, note the use of <tt class="docutils literal"><span class="pre">sipSelfWasArg</span></tt> to
+determine exactly which implementation of <tt class="docutils literal"><span class="pre">foo()</span></tt> to call.</p>
+<p>If a method is in the <tt class="docutils literal"><span class="pre">protected</span></tt> section of a C++ class then the call
+should instead be:</p>
+<pre class="literal-block">
+sipRes = sipCpp -&gt; sipProtectVirt_foo(sipSelfWasArg, iarr);
+</pre>
+<p>If a method is in the <tt class="docutils literal"><span class="pre">protected</span></tt> section of a C++ class but is not virtual
+then the call should instead be:</p>
+<pre class="literal-block">
+sipRes = sipCpp -&gt; sipProtect_foo(iarr);
+</pre>
+<table class="docutils footnote" frame="void" id="id16" rules="none">
+<colgroup><col class="label" /><col /></colgroup>
+<tbody valign="top">
+<tr><td class="label"><a class="fn-backref" href="#id15" name="id16">[7]</a></td><td>See <a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a> for a description of how SIP generated code
+handles the reimplementation of C++ virtual methods in Python.</td></tr>
+</tbody>
+</table>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id88" id="module" name="module">7.26&nbsp;&nbsp;&nbsp;%Module</a></h2>
+<pre class="literal-block">
+%Module <em>name</em> [<em>version</em>]
+</pre>
+<p>This directive is used to identify that the library being wrapped is a C++
+library and to define the name of the module and it's optional version number.</p>
+<p>The name may contain periods to specify that the module is part of a Python
+package.</p>
+<p>The optional version number is useful if you (or others) might create other
+modules that build on this module, i.e. if another module might <a class="reference" href="#import">%Import</a>
+this module. Under the covers, a module exports an API that is used by modules
+that <a class="reference" href="#import">%Import</a> it and the API is given a version number. A module built on
+that module knows the version number of the API that it is expecting. If,
+when the modules are imported at run-time, the version numbers do not match
+then a Python exception is raised. The dependent module must then be re-built
+using the correct specification files for the base module.</p>
+<p>The version number should be incremented whenever a module is changed. Some
+changes don't affect the exported API, but it is good practice to change the
+version number anyway.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Module qt 5
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id89" id="modulecode" name="modulecode">7.27&nbsp;&nbsp;&nbsp;%ModuleCode</a></h2>
+<pre class="literal-block">
+%ModuleCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code, typically the
+implementations of utility functions, that can be called by other handwritten
+code in the module.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%ModuleCode
+// Print an object on stderr for debugging purposes.
+void dump_object(PyObject *o)
+{
+ PyObject_Print(o, stderr, 0);
+ fprintf(stderr, &quot;\n&quot;);
+}
+%End
+</pre>
+<p>See also <a class="reference" href="#exportedheadercode">%ExportedHeaderCode</a> and <a class="reference" href="#moduleheadercode">%ModuleHeaderCode</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id90" id="moduleheadercode" name="moduleheadercode">7.28&nbsp;&nbsp;&nbsp;%ModuleHeaderCode</a></h2>
+<pre class="literal-block">
+%ModuleHeaderCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code, typically the declarations
+of utility functions, that is placed in a header file that is included by all
+generated code for the same module.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%ModuleHeaderCode
+void dump_object(PyObject *o);
+%End
+</pre>
+<p>See also <a class="reference" href="#exportedheadercode">%ExportedHeaderCode</a> and <a class="reference" href="#modulecode">%ModuleCode</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id91" id="optionalinclude" name="optionalinclude">7.29&nbsp;&nbsp;&nbsp;%OptionalInclude</a></h2>
+<pre class="literal-block">
+%OptionalInclude <em>filename</em>
+</pre>
+<p>This directive is identical to the <a class="reference" href="#include">%Include</a> directive except that SIP
+silently continues processing if <em>filename</em> could not be opened.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%OptionalInclude license.sip
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id92" id="platforms" name="platforms">7.30&nbsp;&nbsp;&nbsp;%Platforms</a></h2>
+<pre class="literal-block">
+%Platforms {<em>name</em> <em>name</em> ...}
+</pre>
+<p>This directive is used to declare a set of platforms. Platforms (along with
+<a class="reference" href="#feature">%Feature</a> and <a class="reference" href="#timeline">%Timeline</a>) are used by the <a class="reference" href="#if">%If</a> directive to control
+whether or not parts of a specification are processed or ignored.</p>
+<p>Platforms are mutually exclusive - only one platform can be enabled at a time.
+By default all platforms are disabled. The SIP <tt class="docutils literal"><span class="pre">-t</span></tt> command line option is
+used to enable a platform.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Platforms {WIN32_PLATFORM POSIX_PLATFORM MACOS_PLATFORM}
+
+%If (WIN32_PLATFORM)
+void undocumented();
+%End
+
+%If (POSIX_PLATFORM)
+void documented();
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id93" id="postinitialisationcode" name="postinitialisationcode">7.31&nbsp;&nbsp;&nbsp;%PostInitialisationCode</a></h2>
+<pre class="literal-block">
+%PostInitialisationCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code that is embedded in-line
+at the very end of the generated module initialisation code.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt>PyObject *sipModule</dt>
+<dd>This is the module object returned by <tt class="docutils literal"><span class="pre">Py_InitModule()</span></tt>.</dd>
+<dt>PyObject *sipModuleDict</dt>
+<dd>This is the module's dictionary object returned by <tt class="docutils literal"><span class="pre">Py_ModuleGetDict()</span></tt>.</dd>
+</dl>
+<p>For example:</p>
+<pre class="literal-block">
+%PostInitialisationCode
+ // The code will be executed when the module is first imported and
+ // after all other initialisation has been completed.
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id94" id="preinitialisationcode" name="preinitialisationcode">7.32&nbsp;&nbsp;&nbsp;%PreInitialisationCode</a></h2>
+<pre class="literal-block">
+%PreInitialisationCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code that is embedded in-line
+at the very start of the generated module initialisation code.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%PreInitialisationCode
+ // The code will be executed when the module is first imported and
+ // before other initialisation has been completed.
+%End
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id95" id="raisecode" name="raisecode">7.33&nbsp;&nbsp;&nbsp;%RaiseCode</a></h2>
+<pre class="literal-block">
+%RaiseCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used as part of the definition of an exception using the
+<a class="reference" href="#exception">%Exception</a> directive to specify handwritten code that raises a Python
+exception when a C++ exception has been caught. The code is embedded in-line
+as the body of a C++ <tt class="docutils literal"><span class="pre">catch</span> <span class="pre">()</span></tt> clause.</p>
+<p>The specified code must handle the Python Global Interpreter Lock (GIL) if
+necessary. The GIL must be acquired before any calls to the Python API and
+released after the last call as shown in this example fragment:</p>
+<pre class="literal-block">
+SIP_BLOCK_THREADS
+PyErr_SetNone(PyErr_Exception);
+SIP_UNBLOCK_THREADS
+</pre>
+<p>Finally, the specified code must not include any <tt class="docutils literal"><span class="pre">return</span></tt> statements.</p>
+<p>The following variable is made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> &amp;sipExceptionRef</dt>
+<dd>This is a reference to the caught C++ exception. The <em>type</em> of the
+reference is the same as the type defined in the <tt class="docutils literal"><span class="pre">throw</span> <span class="pre">()</span></tt> specifier.</dd>
+</dl>
+<p>See the <a class="reference" href="#exception">%Exception</a> directive for an example.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id96" id="setcode" name="setcode">7.34&nbsp;&nbsp;&nbsp;%SetCode</a></h2>
+<pre class="literal-block">
+%SetCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used after the declaration of a C++ class variable or C
+structure member to specify handwritten code to convert it from a Python
+object. It is usually used to handle types that SIP cannot deal with
+automatically.</p>
+<p>The following variables are made available to the handwritten code:</p>
+<dl class="docutils">
+<dt><em>type</em> *sipCpp</dt>
+<dd>This is a pointer to the structure or class instance. Its <em>type</em> is a
+pointer to the structure or class. It is not made available if the
+variable being wrapped is a static class variable.</dd>
+<dt>int sipErr</dt>
+<dd>If the conversion failed then the handwritten code should raise a Python
+exception and set this to a non-zero value. Its initial value will be
+automatically set to zero.</dd>
+<dt>PyObject *sipPy</dt>
+<dd>This is the Python object that the handwritten code should convert.</dd>
+</dl>
+<p>See the <a class="reference" href="#getcode">%GetCode</a> directive for an example.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id97" id="sipoptions" name="sipoptions">7.35&nbsp;&nbsp;&nbsp;%SIPOptions</a></h2>
+<p>This directive sets one or more options that controls different aspects of
+SIP's behaviour. In this version all the available options are provided
+specifically to support PyQt and so are not documented.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id98" id="timeline" name="timeline">7.36&nbsp;&nbsp;&nbsp;%Timeline</a></h2>
+<pre class="literal-block">
+%Timeline {<em>name</em> <em>name</em> ...}
+</pre>
+<p>This directive is used to declare a set of versions released over a period of
+time. Versions (along with <a class="reference" href="#feature">%Feature</a> and <a class="reference" href="#platforms">%Platforms</a>) are used by the
+<a class="reference" href="#if">%If</a> directive to control whether or not parts of a specification are
+processed or ignored.</p>
+<p>Versions are mutually exclusive - only one version can be enabled at a time.
+By default all versions are disabled. The SIP <tt class="docutils literal"><span class="pre">-t</span></tt> command line option is
+used to enable a version.</p>
+<p>For example:</p>
+<pre class="literal-block">
+%Timeline {V1_0 V1_1 V2_0 V3_0}
+
+%If (V1_0 - V2_0)
+void foo();
+%End
+
+%If (V2_0 -)
+void foo(int = 0);
+%End
+</pre>
+<p><a class="reference" href="#timeline">%Timeline</a> can be used any number of times in a module to allow multiple
+libraries to be wrapped in the same module.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id99" id="typecode" name="typecode">7.37&nbsp;&nbsp;&nbsp;%TypeCode</a></h2>
+<pre class="literal-block">
+%TypeCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used as part of the specification of a C structure or a C++
+class to specify handwritten code, typically the implementations of utility
+functions, that can be called by other handwritten code in the structure or
+class.</p>
+<p>For example:</p>
+<pre class="literal-block">
+class Klass
+{
+%TypeCode
+// Print an instance on stderr for debugging purposes.
+static void dump_klass(const Klass *k)
+{
+ fprintf(stderr,&quot;Klass %s at %p\n&quot;, k -&gt; name(), k);
+}
+%End
+
+ // The rest of the class specification.
+
+};
+</pre>
+<p>Because the scope of the code is normally within the generated file that
+implements the type, any utility functions would normally be declared
+<tt class="docutils literal"><span class="pre">static</span></tt>. However a naming convention should still be adopted to prevent
+clashes of function names within a module in case the SIP <tt class="docutils literal"><span class="pre">-j</span></tt> command line
+option is used.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id100" id="typeheadercode" name="typeheadercode">7.38&nbsp;&nbsp;&nbsp;%TypeHeaderCode</a></h2>
+<pre class="literal-block">
+%TypeHeaderCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code that defines the interface
+to a C or C++ type being wrapped, either a structure, a class, or a template.
+It is used within a class definition or a <a class="reference" href="#mappedtype">%MappedType</a> directive.</p>
+<p>Normally <em>code</em> will be a pre-processor <tt class="docutils literal"><span class="pre">#include</span></tt> statement.</p>
+<p>For example:</p>
+<pre class="literal-block">
+// Wrap the Klass class.
+class Klass
+{
+%TypeHeaderCode
+#include &lt;klass.h&gt;
+%End
+
+ // The rest of the class specification.
+};
+</pre>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id101" id="unitcode" name="unitcode">7.39&nbsp;&nbsp;&nbsp;%UnitCode</a></h2>
+<pre class="literal-block">
+%UnitCode
+ <em>code</em>
+%End
+</pre>
+<p>This directive is used to specify handwritten code that it included at the very
+start of a generated compilation unit (ie. C or C++ source file). It is
+typically used to <tt class="docutils literal"><span class="pre">#include</span></tt> a C++ precompiled header file.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id102" id="virtualcatchercode" name="virtualcatchercode">7.40&nbsp;&nbsp;&nbsp;%VirtualCatcherCode</a></h2>
+<pre class="literal-block">
+%VirtualCatcherCode
+ <em>code</em>
+%End
+</pre>
+<p>For most classes there are corresponding <a class="reference" href="#generated-derived-classes">generated derived classes</a> that
+contain reimplementations of the class's virtual methods. These methods (which
+SIP calls catchers) determine if there is a corresponding Python
+reimplementation and call it if so. If there is no Python reimplementation
+then the method in the original class is called instead.</p>
+<p>This directive is used to specify handwritten code that replaces the normally
+generated call to the Python reimplementation and the handling of any returned
+results. It is usually used to handle argument types and results that SIP
+cannot deal with automatically.</p>
+<p>This directive can also be used in the context of a class destructor to
+specify handwritten code that is embedded in-line in the internal derived
+class's destructor.</p>
+<p>In the context of a method the Python Global Interpreter Lock (GIL) is
+automatically acquired before the specified code is executed and automatically
+released afterwards.</p>
+<p>In the context of a destructor the specified code must handle the GIL. The
+GIL must be acquired before any calls to the Python API and released after the
+last call as shown in this example fragment:</p>
+<pre class="literal-block">
+SIP_BLOCK_THREADS
+Py_DECREF(obj);
+SIP_UNBLOCK_THREADS
+</pre>
+<p>The following variables are made available to the handwritten code in the
+context of a method:</p>
+<dl class="docutils">
+<dt><em>type</em> a0</dt>
+<dd>There is a variable for each argument of the C++ signature named <tt class="docutils literal"><span class="pre">a0</span></tt>,
+<tt class="docutils literal"><span class="pre">a1</span></tt>, etc. The <em>type</em> of the variable is the same as the type defined in
+the specification.</dd>
+<dt>int sipIsErr</dt>
+<dd>The handwritten code should set this to a non-zero value, and raise an
+appropriate Python exception, if an error is detected.</dd>
+<dt>PyObject *sipMethod</dt>
+<dd>This object is the Python reimplementation of the virtual C++ method. It
+is normally passed to <a class="reference" href="#sipcallmethod">sipCallMethod()</a>.</dd>
+<dt><em>type</em> sipRes</dt>
+<dd>The handwritten code should set this to the result to be returned. The
+<em>type</em> of the variable is the same as the type defined in the C++ signature
+in the specification.</dd>
+</dl>
+<p>No variables are made available in the context of a destructor.</p>
+<p>For example:</p>
+<pre class="literal-block">
+class Klass
+{
+public:
+ virtual int foo(SIP_PYTUPLE) [int (int *)];
+%MethodCode
+ // The C++ API takes a 2 element array of integers but passing a
+ // two element tuple is more Pythonic.
+
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, &quot;ii&quot;, &amp;iarr[0], &amp;iarr[1]))
+ {
+ Py_BEGIN_ALLOW_THREADS
+ sipRes = sipCpp -&gt; Klass::foo(iarr);
+ Py_END_ALLOW_THREADS
+ }
+ else
+ {
+ // PyArg_ParseTuple() will have raised the exception.
+ sipIsErr = 1;
+ }
+%End
+%VirtualCatcherCode
+ // Convert the 2 element array of integers to the two element
+ // tuple.
+
+ PyObject *result;
+
+ result = sipCallMethod(&amp;sipIsErr, sipMethod, &quot;ii&quot;, a0[0], a0[1]);
+
+ if (result != NULL)
+ {
+ // Convert the result to the C++ type.
+ sipParseResult(&amp;sipIsErr, sipMethod, result, &quot;i&quot;, &amp;sipRes);
+
+ Py_DECREF(result);
+ }
+%End
+};
+</pre>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id103" id="sip-annotations" name="sip-annotations">8&nbsp;&nbsp;&nbsp;SIP Annotations</a></h1>
+<p>In this section we describe each of the annotations that can be used in
+specification files.</p>
+<p>Annotations can either be argument annotations, class annotations, enum
+annotations, exception annotations, function annotations, license annotations,
+or variable annotations depending on the context in which they can be used.</p>
+<p>Annotations are placed between forward slashes (<tt class="docutils literal"><span class="pre">/</span></tt>). Multiple annotations
+are comma separated within the slashes.</p>
+<p>Annotations have a type and, possibly, a value. The type determines the
+format of the value. The name of an annotation and its value are separated by
+<tt class="docutils literal"><span class="pre">=</span></tt>.</p>
+<p>Annotations can have one of the following types:</p>
+<dl class="docutils">
+<dt>boolean</dt>
+<dd>This type of annotation has no value and is implicitly true.</dd>
+<dt>name</dt>
+<dd>The value is a name that is compatible with a C/C++ identifier. In some
+cases the value is optional.</dd>
+<dt>string</dt>
+<dd>The value is a double quoted string.</dd>
+</dl>
+<p>The following example shows argument and function annotations:</p>
+<pre class="literal-block">
+void exec(QWidget * /Transfer/) /ReleaseGIL, PyName=call_exec/;
+</pre>
+<p>Note that the current version of SIP does not complain about unknown
+annotations, or annotations used out of their correct context.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id104" id="argument-annotations" name="argument-annotations">8.1&nbsp;&nbsp;&nbsp;Argument Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id105" id="allownone" name="allownone">8.1.1&nbsp;&nbsp;&nbsp;AllowNone</a></h3>
+<p>This boolean annotation specifies that the value of the corresponding argument
+(which should be either <a class="reference" href="#sip-pycallable">SIP_PYCALLABLE</a>, <a class="reference" href="#sip-pydict">SIP_PYDICT</a>, <a class="reference" href="#sip-pylist">SIP_PYLIST</a>,
+<a class="reference" href="#sip-pyslice">SIP_PYSLICE</a>, <a class="reference" href="#sip-pytuple">SIP_PYTUPLE</a> or <a class="reference" href="#sip-pytype">SIP_PYTYPE</a>) may be <tt class="docutils literal"><span class="pre">None</span></tt>.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id106" id="array" name="array">8.1.2&nbsp;&nbsp;&nbsp;Array</a></h3>
+<p>This boolean annotation specifies that the corresponding argument (which
+should be either <tt class="docutils literal"><span class="pre">char</span> <span class="pre">*</span></tt> or <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span> <span class="pre">*</span></tt>) refers to an array
+rather than a <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string. There must be a corresponding
+argument with the <a class="reference" href="#arraysize">ArraySize</a> annotation specified. The annotation may only be
+specified once in a list of arguments.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id107" id="arraysize" name="arraysize">8.1.3&nbsp;&nbsp;&nbsp;ArraySize</a></h3>
+<p>This boolean annotation specifies that the corresponding argument (which
+should be either <tt class="docutils literal"><span class="pre">short</span></tt>, <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt>, <tt class="docutils literal"><span class="pre">int</span></tt>, <tt class="docutils literal"><span class="pre">unsigned</span></tt>,
+<tt class="docutils literal"><span class="pre">long</span></tt> or <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt>) refers to the size of an array. There must be
+a corresponding argument with the <a class="reference" href="#array">Array</a> annotation specified. The annotation
+may only be specified once in a list of arguments.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id108" id="constrained" name="constrained">8.1.4&nbsp;&nbsp;&nbsp;Constrained</a></h3>
+<p>Python will automatically convert between certain compatible types. For
+example, if a floating pointer number is expected and an integer supplied,
+then the integer will be converted appropriately. This can cause problems
+when wrapping C or C++ functions with similar signatures. For example:</p>
+<pre class="literal-block">
+// The wrapper for this function will also accept an integer argument
+// which Python will automatically convert to a floating point number.
+void foo(double);
+
+// The wrapper for this function will never get used.
+void foo(int);
+</pre>
+<p>This boolean annotation specifies that the corresponding argument (which
+should be either <tt class="docutils literal"><span class="pre">bool</span></tt>, <tt class="docutils literal"><span class="pre">int</span></tt>, <tt class="docutils literal"><span class="pre">float</span></tt>, <tt class="docutils literal"><span class="pre">double</span></tt> or a wrapped class)
+must match the type without any automatic conversions. In the context of a
+wrapped class the invocation of any <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> is suppressed.</p>
+<p>The following example gets around the above problem:</p>
+<pre class="literal-block">
+// The wrapper for this function will only accept floating point numbers.
+void foo(double /Constrained/);
+
+// The wrapper for this function will be used for anything that Python can
+// convert to an integer, except for floating point numbers.
+void foo(int);
+</pre>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id109" id="getwrapper" name="getwrapper">8.1.5&nbsp;&nbsp;&nbsp;GetWrapper</a></h3>
+<p>This boolean annotation is only ever used in conjunction with handwritten code
+specified with the <a class="reference" href="#methodcode">%MethodCode</a> directive. It causes an extra variable to
+be generated for the corresponding argument (which should be a wrapped C
+structure or C++ class instance) which is a pointer to the Python object that
+wraps the argument.</p>
+<p>See the <a class="reference" href="#methodcode">%MethodCode</a> directive for more detail.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id110" id="in" name="in">8.1.6&nbsp;&nbsp;&nbsp;In</a></h3>
+<p>This boolean annotation is used to specify that the corresponding argument
+(which should be a pointer type) is used to pass a value to the function.</p>
+<p>For pointers to wrapped C structures or C++ class instances, <tt class="docutils literal"><span class="pre">char</span> <span class="pre">*</span></tt> and
+<tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span> <span class="pre">*</span></tt> then this annotation is assumed unless the <a class="reference" href="#out">Out</a> annotation
+is specified.</p>
+<p>For pointers to other types then this annotation must be explicitly specified
+if required. The argument will be dereferenced to obtain the actual value.</p>
+<p>Both <a class="reference" href="#in">In</a> and <a class="reference" href="#out">Out</a> may be specified for the same argument.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id111" id="out" name="out">8.1.7&nbsp;&nbsp;&nbsp;Out</a></h3>
+<p>This boolean annotation is used to specify that the corresponding argument
+(which should be a pointer type) is used by the function to return a value as
+an element of a tuple.</p>
+<p>For pointers to wrapped C structures or C++ class instances, <tt class="docutils literal"><span class="pre">char</span> <span class="pre">*</span></tt> and
+<tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">char</span> <span class="pre">*</span></tt> then this annotation must be explicitly specified if
+required.</p>
+<p>For pointers to other types then this annotation is assumed unless the <a class="reference" href="#in">In</a>
+annotation is specified.</p>
+<p>Both <a class="reference" href="#in">In</a> and <a class="reference" href="#out">Out</a> may be specified for the same argument.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id112" id="transfer" name="transfer">8.1.8&nbsp;&nbsp;&nbsp;Transfer</a></h3>
+<p>This boolean annotation is used to specify that ownership of the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is
+transferred from Python to C++. In addition, if the argument is of a class
+method, then it is associated with the class instance with regard to the
+cyclic garbage collector.</p>
+<p>See <a class="reference" href="#ownership-of-objects">Ownership of Objects</a> for more detail.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id113" id="transferback" name="transferback">8.1.9&nbsp;&nbsp;&nbsp;TransferBack</a></h3>
+<p>This boolean annotation is used to specify that ownership of the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is
+transferred back to Python from C++. In addition, any association of the
+argument with regard to the cyclic garbage collector with another instance is
+removed.</p>
+<p>Note that this can also be used as a function annotation.</p>
+<p>See <a class="reference" href="#ownership-of-objects">Ownership of Objects</a> for more detail.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id114" id="transferthis" name="transferthis">8.1.10&nbsp;&nbsp;&nbsp;TransferThis</a></h3>
+<p>This boolean annotation is only used in C++ constructors or methods. In the
+context of a constructor or factory method it specifies that ownership of the
+instance being created is transferred from Python to C++ if the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is not
+<tt class="docutils literal"><span class="pre">None</span></tt>. In addition, the newly created instance is associated with the
+argument with regard to the cyclic garbage collector.</p>
+<p>In the context of a non-factory method it specifies that ownership of <tt class="docutils literal"><span class="pre">this</span></tt>
+is transferred from Python to C++ if the corresponding argument is not
+<tt class="docutils literal"><span class="pre">None</span></tt>. If it is <tt class="docutils literal"><span class="pre">None</span></tt> then ownership is transferred to Python.</p>
+<p>The annotation may be used more that once, in which case ownership is
+transferred to last instance that is not <tt class="docutils literal"><span class="pre">None</span></tt>.</p>
+<p>See <a class="reference" href="#ownership-of-objects">Ownership of Objects</a> for more detail.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id115" id="class-annotations" name="class-annotations">8.2&nbsp;&nbsp;&nbsp;Class Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id116" id="abstract" name="abstract">8.2.1&nbsp;&nbsp;&nbsp;Abstract</a></h3>
+<p>This boolean annotation is used to specify that the class has additional pure
+virtual methods that have not been specified and so it cannot be instantiated
+or sub-classed from Python.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id117" id="delaydtor" name="delaydtor">8.2.2&nbsp;&nbsp;&nbsp;DelayDtor</a></h3>
+<p>This boolean annotation is used to specify that the class's destructor should
+not be called until the Python interpreter exits. It would normally only be
+applied to singleton classes.</p>
+<p>When the Python interpreter exits the order in which any wrapped instances are
+garbage collected is unpredictable. However, the underlying C or C++ instances
+may need to be destroyed in a certain order. If this annotation is specified
+then when the wrapped instance is garbage collected the C or C++ instance is
+not destroyed but instead added to a list of delayed instances. When the
+interpreter exits then the function <tt class="docutils literal"><span class="pre">sipDelayedDtors</span></tt> is called with the
+list of delayed instances. <tt class="docutils literal"><span class="pre">sipDelayedDtors</span></tt> can then choose to call (or
+ignore) the destructors in any desired order.</p>
+<p>The <tt class="docutils literal"><span class="pre">sipDelayedDtors</span></tt> function must be specified using the <a class="reference" href="#modulecode">%ModuleCode</a>
+directive. It's signature is as follows:</p>
+<pre class="literal-block">
+static void sipDelayedDtors(const sipDelayedDtor *dd_list);
+</pre>
+<p><tt class="docutils literal"><span class="pre">dd_list</span></tt> is the linked list of delayed instances. The following fields are
+defined.</p>
+<dl class="docutils">
+<dt>const char *dd_name</dt>
+<dd>This is the name of the class excluding any package or module name.</dd>
+<dt>void *dd_ptr</dt>
+<dd>This is the address of the C or C++ instance to be destroyed. It's exact
+type depends on the value of <tt class="docutils literal"><span class="pre">dd_isderived</span></tt>.</dd>
+<dt>int dd_isderived</dt>
+<dd>This is non-zero if the type of <tt class="docutils literal"><span class="pre">dd_ptr</span></tt> is actually the generated
+derived class. This allows the correct destructor to be called. See
+<a class="reference" href="#generated-derived-classes">Generated Derived Classes</a>.</dd>
+<dt>sipDelayedDtor *dd_next</dt>
+<dd>This is the address of the next entry in the list or zero if this is the
+last one.</dd>
+</dl>
+<p>Note that the above applies only to C and C++ instances that are owned by
+Python.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id118" id="external" name="external">8.2.3&nbsp;&nbsp;&nbsp;External</a></h3>
+<p>This boolean annotation is used to specify that the class is defined in another
+module. Declarations of external classes are private to the module in which
+they appear.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id119" id="nodefaultctors" name="nodefaultctors">8.2.4&nbsp;&nbsp;&nbsp;NoDefaultCtors</a></h3>
+<p>This boolean annotation is used to suppress the automatic generation of default
+constructors for the class.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id120" id="pyname" name="pyname">8.2.5&nbsp;&nbsp;&nbsp;PyName</a></h3>
+<p>This name annotation specifies an alternative name for the class being wrapped
+which is used when it is referred to from Python. It is required when a class
+name is the same as a Python keyword. It may also be used to avoid name
+clashes with other objects (e.g. enums, exceptions, functions) that have the
+same name in the same C++ scope.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id121" id="enum-annotations" name="enum-annotations">8.3&nbsp;&nbsp;&nbsp;Enum Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id122" id="id17" name="id17">8.3.1&nbsp;&nbsp;&nbsp;PyName</a></h3>
+<p>This name annotation specifies an alternative name for the enum or enum member
+being wrapped which is used when it is referred to from Python. It is required
+when an enum or enum member name is the same as a Python keyword. It may also
+be used to avoid name clashes with other objects (e.g. classes, exceptions,
+functions) that have the same name in the same C++ scope.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id123" id="exception-annotations" name="exception-annotations">8.4&nbsp;&nbsp;&nbsp;Exception Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id124" id="id18" name="id18">8.4.1&nbsp;&nbsp;&nbsp;PyName</a></h3>
+<p>This name annotation specifies an alternative name for the exception being
+defined which is used when it is referred to from Python. It is required when
+an exception name is the same as a Python keyword. It may also be used to
+avoid name clashes with other objects (e.g. classes, enums, functions) that
+have the same name.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id125" id="function-annotations" name="function-annotations">8.5&nbsp;&nbsp;&nbsp;Function Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id126" id="autogen" name="autogen">8.5.1&nbsp;&nbsp;&nbsp;AutoGen</a></h3>
+<p>This optional name annotation is used with class methods to specify that the
+method be automatically included in all sub-classes. The value is the name of
+a feature (specified using the <a class="reference" href="#feature">%Feature</a> directive) which must be enabled
+for the method to be generated.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id127" id="default" name="default">8.5.2&nbsp;&nbsp;&nbsp;Default</a></h3>
+<p>This boolean annotation is only used with C++ constructors. Sometimes SIP
+needs to create a class instance. By default it uses a constructor with no
+compulsory arguments if one is specified. (SIP will automatically generate a
+constructor with no arguments if no constructors are specified.) This
+annotation is used to explicitly specify which constructor to use. Zero is
+passed as the value of any arguments to the constructor.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id128" id="factory" name="factory">8.5.3&nbsp;&nbsp;&nbsp;Factory</a></h3>
+<p>This boolean annotation specifies that the value returned by the function
+(which should be a wrapped C structure or C++ class instance) is a newly
+created instance and is owned by Python.</p>
+<p>See <a class="reference" href="#ownership-of-objects">Ownership of Objects</a> for more detail.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id129" id="holdgil" name="holdgil">8.5.4&nbsp;&nbsp;&nbsp;HoldGIL</a></h3>
+<p>This boolean annotation specifies that the Python Global Interpreter Lock (GIL)
+is not released before the call to the underlying C or C++ function. See
+<a class="reference" href="#the-python-global-interpreter-lock">The Python Global Interpreter Lock</a> and the <a class="reference" href="#releasegil">ReleaseGIL</a> annotation.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id130" id="newthread" name="newthread">8.5.5&nbsp;&nbsp;&nbsp;NewThread</a></h3>
+<p>This boolean annotation specifies that the function will create a new thread.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id131" id="noderived" name="noderived">8.5.6&nbsp;&nbsp;&nbsp;NoDerived</a></h3>
+<p>This boolean annotation is only used with C++ constructors. In many cases SIP
+generates a derived class for each class being wrapped (see <a class="reference" href="#generated-derived-classes">Generated Derived
+Classes</a>). This derived class contains constructors with the same C++
+signatures as the class being wrapped. Sometimes you may want to define a
+Python constructor that has no corresponding C++ constructor. This annotation
+is used to suppress the generation of the constructor in the derived class.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id132" id="numeric" name="numeric">8.5.7&nbsp;&nbsp;&nbsp;Numeric</a></h3>
+<p>This boolean annotation specifies that the operator should be interpreted as a
+numeric operator rather than a sequence operator. Python uses the <tt class="docutils literal"><span class="pre">+</span></tt>
+operator for adding numbers and concatanating sequences, and the <tt class="docutils literal"><span class="pre">*</span></tt> operator
+for multiplying numbers and repeating sequences. SIP tries to work out which
+is meant by looking at other operators that have been defined for the type.
+If it finds either <tt class="docutils literal"><span class="pre">-</span></tt>, <tt class="docutils literal"><span class="pre">-=</span></tt>, <tt class="docutils literal"><span class="pre">/</span></tt>, <tt class="docutils literal"><span class="pre">/=</span></tt>, <tt class="docutils literal"><span class="pre">%</span></tt> or <tt class="docutils literal"><span class="pre">%=</span></tt> defined then
+it assumes that <tt class="docutils literal"><span class="pre">+</span></tt>, <tt class="docutils literal"><span class="pre">+=</span></tt>, <tt class="docutils literal"><span class="pre">*</span></tt> and <tt class="docutils literal"><span class="pre">*=</span></tt> should be numeric operators.
+Otherwise, if it finds either <tt class="docutils literal"><span class="pre">[]</span></tt>, <tt class="docutils literal"><span class="pre">__getitem__()</span></tt>, <tt class="docutils literal"><span class="pre">__setitem__()</span></tt> or
+<tt class="docutils literal"><span class="pre">__delitem__()</span></tt> defined then it assumes that they should be sequence
+operators. This annotation is used to force SIP to treat the operator as
+numeric.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id133" id="posthook" name="posthook">8.5.8&nbsp;&nbsp;&nbsp;PostHook</a></h3>
+<p>This name annotation is used to specify the name of a Python builtin that is
+called immediately after the call to the underlying C or C++ function or any
+handwritten code. The builtin is not called if an error occurred. It is
+primarily used to integrate with debuggers.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id134" id="prehook" name="prehook">8.5.9&nbsp;&nbsp;&nbsp;PreHook</a></h3>
+<p>This name annotation is used to specify the name of a Python builtin that is
+called immediately after the function's arguments have been successfully
+parsed and before the call to the underlying C or C++ function or any
+handwritten code. It is primarily used to integrate with debuggers.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id135" id="id19" name="id19">8.5.10&nbsp;&nbsp;&nbsp;PyName</a></h3>
+<p>This name annotation specifies an alternative name for the function being
+wrapped which is used when it is referred to from Python. It is required when
+a function or method name is the same as a Python keyword. It may also be used
+to avoid name clashes with other objects (e.g. classes, enums, exceptions) that
+have the same name in the same C++ scope.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id136" id="releasegil" name="releasegil">8.5.11&nbsp;&nbsp;&nbsp;ReleaseGIL</a></h3>
+<p>This boolean annotation specifies that the Python Global Interpreter Lock (GIL)
+is released before the call to the underlying C or C++ function and reacquired
+afterwards. It should be used for functions that might block or take a
+significant amount of time to execute. See <a class="reference" href="#the-python-global-interpreter-lock">The Python Global Interpreter
+Lock</a> and the <a class="reference" href="#holdgil">HoldGIL</a> annotation.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id137" id="id20" name="id20">8.5.12&nbsp;&nbsp;&nbsp;TransferBack</a></h3>
+<p>This boolean annotation specifies that ownership of the value returned by the
+function (which should be a wrapped C structure or C++ class instance) is
+transferred back to Python from C++. Normally returned values (unless they are
+new references to already wrapped values) are owned by C++. In addition, any
+association of the returned value with regard to the cyclic garbage collector
+with another instance is removed.</p>
+<p>Note that this can also be used as an argument annotation.</p>
+<p>See <a class="reference" href="#ownership-of-objects">Ownership of Objects</a> for more detail.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id138" id="license-annotations" name="license-annotations">8.6&nbsp;&nbsp;&nbsp;License Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id139" id="licensee" name="licensee">8.6.1&nbsp;&nbsp;&nbsp;Licensee</a></h3>
+<p>This optional string annotation specifies the license's licensee. No
+restrictions are placed on the contents of the string.</p>
+<p>See the <a class="reference" href="#id14">%License</a> directive.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id140" id="signature" name="signature">8.6.2&nbsp;&nbsp;&nbsp;Signature</a></h3>
+<p>This optional string annotation specifies the license's signature. No
+restrictions are placed on the contents of the string.</p>
+<p>See the <a class="reference" href="#id14">%License</a> directive.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id141" id="timestamp" name="timestamp">8.6.3&nbsp;&nbsp;&nbsp;Timestamp</a></h3>
+<p>This optional string annotation specifies the license's timestamp. No
+restrictions are placed on the contents of the string.</p>
+<p>See the <a class="reference" href="#id14">%License</a> directive.</p>
+</div>
+<div class="section">
+<h3><a class="toc-backref" href="#id142" id="type" name="type">8.6.4&nbsp;&nbsp;&nbsp;Type</a></h3>
+<p>This string annotation specifies the license's type. No restrictions are
+placed on the contents of the string.</p>
+<p>See the <a class="reference" href="#id14">%License</a> directive.</p>
+</div>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id143" id="variable-annotations" name="variable-annotations">8.7&nbsp;&nbsp;&nbsp;Variable Annotations</a></h2>
+<div class="section">
+<h3><a class="toc-backref" href="#id144" id="id21" name="id21">8.7.1&nbsp;&nbsp;&nbsp;PyName</a></h3>
+<p>This name annotation specifies an alternative name for the variable being
+wrapped which is used when it is referred to from Python. It is required when
+a variable name is the same as a Python keyword. It may also be used to avoid
+name clashes with other objects (e.g. classes, functions) that have the same
+name in the same C++ scope.</p>
+</div>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id145" id="sip-api-for-handwritten-code" name="sip-api-for-handwritten-code">9&nbsp;&nbsp;&nbsp;SIP API for Handwritten Code</a></h1>
+<p>In this section we describe the API that can be used by handwritten code in
+specification files.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id146" id="sip-api-major-nr" name="sip-api-major-nr">9.1&nbsp;&nbsp;&nbsp;SIP_API_MAJOR_NR</a></h2>
+<p>This is a C preprocessor symbol that defines the major number of the SIP API.
+Its value is a number. There is no direct relationship between this and the
+SIP version number.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id147" id="sip-api-minor-nr" name="sip-api-minor-nr">9.2&nbsp;&nbsp;&nbsp;SIP_API_MINOR_NR</a></h2>
+<p>This is a C preprocessor symbol that defines the minor number of the SIP API.
+Its value is a number. There is no direct relationship between this and the
+SIP version number.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id148" id="sip-block-threads" name="sip-block-threads">9.3&nbsp;&nbsp;&nbsp;SIP_BLOCK_THREADS</a></h2>
+<p>This is a C preprocessor macro that will make sure the Python Global
+Interpreter Lock (GIL) is acquired. Python API calls must only be made when
+the GIL has been acquired. There must be a corresponding
+<a class="reference" href="#sip-unblock-threads">SIP_UNBLOCK_THREADS</a> at the same lexical scope.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id149" id="sip-ssize-t" name="sip-ssize-t">9.4&nbsp;&nbsp;&nbsp;SIP_SSIZE_T</a></h2>
+<p>This is a C preprocessor macro that is defined as <tt class="docutils literal"><span class="pre">Py_ssize_t</span></tt> for Python
+v2.5 and later, and as <tt class="docutils literal"><span class="pre">int</span></tt> for earlier versions of Python. It makes it
+easier to write PEP 353 compliant handwritten code.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id150" id="sip-unblock-threads" name="sip-unblock-threads">9.5&nbsp;&nbsp;&nbsp;SIP_UNBLOCK_THREADS</a></h2>
+<p>This is a C preprocessor macro that will restore the Python Global Interpreter
+Lock (GIL) to the state it was prior to the corresponding <a class="reference" href="#sip-block-threads">SIP_BLOCK_THREADS</a>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id151" id="sip-version" name="sip-version">9.6&nbsp;&nbsp;&nbsp;SIP_VERSION</a></h2>
+<p>This is a C preprocessor symbol that defines the SIP version number
+represented as a 3 part hexadecimal number (e.g. v4.0.0 is represented as
+<tt class="docutils literal"><span class="pre">0x040000</span></tt>).</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id152" id="sip-version-str" name="sip-version-str">9.7&nbsp;&nbsp;&nbsp;SIP_VERSION_STR</a></h2>
+<p>This is a C preprocessor symbol that defines the SIP version number
+represented as a string. For development snapshots it will start with
+<tt class="docutils literal"><span class="pre">snapshot-</span></tt>.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id153" id="sipbadcatcherresult" name="sipbadcatcherresult">9.8&nbsp;&nbsp;&nbsp;sipBadCatcherResult()</a></h2>
+<dl class="docutils">
+<dt>void sipBadCatcherResult(PyObject *method)</dt>
+<dd>This raises a Python exception when the result of a Python reimplementation
+of a C++ method doesn't have the expected type. It is normally called by
+handwritten code specified with the <a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a> directive.
+<em>method</em> is the Python method and would normally be the supplied
+<tt class="docutils literal"><span class="pre">sipMethod</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id154" id="sipbadlengthforslice" name="sipbadlengthforslice">9.9&nbsp;&nbsp;&nbsp;sipBadLengthForSlice()</a></h2>
+<dl class="docutils">
+<dt>void sipBadLengthForSlice(SIP_SSIZE_T seqlen, SIP_SSIZE_T slicelen)</dt>
+<dd>This raises a Python exception when the length of a slice object is
+inappropriate for a sequence-like object. It is normally called by
+handwritten code specified for <tt class="docutils literal"><span class="pre">__setitem__()</span></tt> methods. <em>seqlen</em> is the
+length of the sequence. <em>slicelen</em> is the length of the slice. With
+versions of Python prior to v2.5 the arguments have type <tt class="docutils literal"><span class="pre">int</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id155" id="sipbuildresult" name="sipbuildresult">9.10&nbsp;&nbsp;&nbsp;sipBuildResult()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipBuildResult(int *iserr, const char *format, ...)</dt>
+<dd><p class="first">This creates a Python object based on a format string and associated
+values in a similar way to the Python <tt class="docutils literal"><span class="pre">Py_BuildValue()</span></tt> function. If
+there was an error then <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned and a Python exception is
+raised. If <em>iserr</em> is not <tt class="docutils literal"><span class="pre">NULL</span></tt> then the location it points to is set
+to a non-zero value. <em>format</em> is the string of format characters.</p>
+<p>If <em>format</em> begins and ends with parentheses then a tuple of objects is
+created. If <em>format</em> contains more than one format character then
+parentheses must be specified.</p>
+<p>In the following description the first letter is the format character, the
+entry in parentheses is the Python object type that the format character
+will create, and the entry in brackets are the types of the C/C++ values
+to be passed.</p>
+<dl class="last docutils">
+<dt><tt class="docutils literal"><span class="pre">a</span></tt> (string) [char *, int]</dt>
+<dd>Convert a C/C++ character array and its length to a Python string. If
+the array is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the length is ignored and the result is
+<tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">b</span></tt> (boolean) [int]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">int</span></tt> to a Python boolean.</dd>
+<dt><tt class="docutils literal"><span class="pre">c</span></tt> (string) [char]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">char</span></tt> to a Python string.</dd>
+<dt><tt class="docutils literal"><span class="pre">d</span></tt> (float) [double]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">double</span></tt> to a Python floating point number.</dd>
+<dt><tt class="docutils literal"><span class="pre">e</span></tt> (integer) [enum]</dt>
+<dd>Convert an anonymous C/C++ <tt class="docutils literal"><span class="pre">enum</span></tt> to a Python integer.</dd>
+<dt><tt class="docutils literal"><span class="pre">f</span></tt> (float) [float]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">float</span></tt> to a Python floating point number.</dd>
+<dt><tt class="docutils literal"><span class="pre">h</span></tt> (integer) [short]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">short</span></tt> to a Python integer.</dd>
+<dt><tt class="docutils literal"><span class="pre">i</span></tt> (integer) [int]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">int</span></tt> to a Python integer.</dd>
+<dt><tt class="docutils literal"><span class="pre">l</span></tt> (long) [long]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">long</span></tt> to a Python integer.</dd>
+<dt><tt class="docutils literal"><span class="pre">m</span></tt> (long) [unsigned long]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt> to a Python long.</dd>
+<dt><tt class="docutils literal"><span class="pre">n</span></tt> (long) [long long]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">long</span> <span class="pre">long</span></tt> to a Python long.</dd>
+<dt><tt class="docutils literal"><span class="pre">o</span></tt> (long) [unsigned long long]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span> <span class="pre">long</span></tt> to a Python long.</dd>
+<dt><tt class="docutils literal"><span class="pre">s</span></tt> (string) [char *]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string to a Python string. If the
+string pointer is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the result is <tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">t</span></tt> (long) [unsigned short]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt> to a Python long.</dd>
+<dt><tt class="docutils literal"><span class="pre">u</span></tt> (long) [unsigned int]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt> to a Python long.</dd>
+<dt><tt class="docutils literal"><span class="pre">w</span></tt> (unicode) [wchar_t]</dt>
+<dd>Convert a C/C++ wide character to a Python unicode object.</dd>
+<dt><tt class="docutils literal"><span class="pre">x</span></tt> (unicode) [wchar_t *]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">L'\0'</span></tt> terminated wide character string to a Python
+unicode object. If the string pointer is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the result is
+<tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">A</span></tt> (unicode) [wchar_t *, int]</dt>
+<dd>Convert a C/C++ wide character array and its length to a Python unicode
+object. If the array is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the length is ignored and the
+result is <tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">B</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *, PyObject *]</dt>
+<dd>Convert a new C structure or a new C++ class instance to a Python class
+instance object. Ownership of the structure or instance is determined
+by the <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> and the instance has
+already been wrapped then the ownership is unchanged. If it is
+<tt class="docutils literal"><span class="pre">NULL</span></tt> or <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership will be with Python. Otherwise
+ownership will be with C/C++ and the instance associated with the
+<tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument. The Python class is influenced by any
+applicable <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code.</dd>
+<dt><tt class="docutils literal"><span class="pre">C</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *, PyObject *]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class
+instance object. If the structure or class instance has already been
+wrapped then the result is a new reference to the existing class
+instance object. Ownership of the structure or instance is determined
+by the <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> and the instance has
+already been wrapped then the ownership is unchanged. If it is
+<tt class="docutils literal"><span class="pre">NULL</span></tt> and the instance is newly wrapped then ownership will be with
+C/C++. If it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is transferred to Python
+via a call to <a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise ownership is transferred
+to C/C++ and the instance associated with the <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument
+via a call to <a class="reference" href="#siptransferto">sipTransferTo()</a>. The Python class is influenced by
+any applicable <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code.</dd>
+<dt><tt class="docutils literal"><span class="pre">D</span></tt> (object) [<em>type</em> *, const sipMappedType *, PyObject *]</dt>
+<dd>Convert a C structure or a C++ class instance wrapped as a mapped type
+to a Python object. Ownership of the structure or instance is
+determined by the <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the
+ownership is unchanged. If it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is
+transferred to Python via a call to <a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise
+ownership is transferred to C/C++ and the instance associated with the
+<tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument via a call to <a class="reference" href="#siptransferto">sipTransferTo()</a>.</dd>
+<dt><tt class="docutils literal"><span class="pre">E</span></tt> (wrapped enum) [enum, PyTypeObject *]</dt>
+<dd>Convert a named C/C++ <tt class="docutils literal"><span class="pre">enum</span></tt> to an instance of the corresponding
+Python named enum type.</dd>
+<dt><tt class="docutils literal"><span class="pre">M</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class
+instance object. If the structure or class instance has already been
+wrapped then the result is a new reference to the existing class
+instance object. If the instance has already been wrapped then the
+ownership is unchanged. If the instance is newly wrapped then
+ownership will be with C/C++. The Python class is influenced by any
+applicable <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code. This is deprecated from
+SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">N</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class
+instance object. This should not be used if the structure or class
+instance might already have been wrapped. Ownership of the structure
+or instance will be with Python. The Python class is influenced by
+any applicable <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code. This is deprecated
+from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">O</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class
+instance object. If the structure or class instance has already been
+wrapped then the result is a new reference to the existing class
+instance object. Ownership of the structure or instance will be with
+C/C++. This is deprecated from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">P</span></tt> (wrapped instance) [<em>type</em> *, sipWrapperType *]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class
+instance object. This should not be used if the structure or class
+instance might already have been wrapped. Ownership of the structure
+or instance will be with Python. This is deprecated from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">R</span></tt> (object) [PyObject *]</dt>
+<dd>The result is value passed without any conversions. The reference
+count is unaffected, i.e. a reference is taken.</dd>
+<dt><tt class="docutils literal"><span class="pre">S</span></tt> (object) [PyObject *]</dt>
+<dd>The result is value passed without any conversions. The reference
+count is incremented.</dd>
+<dt><tt class="docutils literal"><span class="pre">T</span></tt> (object) [void *, PyObject *(*)(void *cppptr)]</dt>
+<dd>Convert a C structure or a C++ class instance to a Python object using
+a convertor function. See <a class="reference" href="#generated-type-convertors">Generated Type Convertors</a>. This is
+deprecated from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">V</span></tt> (sip.voidptr) [void *]</dt>
+<dd>Convert a C/C++ <tt class="docutils literal"><span class="pre">void</span> <span class="pre">*</span></tt> Python <tt class="docutils literal"><span class="pre">sip.voidptr</span></tt> object.</dd>
+</dl>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id156" id="sipcallmethod" name="sipcallmethod">9.11&nbsp;&nbsp;&nbsp;sipCallMethod()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipCallMethod(int *iserr, PyObject *method, const char *format, ...)</dt>
+<dd><p class="first">This calls a Python method passing a tuple of arguments based on a format
+string and associated values in a similar way to the Python
+<tt class="docutils literal"><span class="pre">PyObject_CallObject()</span></tt> function. If there was an error then <tt class="docutils literal"><span class="pre">NULL</span></tt> is
+returned and a Python exception is raised. If <em>iserr</em> is not <tt class="docutils literal"><span class="pre">NULL</span></tt>
+then the location it points to is set to a non-zero value. <em>method</em> is the
+Python bound method to call. <em>format</em> is the string of format characters
+(see <a class="reference" href="#sipbuildresult">sipBuildResult()</a>).</p>
+<p class="last">This is normally called by handwritten code specified with the
+<a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a> directive with <em>method</em> being the supplied
+<tt class="docutils literal"><span class="pre">sipMethod</span></tt>.</p>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id157" id="sipcanconverttoinstance" name="sipcanconverttoinstance">9.12&nbsp;&nbsp;&nbsp;sipCanConvertToInstance()</a></h2>
+<dl class="docutils">
+<dt>int sipCanConvertToInstance(PyObject *obj, sipWrapperType *type, int flags)</dt>
+<dd><p class="first">This returns a non-zero value if a Python object can be converted to an
+instance of a C structure or C++ class. <em>obj</em> is the Python object.
+<em>type</em> is the generated type corresponding to the C/C++ type being checked.
+<em>flags</em> is any combination of the following values used to fine tune the
+check.</p>
+<blockquote class="last">
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">SIP_NOT_NONE</span></tt> causes the check to fail if <em>obj</em> is <tt class="docutils literal"><span class="pre">None</span></tt>.</li>
+<li><tt class="docutils literal"><span class="pre">SIP_NO_CONVERTORS</span></tt> suppresses the use of of any
+<a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> for <em>type</em>.</li>
+</ul>
+</blockquote>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id158" id="sipcanconverttomappedtype" name="sipcanconverttomappedtype">9.13&nbsp;&nbsp;&nbsp;sipCanConvertToMappedType()</a></h2>
+<dl class="docutils">
+<dt>int sipCanConvertToMappedType(PyObject *obj, const sipMappedType *mt, int flags)</dt>
+<dd><p class="first">This returns a non-zero value if a Python object can be converted to an
+instance of a C structure or C++ class which has been implemented as a
+mapped type. <em>obj</em> is the Python object. <em>mt</em> is an opaque structure
+returned by <a class="reference" href="#sipfindmappedtype">sipFindMappedType()</a>. <em>flags</em> is any combination of the
+following values used to fine tune the check.</p>
+<blockquote class="last">
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">SIP_NOT_NONE</span></tt> causes the check to fail if <em>obj</em> is <tt class="docutils literal"><span class="pre">None</span></tt>.</li>
+</ul>
+</blockquote>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id159" id="sipclassname" name="sipclassname">9.14&nbsp;&nbsp;&nbsp;sipClassName()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipClassName(PyObject *obj)</dt>
+<dd>This returns the class name of a wrapped instance as a Python string. It
+comes with a reference.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id160" id="sipconnectrx" name="sipconnectrx">9.15&nbsp;&nbsp;&nbsp;sipConnectRx()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipConnectRx(PyObject *sender, const char *signal, PyObject *receiver, const char *slot, int type)</dt>
+<dd>This connects a signal to a signal or slot and returns <tt class="docutils literal"><span class="pre">Py_True</span></tt> if the
+signal was connected or <tt class="docutils literal"><span class="pre">Py_False</span></tt> if not. If there was some other
+error then a Python exception is raised and <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned. <em>sender</em>
+is the wrapped <tt class="docutils literal"><span class="pre">QObject</span></tt> derived instance that emits the signal.
+<em>signal</em> is the typed name of the signal. <em>receiver</em> is the wrapped
+<tt class="docutils literal"><span class="pre">QObject</span></tt> derived instance or Python callable that the signal is
+connected to. <em>slot</em> is the typed name of the slot, or <tt class="docutils literal"><span class="pre">NULL</span></tt> if
+<em>receiver</em> is a Python callable. <em>type</em> is the type of connection and is
+cast from Qt::ConnectionType. It is normally only used by PyQt to
+implement <tt class="docutils literal"><span class="pre">QObject.connect()</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id161" id="sipconvertfrominstance" name="sipconvertfrominstance">9.16&nbsp;&nbsp;&nbsp;sipConvertFromInstance()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipConvertFromInstance(void *cpp, sipWrapperType *type, PyObject *transferObj)</dt>
+<dd>Convert a C structure or a C++ class instance to a Python class instance
+object. <em>cpp</em> is the C/C++ instance. If the instance has already been
+wrapped then the result is a new reference to the existing instance object.
+<em>type</em> is the generated type corresponding to the C/C++ type.
+<em>transferObj</em> controls the ownership of the returned value. If the
+structure or class instance has already been wrapped then the result is a
+new reference to the existing class instance object. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> and
+the instance has already been wrapped then the ownership is unchanged. If
+it is <tt class="docutils literal"><span class="pre">NULL</span></tt> and the instance is newly wrapped then ownership will be
+with C/C++. If it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is transferred to Python
+via a call to <a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise ownership is transferred to
+C/C++ and the instance associated with <em>transferObj</em> via a call to
+<a class="reference" href="#siptransferto">sipTransferTo()</a>. The Python class is influenced by any applicable
+<a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id162" id="sipconvertfrommappedtype" name="sipconvertfrommappedtype">9.17&nbsp;&nbsp;&nbsp;sipConvertFromMappedType()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipConvertFromMappedType(void *cpp, const sipMappedType *mt, PyObject *transferObj)</dt>
+<dd>Convert a C structure or a C++ class instance wrapped as a mapped type to a
+Python object. <em>cpp</em> is the C/C++ instance. <em>mt</em> is the opaque structure
+returned by <a class="reference" href="#sipfindmappedtype">sipFindMappedType()</a>. <em>transferObj</em> controls any ownership
+changes to <em>obj</em>. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the ownership is unchanged. If
+it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is transferred to Python via a call to
+<a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise ownership is transferred to C/C++ and the
+instance associated with the <tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt> argument via a call to
+<a class="reference" href="#siptransferto">sipTransferTo()</a>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id163" id="sipconvertfromnamedenum" name="sipconvertfromnamedenum">9.18&nbsp;&nbsp;&nbsp;sipConvertFromNamedEnum()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipConvertFromNamedEnum(int eval, PyTypeObject *type)</dt>
+<dd>Convert a named C/C++ <tt class="docutils literal"><span class="pre">enum</span></tt> to an instance of the corresponding Python
+named enum type. <em>eval</em> is the enumerated value to convert. <em>type</em> is the
+generated Python type object (see <a class="reference" href="#generated-named-enum-type-objects">Generated Named Enum Type Objects</a>).</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id164" id="sipconvertfromnewinstance" name="sipconvertfromnewinstance">9.19&nbsp;&nbsp;&nbsp;sipConvertFromNewInstance()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipConvertFromNewInstance(void *cpp, sipWrapperType *type, PyObject *transferObj)</dt>
+<dd>Convert a new C structure or a new C++ class instance to a Python class
+instance object. <em>cpp</em> is the C/C++ instance. <em>type</em> is the generated
+type corresponding to the C/C++ type. <em>transferObj</em> controls the ownership
+of the returned value. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> or <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership
+will be with Python. Otherwise ownership will be with C/C++ and the
+instance associated with <em>transferObj</em>. The Python class is influenced by
+any applicable <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id165" id="sipconvertfromsequenceindex" name="sipconvertfromsequenceindex">9.20&nbsp;&nbsp;&nbsp;sipConvertFromSequenceIndex()</a></h2>
+<dl class="docutils">
+<dt>SIP_SSIZE_T sipConvertFromSequenceIndex(SIP_SSIZE_T idx, SIP_SSIZE_T len)</dt>
+<dd>This converts a Python sequence index (i.e. where a negative value refers
+to the offset from the end of the sequence) to a C/C++ array index. If the
+index was out of range then a negative value is returned and a Python
+exception raised. With versions of Python prior to v2.5 the result and the
+arguments have type <tt class="docutils literal"><span class="pre">int</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id166" id="sipconvertfromsliceobject" name="sipconvertfromsliceobject">9.21&nbsp;&nbsp;&nbsp;sipConvertFromSliceObject()</a></h2>
+<dl class="docutils">
+<dt>int sipConvertFromSliceObject(PyObject *slice, SIP_SSIZE_T length, SIP_SSIZE_T *start, SIP_SSIZE_T *stop, SIP_SSIZE_T *step, SIP_SSIZE_T *slicelength)</dt>
+<dd>This is a thin wrapper around the Python <tt class="docutils literal"><span class="pre">PySlice_GetIndicesEx()</span></tt>
+function provided to make it easier to write handwritten code that is
+compatible with SIP v3.x and versions of Python earlier that v2.3.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id167" id="sipconverttocpp" name="sipconverttocpp">9.22&nbsp;&nbsp;&nbsp;sipConvertToCpp()</a></h2>
+<dl class="docutils">
+<dt>void *sipConvertToCpp(PyObject *obj, sipWrapperType *type, int *iserr)</dt>
+<dd><p class="first">This function is deprecated from SIP v4.4. It is equivalent to:</p>
+<pre class="last literal-block">
+sipConvertToInstance(obj, type, NULL, SIP_NO_CONVERTORS, NULL, iserr);
+</pre>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id168" id="sipconverttoinstance" name="sipconverttoinstance">9.23&nbsp;&nbsp;&nbsp;sipConvertToInstance()</a></h2>
+<dl class="docutils">
+<dt>void *sipConvertToInstance(PyObject *obj, sipWrapperType *type, PyObject *transferObj, int flags, int *state, int *iserr)</dt>
+<dd><p class="first">This converts a Python object to an instance of a C structure or C++ class
+assuming that a previous call to <a class="reference" href="#sipcanconverttoinstance">sipCanConvertToInstance()</a> has been
+successful. <em>obj</em> is the Python object. <em>type</em> is the generated type
+corresponding to the C/C++ type returned. It may be any class in the
+object's class hierarchy. <em>transferObj</em> controls any ownership changes to
+<em>obj</em>. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt> then the ownership is unchanged. If it is
+<tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is transferred to Python via a call to
+<a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise ownership is transferred to C/C++ and
+<em>obj</em> associated with <em>transferObj</em> via a call to <a class="reference" href="#siptransferto">sipTransferTo()</a>.
+<em>flags</em> is any combination of the following values used to fine tune the
+check.</p>
+<blockquote>
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">SIP_NOT_NONE</span></tt> causes the check to fail if <em>obj</em> is <tt class="docutils literal"><span class="pre">None</span></tt>.</li>
+<li><tt class="docutils literal"><span class="pre">SIP_NO_CONVERTORS</span></tt> suppresses the use of of any
+<a class="reference" href="#converttotypecode">%ConvertToTypeCode</a> for <em>type</em>.</li>
+</ul>
+</blockquote>
+<p class="last">If <em>state</em> is not <tt class="docutils literal"><span class="pre">NULL</span></tt> then the location it points to is set to
+describe the state of the returned C/C++ instance and is the value returned
+by any <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a>. The calling code must then release the value
+at some point to prevent a memory leak by calling <a class="reference" href="#sipreleaseinstance">sipReleaseInstance()</a>.
+If there is an error then the location <em>iserr</em> points to is set to a
+non-zero value. If it was initially a non-zero value then the conversion
+isn't attempted in the first place. (This allows several calls to be made
+that share the same error flag so that it only needs to be tested once
+rather than after each call.)</p>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id169" id="sipconverttomappedtype" name="sipconverttomappedtype">9.24&nbsp;&nbsp;&nbsp;sipConvertToMappedType()</a></h2>
+<dl class="docutils">
+<dt>void *sipConvertToMappedType(PyObject *obj, const sipMappedType *mt, PyObject *transferObj, int flags, int *state, int *iserr)</dt>
+<dd><p class="first">This converts a Python object to an instance of a C structure or C++
+class that is implemented as a mapped type assuming that a previous call to
+<a class="reference" href="#sipcanconverttomappedtype">sipCanConvertToMappedType()</a> has been successful. <em>obj</em> is the Python
+object. <em>mt</em> is the opaque structure returned by <a class="reference" href="#sipfindmappedtype">sipFindMappedType()</a>.
+<em>transferObj</em> controls any ownership changes to <em>obj</em>. If it is <tt class="docutils literal"><span class="pre">NULL</span></tt>
+then the ownership is unchanged. If it is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then ownership is
+transferred to Python via a call to <a class="reference" href="#siptransferback">sipTransferBack()</a>. Otherwise
+ownership is transferred to C/C++ and <em>obj</em> associated with <em>transferObj</em>
+via a call to <a class="reference" href="#siptransferto">sipTransferTo()</a>. <em>flags</em> is any combination of the
+following values used to fine tune the check.</p>
+<blockquote>
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">SIP_NOT_NONE</span></tt> causes the check to fail if <em>obj</em> is <tt class="docutils literal"><span class="pre">None</span></tt>.</li>
+</ul>
+</blockquote>
+<p class="last">If <em>state</em> is not <tt class="docutils literal"><span class="pre">NULL</span></tt> then the location it points to is set to
+describe the state of the returned C/C++ instance and is the value returned
+by any <a class="reference" href="#converttotypecode">%ConvertToTypeCode</a>. The calling code must then release the value
+at some point to prevent a memory leak by calling
+<a class="reference" href="#sipreleasemappedtype">sipReleaseMappedType()</a>. If there is an error then the location <em>iserr</em>
+points to is set to a non-zero value. If it was initially a non-zero value
+then the conversion isn't attempted in the first place. (This allows
+several calls to be made that share the same error flag so that it only
+needs to be tested once rather than after each call.)</p>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id170" id="sipdisconnectrx" name="sipdisconnectrx">9.25&nbsp;&nbsp;&nbsp;sipDisconnectRx()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipDisconnectRx(PyObject *sender, const char *signal, PyObject *receiver, const char *slot)</dt>
+<dd>This disconnects a signal from a signal or slot and returns <tt class="docutils literal"><span class="pre">Py_True</span></tt> if
+the signal was disconnected or <tt class="docutils literal"><span class="pre">Py_False</span></tt> if not. If there was some
+other error then a Python exception is raised and <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned.
+<em>sender</em> is the wrapped <tt class="docutils literal"><span class="pre">QObject</span></tt> derived instance that emits the signal.
+<em>signal</em> is the typed name of the signal. <em>receiver</em> is the wrapped
+<tt class="docutils literal"><span class="pre">QObject</span></tt> derived instance or Python callable that the signal is
+connected to. <em>slot</em> is the typed name of the slot, or <tt class="docutils literal"><span class="pre">NULL</span></tt> if
+<em>receiver</em> is a Python callable. It is normally only used by PyQt to
+implement <tt class="docutils literal"><span class="pre">QObject.disconnect()</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id171" id="sipemitsignal" name="sipemitsignal">9.26&nbsp;&nbsp;&nbsp;sipEmitSignal()</a></h2>
+<dl class="docutils">
+<dt>int sipEmitSignal(PyObject *txobj, const char *signal, PyObject *args)</dt>
+<dd>This emits a signal and returns zero if there was no error. If there was
+an error then a Python exception is raised and a negative value is
+returned. <em>txobj</em> is the wrapped <tt class="docutils literal"><span class="pre">QObject</span></tt> derived instance that emits
+the signal. <em>signal</em> is the typed name of the signal. <em>args</em> is a Python
+tuple of the signal arguments. It is normally only used by PyQt to
+implement <tt class="docutils literal"><span class="pre">QObject.emit()</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id172" id="sipexportsymbol" name="sipexportsymbol">9.27&nbsp;&nbsp;&nbsp;sipExportSymbol()</a></h2>
+<dl class="docutils">
+<dt>int sipExportSymbol(const char *name, void *sym)</dt>
+<dd>Python does not allow extension modules to directly access symbols in
+another extension module. This exports a symbol, referenced by a name,
+that can subsequently be imported, using <a class="reference" href="#sipimportsymbol">sipImportSymbol()</a>, by another
+module. <em>name</em> is the name of the symbol and <em>sym</em> is its value. Zero is
+returned if there was no error. A negative value is returned if <em>name</em> is
+already associated with a symbol or there was some other error.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id173" id="sipfindclass" name="sipfindclass">9.28&nbsp;&nbsp;&nbsp;sipFindClass()</a></h2>
+<dl class="docutils">
+<dt>sipWrapperType *sipFindClass(const char *type)</dt>
+<dd>This returns a pointer to the generated type corresponding to a C/C++ type.
+<em>type</em> is the C/C++ declaration of the type. <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned if the
+C/C++ type doesn't exist. The value of the pointer will not change and
+may be saved in a static cache.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id174" id="sipfindmappedtype" name="sipfindmappedtype">9.29&nbsp;&nbsp;&nbsp;sipFindMappedType()</a></h2>
+<dl class="docutils">
+<dt>const sipMappedType *sipFindMappedType(const char *type)</dt>
+<dd>This returns a pointer to an opaque structure describing a mapped type.
+<em>type</em> is the C/C++ declaration of the type. <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned if the
+mapped type doesn't exist. The value of the pointer will not change and
+may be saved in a static cache.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id175" id="sipfindnamedenum" name="sipfindnamedenum">9.30&nbsp;&nbsp;&nbsp;sipFindNamedEnum()</a></h2>
+<dl class="docutils">
+<dt>PyTypeObject *sipFindNamedEnum(const char *type)</dt>
+<dd>This returns a pointer to the generated type corresponding to a named C/C++
+enum. <em>type</em> is the C/C++ declaration of the enum. <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned
+if the named C/C++ enum doesn't exist. The value of the pointer will not
+change and may be saved in a static cache.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id176" id="sipforceconverttoinstance" name="sipforceconverttoinstance">9.31&nbsp;&nbsp;&nbsp;sipForceConvertToInstance()</a></h2>
+<dl class="docutils">
+<dt>void *sipForceConvertToInstance(PyObject *obj, sipWrapperType *type, PyObject *transferObj, int flags, int *state, int *iserr)</dt>
+<dd>This converts a Python object to an instance of a C structure or C++ class
+by calling <a class="reference" href="#sipcanconverttoinstance">sipCanConvertToInstance()</a> and, if it is successfull, calling
+<a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a>. See <a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a> for a full
+description of the arguments.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id177" id="sipforceconverttomappedtype" name="sipforceconverttomappedtype">9.32&nbsp;&nbsp;&nbsp;sipForceConvertToMappedType()</a></h2>
+<dl class="docutils">
+<dt>void *sipForceConvertToMappedType(PyObject *obj, const sipMappedType *mt, PyObject *transferObj, int flags, int *state, int *iserr)</dt>
+<dd>This converts a Python object to an instance of a C structure or C++ class
+which has been implemented as a mapped type by calling
+<a class="reference" href="#sipcanconverttomappedtype">sipCanConvertToMappedType()</a> and, if it is successfull, calling
+<a class="reference" href="#sipconverttomappedtype">sipConvertToMappedType()</a>. See <a class="reference" href="#sipconverttomappedtype">sipConvertToMappedType()</a> for a full
+description of the arguments.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id178" id="sipfree" name="sipfree">9.33&nbsp;&nbsp;&nbsp;sipFree()</a></h2>
+<dl class="docutils">
+<dt>void sipFree(void *mem)</dt>
+<dd>This returns an area of memory allocated by <a class="reference" href="#sipmalloc">sipMalloc()</a> to the heap.
+<em>mem</em> is a pointer to the area of memory.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id179" id="sipgetsender" name="sipgetsender">9.34&nbsp;&nbsp;&nbsp;sipGetSender()</a></h2>
+<dl class="docutils">
+<dt>const void *sipGetSender()</dt>
+<dd>This returns a pointer to the last <tt class="docutils literal"><span class="pre">QObject</span></tt> instance that emitted a Qt
+signal. It is normally only used by PyQt to implement
+<tt class="docutils literal"><span class="pre">QObject.sender()</span></tt>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id180" id="sipgetwrapper" name="sipgetwrapper">9.35&nbsp;&nbsp;&nbsp;sipGetWrapper()</a></h2>
+<dl class="docutils">
+<dt>PyObject *sipGetWrapper(void *cppptr, sipWrapperType *type)</dt>
+<dd>This returns a borrowed reference to the wrapped instance object for a C
+structure or C++ class instance. If the structure or class instance
+hasn't been wrapped then <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned (and no Python exception is
+raised). <em>cppptr</em> is the pointer to the structure or class instance.
+<em>type</em> is the generated type corresponding to the C/C++ type.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id181" id="sipimportsymbol" name="sipimportsymbol">9.36&nbsp;&nbsp;&nbsp;sipImportSymbol()</a></h2>
+<dl class="docutils">
+<dt>void *sipImportSymbol(const char *name)</dt>
+<dd>Python does not allow extension modules to directly access symbols in
+another extension module. This imports a symbol, referenced by a name,
+that has previously been exported, using <a class="reference" href="#sipexportsymbol">sipExportSymbol()</a>, by another
+module. <em>name</em> is the name of the symbol. The value of the symbol is
+returned if there was no error. <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned if there is no such
+symbol.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id182" id="sipinttypeclassmap" name="sipinttypeclassmap">9.37&nbsp;&nbsp;&nbsp;sipIntTypeClassMap</a></h2>
+<p>This C structure is used with <a class="reference" href="#sipmapinttoclass">sipMapIntToClass()</a> to define a mapping
+between integer based RTTI and <a class="reference" href="#generated-type-objects">generated type objects</a>. The structure
+elements are as follows.</p>
+<dl class="docutils">
+<dt>int typeInt</dt>
+<dd>The integer RTTI.</dd>
+<dt>sipWrapperType **pyType.</dt>
+<dd>A pointer to the corresponding Python type object.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id183" id="sipissubclassinstance" name="sipissubclassinstance">9.38&nbsp;&nbsp;&nbsp;sipIsSubClassInstance()</a></h2>
+<dl class="docutils">
+<dt>int sipIsSubClassInstance(PyObject *obj, sipWrapperType *type)</dt>
+<dd><p class="first">This function is deprecated from SIP v4.4. It is equivalent to:</p>
+<pre class="last literal-block">
+sipCanConvertToInstance(obj, type, SIP_NOT_NONE | SIP_NO_CONVERTORS);
+</pre>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id184" id="siplong-asunsignedlong" name="siplong-asunsignedlong">9.39&nbsp;&nbsp;&nbsp;sipLong_AsUnsignedLong()</a></h2>
+<dl class="docutils">
+<dt>unsigned long sipLong_AsUnsignedLong(PyObject *obj)</dt>
+<dd>This function is a thin wrapper around PyLong_AsUnsignedLong() that works
+around a bug in Python v2.3.x and earlier when converting integer objects.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id185" id="sipmalloc" name="sipmalloc">9.40&nbsp;&nbsp;&nbsp;sipMalloc()</a></h2>
+<dl class="docutils">
+<dt>void *sipMalloc(size_t nbytes)</dt>
+<dd>This allocates an area of memory of size <em>nytes</em> on the heap using the
+Python <tt class="docutils literal"><span class="pre">PyMem_Malloc()</span></tt> function. If there was an error then <tt class="docutils literal"><span class="pre">NULL</span></tt> is
+returned and a Python exception raised. See <a class="reference" href="#sipfree">sipFree()</a>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id186" id="sipmapinttoclass" name="sipmapinttoclass">9.41&nbsp;&nbsp;&nbsp;sipMapIntToClass()</a></h2>
+<dl class="docutils">
+<dt>sipWrapperType *sipMapIntToClass(int type, const sipIntTypeClassMap *map, int maplen)</dt>
+<dd>This is used in <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code as a convenient way of
+converting integer based RTTI to the corresponding Python type object.
+<em>type</em> is the RTTI. <em>map</em> is the table of known RTTI and the corresponding
+type objects (see <a class="reference" href="#sipinttypeclassmap">sipIntTypeClassMap</a>). The entries in the table must be
+sorted in ascending order of RTTI. <em>maplen</em> is the number of entries in
+the table. The corresponding Python type object is returned, or <tt class="docutils literal"><span class="pre">NULL</span></tt>
+if <em>type</em> wasn't in <em>map</em>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id187" id="sipmapstringtoclass" name="sipmapstringtoclass">9.42&nbsp;&nbsp;&nbsp;sipMapStringToClass()</a></h2>
+<dl class="docutils">
+<dt>sipWrapperType *sipMapStringToClass(char *type, const sipStringTypeClassMap *map, int maplen)</dt>
+<dd>This is used in <a class="reference" href="#converttosubclasscode">%ConvertToSubClassCode</a> code as a convenient way of
+converting <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string based RTTI to the corresponding
+Python type object. <em>type</em> is the RTTI. <em>map</em> is the table of known RTTI
+and the corresponding type objects (see <a class="reference" href="#sipstringtypeclassmap">sipStringTypeClassMap</a>). The
+entries in the table must be sorted in ascending order of RTTI. <em>maplen</em>
+is the number of entries in the table. The corresponding Python type
+object is returned, or <tt class="docutils literal"><span class="pre">NULL</span></tt> if <em>type</em> wasn't in <em>map</em>.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id188" id="sipparseresult" name="sipparseresult">9.43&nbsp;&nbsp;&nbsp;sipParseResult()</a></h2>
+<dl class="docutils">
+<dt>int sipParseResult(int *iserr, PyObject *method, PyObject *result, const char *format, ...)</dt>
+<dd><p class="first">This converts a Python object (usually returned by a method) to C/C++ based
+on a format string and associated values in a similar way to the Python
+<tt class="docutils literal"><span class="pre">PyArg_ParseTuple()</span></tt> function. If there was an error then a negative
+value is returned and a Python exception is raised. If <em>iserr</em> is not
+<tt class="docutils literal"><span class="pre">NULL</span></tt> then the location it points to is set to a non-zero value.
+<em>method</em> is the Python bound method that returned the <em>result</em> object.
+<em>format</em> is the string of format characters.</p>
+<p>This is normally called by handwritten code specified with the
+<a class="reference" href="#virtualcatchercode">%VirtualCatcherCode</a> directive with <em>method</em> being the supplied
+<tt class="docutils literal"><span class="pre">sipMethod</span></tt> and <tt class="docutils literal"><span class="pre">result</span></tt> being the value returned by
+<a class="reference" href="#sipcallmethod">sipCallMethod()</a>.</p>
+<p>If <em>format</em> begins and ends with parentheses then <em>result</em> must be a Python
+tuple and the rest of <em>format</em> is applied to the tuple contents.</p>
+<p>In the following description the first letter is the format character, the
+entry in parentheses is the Python object type that the format character
+will convert, and the entry in brackets are the types of the C/C++ values
+to be passed.</p>
+<dl class="last docutils">
+<dt><tt class="docutils literal"><span class="pre">a</span></tt> (string) [char **, int *]</dt>
+<dd>Convert a Python string to a C/C++ character array and its length. If
+the Python object is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then the array and length are <tt class="docutils literal"><span class="pre">NULL</span></tt>
+and zero respectively.</dd>
+<dt><tt class="docutils literal"><span class="pre">b</span></tt> (integer) [bool *]</dt>
+<dd>Convert a Python integer to a C/C++ <tt class="docutils literal"><span class="pre">bool</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">c</span></tt> (string) [char *]</dt>
+<dd>Convert a Python string of length 1 to a C/C++ <tt class="docutils literal"><span class="pre">char</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">d</span></tt> (float) [double *]</dt>
+<dd>Convert a Python floating point number to a C/C++ <tt class="docutils literal"><span class="pre">double</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">e</span></tt> (integer) [enum *]</dt>
+<dd>Convert a Python integer to an anonymous C/C++ <tt class="docutils literal"><span class="pre">enum</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">f</span></tt> (float) [float *]</dt>
+<dd>Convert a Python floating point number to a C/C++ <tt class="docutils literal"><span class="pre">float</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">h</span></tt> (integer) [short *]</dt>
+<dd>Convert a Python integer to a C/C++ <tt class="docutils literal"><span class="pre">short</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">i</span></tt> (integer) [int *]</dt>
+<dd>Convert a Python integer to a C/C++ <tt class="docutils literal"><span class="pre">int</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">l</span></tt> (long) [long *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">long</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">m</span></tt> (long) [unsigned long *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">n</span></tt> (long) [long long *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">long</span> <span class="pre">long</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">o</span></tt> (long) [unsigned long long *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">long</span> <span class="pre">long</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">s</span></tt> (string) [char **]</dt>
+<dd>Convert a Python string to a C/C++ <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string. If the
+Python object is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then the string is <tt class="docutils literal"><span class="pre">NULL</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">t</span></tt> (long) [unsigned short *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">short</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">u</span></tt> (long) [unsigned int *]</dt>
+<dd>Convert a Python long to a C/C++ <tt class="docutils literal"><span class="pre">unsigned</span> <span class="pre">int</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">w</span></tt> (unicode) [wchar_t *]</dt>
+<dd>Convert a Python unicode object of length 1 to a C/C++ wide character.</dd>
+<dt><tt class="docutils literal"><span class="pre">x</span></tt> (unicode) [wchar_t **]</dt>
+<dd>Convert a Python unicode object to a C/C++ <tt class="docutils literal"><span class="pre">L'\0'</span></tt> terminated wide
+character string. If the Python object is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then the string
+is <tt class="docutils literal"><span class="pre">NULL</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">A</span></tt> (unicode) [wchar_t **, int *]</dt>
+<dd>Convert a Python unicode object to a C/C++ wide character array and its
+length. If the Python object is <tt class="docutils literal"><span class="pre">Py_None</span></tt> then the array and length
+are <tt class="docutils literal"><span class="pre">NULL</span></tt> and zero respectively.</dd>
+<dt><tt class="docutils literal"><span class="pre">Cf</span></tt> (wrapped class) [sipWrapperType *, int *, void **]</dt>
+<dd><p class="first">Convert a Python object to a C structure or a C++ class instance and
+return its state as described in <a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a>. <tt class="docutils literal"><span class="pre">f</span></tt> is a
+combination of the following flags encoded as an ASCII character by
+adding <tt class="docutils literal"><span class="pre">0</span></tt> to the combined value:</p>
+<blockquote class="last">
+<p>0x01 disallows the conversion of <tt class="docutils literal"><span class="pre">Py_None</span></tt> to <tt class="docutils literal"><span class="pre">NULL</span></tt></p>
+<p>0x02 implements the <a class="reference" href="#factory">Factory</a> annotation</p>
+<dl class="docutils">
+<dt>0x04 suppresses the return of the state of the returned C/C++</dt>
+<dd>instance. Note that the <tt class="docutils literal"><span class="pre">int</span> <span class="pre">*</span></tt> used to return the state is
+not passed if this flag is specified.</dd>
+</dl>
+</blockquote>
+</dd>
+<dt><tt class="docutils literal"><span class="pre">Df</span></tt> (mapped type) [const sipMappedType *, int *, void **]</dt>
+<dd><p class="first">Convert a Python object to a C structure or a C++ class instance
+implemented as a mapped type and return its state as described in
+<a class="reference" href="#sipconverttomappedtype">sipConvertToMappedType()</a>. <tt class="docutils literal"><span class="pre">f</span></tt> is a combination of the following
+flags encoded as an ASCII character by adding <tt class="docutils literal"><span class="pre">0</span></tt> to the combined
+value:</p>
+<blockquote class="last">
+<p>0x01 disallows the conversion of <tt class="docutils literal"><span class="pre">Py_None</span></tt> to <tt class="docutils literal"><span class="pre">NULL</span></tt></p>
+<p>0x02 implements the <a class="reference" href="#factory">Factory</a> annotation</p>
+<dl class="docutils">
+<dt>0x04 suppresses the return of the state of the returned C/C++</dt>
+<dd>instance. Note that the <tt class="docutils literal"><span class="pre">int</span> <span class="pre">*</span></tt> used to return the state is
+not passed if this flag is specified.</dd>
+</dl>
+</blockquote>
+</dd>
+<dt><tt class="docutils literal"><span class="pre">E</span></tt> (wrapped enum) [PyTypeObject *, enum *]</dt>
+<dd>Convert a Python named enum type to the corresponding C/C++ <tt class="docutils literal"><span class="pre">enum</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">L</span></tt> (object) [<em>type</em> *(*)(PyObject *obj, int *iserr), void **]</dt>
+<dd>Convert a Python object to a C structure or a C++ class instance using
+a convertor function. See <a class="reference" href="#generated-type-convertors">Generated Type Convertors</a>. This is
+deprecated from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">M</span></tt> (object) [<em>type</em> *(*)(PyObject *obj, int *iserr), void **]</dt>
+<dd>Convert a Python object to a C structure or a C++ class instance using
+a convertor function. If the structure or class instance pointer is
+<tt class="docutils literal"><span class="pre">NULL</span></tt> then return an error. See <a class="reference" href="#generated-type-convertors">Generated Type Convertors</a>. This
+is deprecated from SIP v4.4.</dd>
+<dt><tt class="docutils literal"><span class="pre">N</span></tt> (object) [PyTypeObject *, PyObject **]</dt>
+<dd>A Python object is checked to see if it is a certain type and then
+returned without any conversions. The reference count is incremented.
+The Python object may be <tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">O</span></tt> (object) [PyObject **]</dt>
+<dd>A Python object is returned without any conversions. The reference
+count is incremented.</dd>
+<dt><tt class="docutils literal"><span class="pre">T</span></tt> (object) [PyTypeObject *, PyObject **]</dt>
+<dd>A Python object is checked to see if it is a certain type and then
+returned without any conversions. The reference count is incremented.
+The Python object may not be <tt class="docutils literal"><span class="pre">Py_None</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">V</span></tt> (sip.voidptr) [void *]</dt>
+<dd>Convert a Python <tt class="docutils literal"><span class="pre">sip.voidptr</span></tt> object to a C/C++ <tt class="docutils literal"><span class="pre">void</span> <span class="pre">*</span></tt>.</dd>
+<dt><tt class="docutils literal"><span class="pre">Z</span></tt> (object) []</dt>
+<dd>Check that a Python object is <tt class="docutils literal"><span class="pre">Py_None</span></tt>. No value is returned.</dd>
+</dl>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id189" id="sipreleaseinstance" name="sipreleaseinstance">9.44&nbsp;&nbsp;&nbsp;sipReleaseInstance()</a></h2>
+<dl class="docutils">
+<dt>void sipReleaseInstance(void *cpp, sipWrapperType *type, int state)</dt>
+<dd>This destroys a wrapped C/C++ instance if it was a temporary instance. It
+is called after a call to either <a class="reference" href="#sipconverttoinstance">sipConvertToInstance()</a> or
+<a class="reference" href="#sipforceconverttoinstance">sipForceConvertToInstance()</a>. <em>cpp</em> is the wrapped C/C++ instance.
+<em>type</em> is the generated type corresponding to <em>cpp</em>. <em>state</em> describes the
+state of the instance.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id190" id="sipreleasemappedtype" name="sipreleasemappedtype">9.45&nbsp;&nbsp;&nbsp;sipReleaseMappedType()</a></h2>
+<dl class="docutils">
+<dt>void sipReleaseMappedType(void *cpp, const sipMappedType *mt, int state)</dt>
+<dd>This destroys a wrapped C/C++ mapped type if it was a temporary instance.
+It is called after a call to either <a class="reference" href="#sipconverttomappedtype">sipConvertToMappedType()</a> or
+<a class="reference" href="#sipforceconverttomappedtype">sipForceConvertToMappedType()</a>. <em>cpp</em> is the wrapped C/C++ instance.
+<em>mt</em> is the opaque structure returned by <a class="reference" href="#sipfindmappedtype">sipFindMappedType()</a>. <em>state</em>
+describes the state of the instance.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id191" id="sipstringtypeclassmap" name="sipstringtypeclassmap">9.46&nbsp;&nbsp;&nbsp;sipStringTypeClassMap</a></h2>
+<p>This C structure is used with <a class="reference" href="#sipmapstringtoclass">sipMapStringToClass()</a> to define a mapping
+between <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string based RTTI and <a class="reference" href="#generated-type-objects">generated type objects</a>.
+The structure elements are as follows.</p>
+<dl class="docutils">
+<dt>char *typeString</dt>
+<dd>The <tt class="docutils literal"><span class="pre">'\0'</span></tt> terminated string RTTI.</dd>
+<dt>sipWrapperType **pyType.</dt>
+<dd>A pointer to the corresponding Python type object.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id192" id="siptransfer" name="siptransfer">9.47&nbsp;&nbsp;&nbsp;sipTransfer()</a></h2>
+<dl class="docutils">
+<dt>void sipTransfer(PyObject *obj, int tocpp)</dt>
+<dd><p class="first">This function is deprecated from SIP v4.3. If <em>tocpp</em> is non-zero then the
+equivalent call is:</p>
+<pre class="literal-block">
+sipTransferTo(obj, obj);
+</pre>
+<p>If <em>tocpp</em> is zero then the equivalent call is:</p>
+<pre class="last literal-block">
+sipTransferBack(obj);
+</pre>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id193" id="siptransferback" name="siptransferback">9.48&nbsp;&nbsp;&nbsp;sipTransferBack()</a></h2>
+<dl class="docutils">
+<dt>void sipTransferBack(PyObject *obj)</dt>
+<dd>This transfers ownership of a Python wrapped instance to Python (see
+<a class="reference" href="#ownership-of-objects">Ownership of Objects</a>). <em>obj</em> is the wrapped instance. In addition,
+any association of the instance with regard to the cyclic garbage
+collector with another instance is removed.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id194" id="siptransferto" name="siptransferto">9.49&nbsp;&nbsp;&nbsp;sipTransferTo()</a></h2>
+<dl class="docutils">
+<dt>void sipTransferTo(PyObject *obj, PyObject *owner)</dt>
+<dd>This transfers ownership of a Python wrapped instance to C++ (see
+<a class="reference" href="#ownership-of-objects">Ownership of Objects</a>). <em>obj</em> is the wrapped instance. <em>owner</em> is an
+optional wrapped instance that <em>obj</em> becomes associated with with regard
+to the cyclic garbage collector. If <em>owner</em> is <tt class="docutils literal"><span class="pre">NULL</span></tt> then no such
+association is made. If <em>owner</em> is the same value as <em>obj</em> then any
+reference cycles involving <em>obj</em> can never be detected or broken by the
+cyclic garbage collector. Responsibility for calling the C++ instance's
+destructor is always transfered to C++.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id195" id="sipwrapper" name="sipwrapper">9.50&nbsp;&nbsp;&nbsp;sipWrapper</a></h2>
+<p>This is a C structure that represents a Python wrapped instance. It is an
+extension of the Python <tt class="docutils literal"><span class="pre">PyObject</span></tt> structure and so may be safely cast to
+<tt class="docutils literal"><span class="pre">PyObject</span></tt>. It includes a member called <tt class="docutils literal"><span class="pre">user</span></tt> which is of type
+<tt class="docutils literal"><span class="pre">PyObject</span> <span class="pre">*</span></tt>. This can be used for any purpose by handwritten code and will
+automatically be garbage collected at the appropriate time.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id196" id="sipwrapper-check" name="sipwrapper-check">9.51&nbsp;&nbsp;&nbsp;sipWrapper_Check()</a></h2>
+<dl class="docutils">
+<dt>int sipWrapper_Check(PyObject *obj)</dt>
+<dd>This returns a non-zero value if a Python object is a wrapped instance.
+<em>obj</em> is the Python object.</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id197" id="sipwrappertype" name="sipwrappertype">9.52&nbsp;&nbsp;&nbsp;sipWrapperType</a></h2>
+<p>This is a C structure that represents a SIP generated type object. It is an
+extension of the Python <tt class="docutils literal"><span class="pre">PyTypeObject</span></tt> structure (which is itself an
+extension of the Python <tt class="docutils literal"><span class="pre">PyObject</span></tt> structure) and so may be safely cast to
+<tt class="docutils literal"><span class="pre">PyTypeObject</span></tt> (and <tt class="docutils literal"><span class="pre">PyObject</span></tt>).</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id198" id="generated-type-convertors" name="generated-type-convertors">9.53&nbsp;&nbsp;&nbsp;Generated Type Convertors</a></h2>
+<p>These functions are deprecated from SIP v4.4.</p>
+<p>SIP generates functions for all types being wrapped (including mapped types
+defined with the <a class="reference" href="#mappedtype">%MappedType</a> directive) that convert a Python object to the
+C structure or C++ class instance. The name of this convertor is the name of
+the structure or class prefixed by <tt class="docutils literal"><span class="pre">sipForceConvertTo_</span></tt>.</p>
+<dl class="docutils">
+<dt>void *sipForceConvertTo_*class*(PyObject *obj, int *iserr)</dt>
+<dd><em>obj</em> is the Python object to convert. If <em>obj</em> is <tt class="docutils literal"><span class="pre">NULL</span></tt> or the
+location pointed to by <em>iserr</em> is non-zero then the conversion is not
+attempted and <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned. If there was an error then the
+location pointed to by <em>iserr</em> is set to a non-zero value, a Python
+exception is raised, and <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned.</dd>
+</dl>
+<p>SIP also generates functions for mapped types that convert a C structure or
+C++ class instance to a Python object. The name of this convertor is the name
+of the structure or class prefixed by <tt class="docutils literal"><span class="pre">sipConvertFrom_</span></tt>.</p>
+<dl class="docutils">
+<dt>PyObject *sipConvertFrom_*class*(void *cppptr)</dt>
+<dd><em>cppptr</em> is a pointer to the C structure or C++ class instance to convert.
+If there was an error then <tt class="docutils literal"><span class="pre">NULL</span></tt> is returned and a Python exception
+raised.</dd>
+</dl>
+<p>The convertor functions of all imported types are available to handwritten
+code.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id199" id="generated-type-objects" name="generated-type-objects">9.54&nbsp;&nbsp;&nbsp;Generated Type Objects</a></h2>
+<p>SIP generates a type object for each C structure or C++ class being wrapped.
+These are <a class="reference" href="#sipwrappertype">sipWrapperType</a> structures and are used extensively by the SIP API.</p>
+<p>These objects are named with the structure or class name prefixed by
+<tt class="docutils literal"><span class="pre">sipClass_</span></tt>. For example, the type object for class <tt class="docutils literal"><span class="pre">Klass</span></tt> is
+<tt class="docutils literal"><span class="pre">sipClass_Klass</span></tt>.</p>
+<p>The type objects of all imported classes are available to handwritten code.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id200" id="generated-named-enum-type-objects" name="generated-named-enum-type-objects">9.55&nbsp;&nbsp;&nbsp;Generated Named Enum Type Objects</a></h2>
+<p>SIP generates a type object for each named enum being wrapped. These are
+PyTypeObject structures. (Anonymous enums are wrapped as Python integers.)</p>
+<p>These objects are named with the fully qualified enum name (i.e. including any
+enclosing scope) prefixed by <tt class="docutils literal"><span class="pre">sipEnum_</span></tt>. For example, the type object for
+enum <tt class="docutils literal"><span class="pre">Enum</span></tt> defined in class <tt class="docutils literal"><span class="pre">Klass</span></tt> is <tt class="docutils literal"><span class="pre">sipEnum_Klass_Enum</span></tt>.</p>
+<p>The type objects of all imported named enums are available to handwritten code.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id201" id="generated-derived-classes" name="generated-derived-classes">9.56&nbsp;&nbsp;&nbsp;Generated Derived Classes</a></h2>
+<p>For most C++ classes being wrapped SIP generates a derived class with the same
+name prefixed by <tt class="docutils literal"><span class="pre">sip</span></tt>. For example, the derived class for class <tt class="docutils literal"><span class="pre">Klass</span></tt>
+is <tt class="docutils literal"><span class="pre">sipKlass</span></tt>.</p>
+<p>If a C++ class doesn't have any virtual or protected methods in it or any of
+it's super-class hierarchy, or does not emit any Qt signals, then a derived
+class is not generated.</p>
+<p>Most of the time handwritten code should ignore the derived classes. The only
+exception is that handwritten constructor code specified using the
+<a class="reference" href="#methodcode">%MethodCode</a> directive should call the derived class's constructor (which
+has the same C++ signature) rather then the wrapped class's constructor.</p>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id202" id="generated-exception-objects" name="generated-exception-objects">9.57&nbsp;&nbsp;&nbsp;Generated Exception Objects</a></h2>
+<p>SIP generates a Python object for each exception defined with the <cite>%Exception_</cite>
+directive.</p>
+<p>These objects are named with the fully qualified exception name (i.e. including
+any enclosing scope) prefixed by <tt class="docutils literal"><span class="pre">sipException_</span></tt>. For example, the type
+object for enum <tt class="docutils literal"><span class="pre">Except</span></tt> defined in class <tt class="docutils literal"><span class="pre">Klass</span></tt> is
+<tt class="docutils literal"><span class="pre">sipException_Klass_Except</span></tt>.</p>
+<p>The objects of all imported exceptions are available to handwritten code.</p>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id203" id="using-the-sip-module-in-applications" name="using-the-sip-module-in-applications">10&nbsp;&nbsp;&nbsp;Using the SIP Module in Applications</a></h1>
+<p>The main purpose of the SIP module is to provide functionality common to all
+SIP generated bindings. It is loaded automatically and most of the time you
+will completely ignore it. However, it does expose some functionality that can
+be used by applications.</p>
+<dl class="docutils">
+<dt>cast(obj, type)</dt>
+<dd>This does the Python equivalent of casting a C++ instance to one of its
+sub or super-class types. <em>obj</em> is the Python object and <em>type</em> is the
+type. A new Python object is returned that wraps the same C++ instance as
+<em>obj</em>, but has the type <em>type</em>.</dd>
+<dt>delete(obj)</dt>
+<dd>For C++ instances this calls the C++ destructor. For C structures it
+returns the structure's memory to the heap. <em>obj</em> is the Python object.</dd>
+<dt>isdeleted(obj)</dt>
+<dd>This returns True if the C++ instance or C structure has been destroyed or
+returned to the heap. <em>obj</em> is the Python object.</dd>
+<dt>setdeleted(obj)</dt>
+<dd>This marks the C++ instance or C structure as having been destroyed or
+returned to the heap so that future references to it raise an exception
+rather than cause a program crash. Normally SIP handles such things
+automatically, but there are circumstances where this isn't possible.
+<em>obj</em> is the Python object.</dd>
+<dt>settracemask(mask)</dt>
+<dd><p class="first">If the bindings have been created with SIP's <tt class="docutils literal"><span class="pre">-r</span></tt> command line option
+then the generated code will produce debugging statements that trace the
+execution of the code. (It is particularly useful when trying to
+understand the operation of a C++ library's virtual function calls.)</p>
+<p>Debugging statements are generated at the following points:</p>
+<ul class="simple">
+<li>in a C++ virtual function (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0001</span></tt>)</li>
+<li>in a C++ constructor (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0002</span></tt>)</li>
+<li>in a C++ destructor (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0004</span></tt>)</li>
+<li>in a Python type's __init__ method (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0008</span></tt>)</li>
+<li>in a Python type's __del__ method (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0010</span></tt>)</li>
+<li>in a Python type's ordinary method (<em>mask</em> is <tt class="docutils literal"><span class="pre">0x0020</span></tt>).</li>
+</ul>
+<p class="last">By default the trace mask is zero and all debugging statements are
+disabled.</p>
+</dd>
+<dt>SIP_VERSION</dt>
+<dd>This is a Python integer object that represents the SIP version number as
+a 3 part hexadecimal number (e.g. v4.0.0 is represented as <tt class="docutils literal"><span class="pre">0x040000</span></tt>).
+It was first implemented in SIP v4.2.</dd>
+<dt>SIP_VERSION_STR</dt>
+<dd>This is a Python string object that defines the SIP version number as
+represented as a string. For development snapshots it will start with
+<tt class="docutils literal"><span class="pre">snapshot-</span></tt>. It was first implemented in SIP v4.3.</dd>
+<dt>transfer(obj, direction)</dt>
+<dd><p class="first">This function is deprecated from SIP v4.3. If <em>direction</em> is non-zero then
+the equivalent call is:</p>
+<pre class="literal-block">
+sip.transferto(obj, None)
+</pre>
+<p>If <em>direction</em> is zero then the equivalent call is:</p>
+<pre class="last literal-block">
+sip.transferback(obj)
+</pre>
+</dd>
+<dt>transferback(obj)</dt>
+<dd>This function is a wrapper around <a class="reference" href="#siptransferback">sipTransferBack()</a>.</dd>
+<dt>transferto(obj, owner)</dt>
+<dd>This function is a wrapper around <a class="reference" href="#siptransferto">sipTransferTo()</a>.</dd>
+<dt>unwrapinstance(obj)</dt>
+<dd>Return the address, as a number, of the wrapped C/C++ structure or class
+instance <em>obj</em>.</dd>
+<dt>voidptr</dt>
+<dd><p class="first">This is the type object for the type SIP uses to represent a C/C++
+<tt class="docutils literal"><span class="pre">void</span> <span class="pre">*</span></tt>. The type constructor takes a single argument that must either
+be another <tt class="docutils literal"><span class="pre">voidptr</span></tt>, <tt class="docutils literal"><span class="pre">None</span></tt>, a Python CObject, or an integer. The
+type has the following methods:</p>
+<dl class="last docutils">
+<dt>__int__()</dt>
+<dd>This returns the pointer as an integer.</dd>
+<dt>__hex__()</dt>
+<dd>This returns the pointer as a hexadecimal string.</dd>
+<dt>ascobject()</dt>
+<dd>This returns the pointer as a Python CObject.</dd>
+<dt>asstring(nbytes)</dt>
+<dd>This returns a copy of the first <em>nbytes</em> of memory at the pointer as a
+Python string.</dd>
+</dl>
+</dd>
+<dt>wrapinstance(addr, type)</dt>
+<dd>A C/C++ structure or class instance is wrapped and the Python object
+created is returned. If the instance has already been wrapped then a new
+reference to the existing object is returned. <em>addr</em> is the address of
+the instance represented as a number. <em>type</em> is the type of the object
+(e.g. <tt class="docutils literal"><span class="pre">qt.QWidget</span></tt>).</dd>
+<dt>wrapper</dt>
+<dd>This is the type object of the base type of all instances wrapped by SIP.</dd>
+<dt>wrappertype</dt>
+<dd>This is the type object of the metatype of the <tt class="docutils literal"><span class="pre">wrapper</span></tt> type.</dd>
+</dl>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id204" id="the-sip-build-system" name="the-sip-build-system">11&nbsp;&nbsp;&nbsp;The SIP Build System</a></h1>
+<p>The purpose of the build system is to make it easy for you to write
+configuration scripts in Python for your own bindings. The build system takes
+care of the details of particular combinations of platform and compiler. It
+supports over 50 different platform/compiler combinations.</p>
+<p>The build system is implemented as a pure Python module called <tt class="docutils literal"><span class="pre">sipconfig</span></tt>
+that contains a number of classes and functions. Using this module you can
+write bespoke configuration scripts (e.g. PyQt's <tt class="docutils literal"><span class="pre">configure.py</span></tt>) or use it
+with other Python based build systems (e.g.
+<a class="reference" href="http://www.python.org/sigs/distutils-sig/distutils.html">Distutils</a> and
+<a class="reference" href="http://www.scons.org">SCons</a>).</p>
+<p>An important feature of SIP is the ability to generate bindings that are built
+on top of existing bindings. For example, both
+<a class="reference" href="http://www.riverbankcomputing.co.uk/pykde/">PyKDE</a> and
+<a class="reference" href="http://pyqwt.sourceforge.net/">PyQwt</a> are built on top of PyQt but all three
+packages are maintained by different developers. To make this easier PyQt
+includes its own configuration module, <tt class="docutils literal"><span class="pre">pyqtconfig</span></tt>, that contains additional
+classes intended to be used by the configuration scripts of bindings built on
+top of PyQt. The SIP build system includes facilities that do a lot of the
+work of creating these additional configuration modules.</p>
+<div class="section">
+<h2><a class="toc-backref" href="#id205" id="sipconfig-functions" name="sipconfig-functions">11.1&nbsp;&nbsp;&nbsp;<tt class="docutils literal"><span class="pre">sipconfig</span></tt> Functions</a></h2>
+<dl class="docutils">
+<dt>create_config_module(module, template, content, macros=None)</dt>
+<dd><p class="first">This creates a configuration module (e.g. <tt class="docutils literal"><span class="pre">pyqtconfig</span></tt>) from a template
+file and a string.</p>
+<p><tt class="docutils literal"><span class="pre">module</span></tt> is the name of the configuration module file to create.</p>
+<p><tt class="docutils literal"><span class="pre">template</span></tt> is the name of the template file.</p>
+<p><tt class="docutils literal"><span class="pre">content</span></tt> is a string which replaces every occurence of the pattern
+<tt class="docutils literal"><span class="pre">&#64;SIP_CONFIGURATION&#64;</span></tt> in the template file. The content string is
+usually created from a Python dictionary using
+<tt class="docutils literal"><span class="pre">sipconfig.create_content()</span></tt>. <tt class="docutils literal"><span class="pre">content</span></tt> may also be a dictionary, in
+which case <tt class="docutils literal"><span class="pre">sipconfig.create_content()</span></tt> is automatically called to
+convert it to a string.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">macros</span></tt> is an optional dictionary of platform specific build macros. It
+is only used if <tt class="docutils literal"><span class="pre">sipconfig.create_content()</span></tt> is called automatically to
+convert a <tt class="docutils literal"><span class="pre">content</span></tt> dictionary to a string.</p>
+</dd>
+<dt>create_content(dict, macros=None)</dt>
+<dd><p class="first">This converts a Python dictionary to a string that can be parsed by the
+Python interpreter and converted back to an equivalent dictionary. It is
+typically used to generate the content string for
+<tt class="docutils literal"><span class="pre">sipconfig.create_config_module()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">dict</span></tt> is the Python dictionary to convert.</p>
+<p><tt class="docutils literal"><span class="pre">macros</span></tt> is the optional dictionary of platform specific build macros.</p>
+<p class="last">Returns the dictionary as a string.</p>
+</dd>
+<dt>create_wrapper(script, wrapper, gui=0)</dt>
+<dd><p class="first">This creates a platform dependent executable wrapper around a Python
+script.</p>
+<p><tt class="docutils literal"><span class="pre">script</span></tt> is the full pathname of the script.</p>
+<p><tt class="docutils literal"><span class="pre">wrapper</span></tt> is the pathname of the wrapper to create.</p>
+<p><tt class="docutils literal"><span class="pre">gui</span></tt> is non-zero if a GUI enabled version of the interpreter should be
+used on platforms that require it.</p>
+<p class="last">Returns the platform specific name of the wrapper.</p>
+</dd>
+<dt>error(msg)</dt>
+<dd><p class="first">This displays an error message on <tt class="docutils literal"><span class="pre">stderr</span></tt> and calls <tt class="docutils literal"><span class="pre">sys.exit()</span></tt> with
+a value of 1.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">msg</span></tt> is the text of the message and should not include any newline
+characters.</p>
+</dd>
+<dt>format(msg, leftmargin=0, rightmargin=78)</dt>
+<dd><p class="first">This formats a message by inserting newline characters at appropriate
+places.</p>
+<p><tt class="docutils literal"><span class="pre">msg</span></tt> is the text of the message and should not include any newline
+characters.</p>
+<p><tt class="docutils literal"><span class="pre">leftmargin</span></tt> is the optional position of the left margin.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">rightmargin</span></tt> is the optional position of the right margin.</p>
+</dd>
+<dt>inform(msg)</dt>
+<dd><p class="first">This displays an information message on <tt class="docutils literal"><span class="pre">stdout</span></tt>.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">msg</span></tt> is the text of the message and should not include any newline
+characters.</p>
+</dd>
+<dt>parse_build_macros(filename, names, overrides=None, properties=None)</dt>
+<dd><p class="first">This parses a qmake compatible file of build system macros and converts it
+to a dictionary. A macro is a name/value pair. The dictionary is returned
+or None if any of the overrides was invalid.</p>
+<p><tt class="docutils literal"><span class="pre">filename</span></tt> is the name of the file to parse.</p>
+<p><tt class="docutils literal"><span class="pre">names</span></tt> is a list of the macro names to extract from the file.</p>
+<p><tt class="docutils literal"><span class="pre">overrides</span></tt> is an optional list of macro names and values that modify
+those found in the file. They are of the form <em>name=value</em> (in which case
+the value replaces the value found in the file) or <em>name+=value</em> (in which
+case the value is appended to the value found in the file).</p>
+<p class="last"><tt class="docutils literal"><span class="pre">properties</span></tt> is an optional dictionary of property name and values that
+are used to resolve any expressions of the form <tt class="docutils literal"><span class="pre">$[name]</span></tt> in the file.</p>
+</dd>
+<dt>read_version(filename, description, numdefine=None, strdefine=None)</dt>
+<dd><p class="first">This extracts version information for a package from a file, usually a C or
+C++ header file. The version information must each be specified as a
+<tt class="docutils literal"><span class="pre">#define</span></tt> of a numeric (hexadecimal or decimal) value and/or a string
+value.</p>
+<p><tt class="docutils literal"><span class="pre">filename</span></tt> is the name of the file to read.</p>
+<p><tt class="docutils literal"><span class="pre">description</span></tt> is a descriptive name of the package used in error
+messages.</p>
+<p><tt class="docutils literal"><span class="pre">numdefine</span></tt> is the optional name of the <tt class="docutils literal"><span class="pre">#define</span></tt> of the version as a
+number. If it is <tt class="docutils literal"><span class="pre">None</span></tt> then the numeric version is ignored.</p>
+<p><tt class="docutils literal"><span class="pre">strdefine</span></tt> is the optional name of the <tt class="docutils literal"><span class="pre">#define</span></tt> of the version as a
+string. If it is <tt class="docutils literal"><span class="pre">None</span></tt> then the string version is ignored.</p>
+<p class="last">Returns a tuple of the numeric and string versions. <tt class="docutils literal"><span class="pre">sipconfig.error()</span></tt>
+is called if either were required but could not be found.</p>
+</dd>
+<dt>version_to_sip_tag(version, tags, description)</dt>
+<dd><p class="first">This converts a version number to a SIP version tag. SIP uses the
+<a class="reference" href="#timeline">%Timeline</a> directive to define the chronology of the different versions
+of the C/C++ library being wrapped. Typically it is not necessary to
+define a version tag for every version of the library, but only for those
+versions that affect the library's API as SIP sees it.</p>
+<p><tt class="docutils literal"><span class="pre">version</span></tt> is the numeric version number of the C/C++ library being
+wrapped. If it is negative then the latest version is assumed. (This is
+typically useful if a snapshot is indicated by a negative version number.)</p>
+<p><tt class="docutils literal"><span class="pre">tags</span></tt> is the dictionary of SIP version tags keyed by the corresponding
+C/C++ library version number. The tag used is the one with the smallest
+key (i.e. earliest version) that is greater than <tt class="docutils literal"><span class="pre">version</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">description</span></tt> is a descriptive name of the C/C++ library used in error
+messages.</p>
+<p class="last">Returns the SIP version tag. <tt class="docutils literal"><span class="pre">sipconfig.error()</span></tt> is called if the C/C++
+library version number did not correspond to a SIP version tag.</p>
+</dd>
+<dt>version_to_string(v)</dt>
+<dd><p class="first">This converts a 3 part version number encoded as a hexadecimal value to a
+string.</p>
+<p><tt class="docutils literal"><span class="pre">v</span></tt> is the version number.</p>
+<p class="last">Returns a string.</p>
+</dd>
+</dl>
+</div>
+<div class="section">
+<h2><a class="toc-backref" href="#id206" id="sipconfig-classes" name="sipconfig-classes">11.2&nbsp;&nbsp;&nbsp;<tt class="docutils literal"><span class="pre">sipconfig</span></tt> Classes</a></h2>
+<dl class="docutils">
+<dt>Configuration</dt>
+<dd><p class="first">This class encapsulates configuration values that can be accessed as
+instance objects. A sub-class may provide a dictionary of additional
+configuration values in its constructor the elements of which will have
+precedence over the super-class's values.</p>
+<p>The following configuration values are provided:</p>
+<blockquote>
+<dl class="docutils">
+<dt>default_bin_dir</dt>
+<dd>The name of the directory where executables should be installed by
+default.</dd>
+<dt>default_mod_dir</dt>
+<dd>The name of the directory where SIP generated modules should be
+installed by default.</dd>
+<dt>default_sip_dir</dt>
+<dd>The name of the base directory where the <tt class="docutils literal"><span class="pre">.sip</span></tt> files for SIP
+generated modules should be installed by default. A sub-directory
+with the same name as the module should be created and its <tt class="docutils literal"><span class="pre">.sip</span></tt>
+files should be installed in the sub-directory. The <tt class="docutils literal"><span class="pre">.sip</span></tt>
+files only need to be installed if you might want to build other
+bindings based on them.</dd>
+<dt>platform</dt>
+<dd>The name of the platform/compiler for which the build system has
+been configured for.</dd>
+<dt>py_conf_inc_dir</dt>
+<dd>The name of the directory containing the <tt class="docutils literal"><span class="pre">pyconfig.h</span></tt> header
+file.</dd>
+<dt>py_inc_dir</dt>
+<dd>The name of the directory containing the <tt class="docutils literal"><span class="pre">Python.h</span></tt> header file.</dd>
+<dt>py_lib_dir</dt>
+<dd>The name of the directory containing the Python interpreter
+library.</dd>
+<dt>py_version</dt>
+<dd>The Python version as a 3 part hexadecimal number (e.g. v2.3.3 is
+represented as <tt class="docutils literal"><span class="pre">0x020303</span></tt>).</dd>
+<dt>sip_bin</dt>
+<dd>The full pathname of the SIP executable.</dd>
+<dt>sip_config_args</dt>
+<dd>The command line passed to <tt class="docutils literal"><span class="pre">configure.py</span></tt> when SIP was
+configured.</dd>
+<dt>sip_inc_dir</dt>
+<dd>The name of the directory containing the <tt class="docutils literal"><span class="pre">sip.h</span></tt> header file.</dd>
+<dt>sip_mod_dir</dt>
+<dd>The name of the directory containing the SIP module.</dd>
+<dt>sip_version</dt>
+<dd>The SIP version as a 3 part hexadecimal number (e.g. v4.0.0 is
+represented as <tt class="docutils literal"><span class="pre">0x040000</span></tt>).</dd>
+<dt>sip_version_str</dt>
+<dd>The SIP version as a string. For development snapshots it will
+start with <tt class="docutils literal"><span class="pre">snapshot-</span></tt>.</dd>
+<dt>universal</dt>
+<dd>The name of the MacOS/X SDK used when creating universal binaries.</dd>
+</dl>
+</blockquote>
+<dl class="last docutils">
+<dt>__init__(self, sub_cfg=None)</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">sub_cfg</span></tt> is an optional list of sub-class configurations. It should
+only be used by the <tt class="docutils literal"><span class="pre">__init__()</span></tt> method of a sub-class to append its
+own dictionary of configuration values before passing the list to its
+super-class.</p>
+</dd>
+<dt>build_macros(self)</dt>
+<dd>Return the dictionary of platform specific build macros.</dd>
+<dt>set_build_macros(self, macros)</dt>
+<dd>Set the dictionary of platform specific build macros to be use when
+generating Makefiles. Normally there is no need to change the default
+macros.</dd>
+</dl>
+</dd>
+<dt>Makefile</dt>
+<dd><p class="first">This class encapsulates a Makefile. It is intended to be sub-classed to
+generate Makefiles for particular purposes. It handles all platform and
+compiler specific flags, but allows them to be adjusted to suit the
+requirements of a particular module or program. These are defined using a
+number of macros which can be accessed as instance objects.</p>
+<p>The following instance objects are provided to help in fine tuning the
+generated Makefile:</p>
+<blockquote>
+<dl class="docutils">
+<dt>chkdir</dt>
+<dd>A string that will check for the existence of a directory.</dd>
+<dt>config</dt>
+<dd>A reference to the <tt class="docutils literal"><span class="pre">configuration</span></tt> argument that was passed to
+the constructor.</dd>
+<dt>console</dt>
+<dd>A reference to the <tt class="docutils literal"><span class="pre">console</span></tt> argument that was passed to the
+constructor.</dd>
+<dt>copy</dt>
+<dd>A string that will copy a file.</dd>
+<dt>extra_cflags</dt>
+<dd>A list of additional flags passed to the C compiler.</dd>
+<dt>extra_cxxflags</dt>
+<dd>A list of additional flags passed to the C++ compiler.</dd>
+<dt>extra_defines</dt>
+<dd>A list of additional macro names passed to the C/C++ preprocessor.</dd>
+<dt>extra_include_dirs</dt>
+<dd>A list of additional include directories passed to the C/C++
+preprocessor.</dd>
+<dt>extra_lflags</dt>
+<dd>A list of additional flags passed to the linker.</dd>
+<dt>extra_lib_dirs</dt>
+<dd>A list of additional library directories passed to the linker.</dd>
+<dt>extra_libs</dt>
+<dd>A list of additional libraries passed to the linker. The names of
+the libraries must be in platform neutral form (i.e. without any
+platform specific prefixes, version numbers or extensions).</dd>
+<dt>generator</dt>
+<dd>A string that defines the platform specific style of Makefile. The
+only supported values are <tt class="docutils literal"><span class="pre">UNIX</span></tt> and something else that is not
+<tt class="docutils literal"><span class="pre">UNIX</span></tt>.</dd>
+<dt>mkdir</dt>
+<dd>A string that will create a directory.</dd>
+<dt>rm</dt>
+<dd>A string that will remove a file.</dd>
+</dl>
+</blockquote>
+<dl class="last docutils">
+<dt>__init__(self, configuration, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=None, debug=0, dir=None, makefile=&quot;Makefile&quot;, installs=None, universal='')</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p><tt class="docutils literal"><span class="pre">configuration</span></tt> is the current configuration and is an instance of
+the <tt class="docutils literal"><span class="pre">Configuration</span></tt> class or a sub-class.</p>
+<p><tt class="docutils literal"><span class="pre">console</span></tt> is set if the target is a console (rather than GUI) target.
+This only affects Windows and is ignored on other platforms.</p>
+<p><tt class="docutils literal"><span class="pre">qt</span></tt> is set if the target uses Qt. For Qt v4 a list of Qt libraries
+may be specified and a simple non-zero value implies QtCore and QtGui.</p>
+<p><tt class="docutils literal"><span class="pre">opengl</span></tt> is set if the target uses OpenGL.</p>
+<p><tt class="docutils literal"><span class="pre">python</span></tt> is set if the target uses Python.h.</p>
+<p><tt class="docutils literal"><span class="pre">threaded</span></tt> is set if the target requires thread support. It is set
+automatically if the target uses Qt and Qt has thread support enabled.</p>
+<p><tt class="docutils literal"><span class="pre">warnings</span></tt> is set if compiler warning messages should be enabled.
+The default of <tt class="docutils literal"><span class="pre">None</span></tt> means that warnings are enabled for SIP v4.x
+and disabled for SIP v3.x.</p>
+<p><tt class="docutils literal"><span class="pre">debug</span></tt> is set if debugging symbols should be generated.</p>
+<p><tt class="docutils literal"><span class="pre">dir</span></tt> is the name of the directory where build files are read from
+and Makefiles are written to. The default of <tt class="docutils literal"><span class="pre">None</span></tt> means the
+current directory is used.</p>
+<p><tt class="docutils literal"><span class="pre">makefile</span></tt> is the name of the generated Makefile.</p>
+<p><tt class="docutils literal"><span class="pre">installs</span></tt> is a list of extra install targets. Each element is a two
+part list, the first of which is the source and the second is the
+destination. If the source is another list then it is a list of source
+files and the destination is a directory.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">universal</span></tt> is the name of the SDK if universal binaries are to be
+created under MacOS/X.</p>
+</dd>
+<dt>clean_build_file_objects(self, mfile, build)</dt>
+<dd><p class="first">This generates the Makefile commands that will remove any files
+generated during the build of the default target.</p>
+<p><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">build</span></tt> is the dictionary created from parsing the build file.</p>
+</dd>
+<dt>finalise(self)</dt>
+<dd>This is called just before the Makefile is generated to ensure that it
+is fully configured. It must be reimplemented by a sub-class.</dd>
+<dt>generate(self)</dt>
+<dd>This generates the Makefile.</dd>
+<dt>generate_macros_and_rules(self, mfile)</dt>
+<dd><p class="first">This is the default implementation of the Makefile macros and rules
+generation.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+</dd>
+<dt>generate_target_clean(self, mfile)</dt>
+<dd><p class="first">This is the default implementation of the Makefile clean target
+generation.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+</dd>
+<dt>generate_target_default(self, mfile)</dt>
+<dd><p class="first">This is the default implementation of the Makefile default target
+generation.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+</dd>
+<dt>generate_target_install(self, mfile)</dt>
+<dd><p class="first">This is the default implementation of the Makefile install target
+generation.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+</dd>
+<dt>install_file(self, mfile, src, dst, strip=0)</dt>
+<dd><p class="first">This generates the Makefile commands to install one or more files to a
+directory.</p>
+<p><tt class="docutils literal"><span class="pre">mfile</span></tt> is the Python file object of the Makefile.</p>
+<p><tt class="docutils literal"><span class="pre">src</span></tt> is the name of a single file to install or a list of a number
+of files to install.</p>
+<p><tt class="docutils literal"><span class="pre">dst</span></tt> is the name of the destination directory.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">strip</span></tt> is set if the files should be stripped of unneeded symbols
+after having been installed.</p>
+</dd>
+<dt>optional_list(self, name)</dt>
+<dd><p class="first">This returns an optional Makefile macro as a list.</p>
+<p><tt class="docutils literal"><span class="pre">name</span></tt> is the name of the macro.</p>
+<p class="last">Returns the macro as a list.</p>
+</dd>
+<dt>optional_string(self, name, default=&quot;&quot;)</dt>
+<dd><p class="first">This returns an optional Makefile macro as a string.</p>
+<p><tt class="docutils literal"><span class="pre">name</span></tt> is the name of the macro.</p>
+<p><tt class="docutils literal"><span class="pre">default</span></tt> is the optional default value of the macro.</p>
+<p class="last">Returns the macro as a string.</p>
+</dd>
+<dt>parse_build_file(self, filename)</dt>
+<dd><p class="first">This parses a build file (created with the <tt class="docutils literal"><span class="pre">-b</span></tt> SIP command line
+option) and converts it to a dictionary. It can also validate an
+existing dictionary created through other means.</p>
+<p><tt class="docutils literal"><span class="pre">filename</span></tt> is the name of the build file, or is a dictionary to be
+validated. A valid dictionary will contain the name of the target to
+build (excluding any platform specific extension) keyed by <tt class="docutils literal"><span class="pre">target</span></tt>;
+the names of all source files keyed by <tt class="docutils literal"><span class="pre">sources</span></tt>; and, optionally,
+the names of all header files keyed by <tt class="docutils literal"><span class="pre">headers</span></tt>.</p>
+<p class="last">Returns a dictionary corresponding to the parsed build file.</p>
+</dd>
+<dt>platform_lib(self, clib, framework=0)</dt>
+<dd><p class="first">This converts a library name to a platform specific form.</p>
+<p><tt class="docutils literal"><span class="pre">clib</span></tt> is the name of the library in cannonical form.</p>
+<p><tt class="docutils literal"><span class="pre">framework</span></tt> is set if the library is implemented as a MacOS
+framework.</p>
+<p class="last">Return the platform specific name.</p>
+</dd>
+<dt>ready(self)</dt>
+<dd>This is called to ensure that the Makefile is fully configured. It is
+normally called automatically when needed.</dd>
+<dt>required_string(self, name)</dt>
+<dd><p class="first">This returns a required Makefile macro as a string.</p>
+<p><tt class="docutils literal"><span class="pre">name</span></tt> is the name of the macro.</p>
+<p class="last">Returns the macro as a string. An exception is raised if the macro
+does not exist or has an empty value.</p>
+</dd>
+</dl>
+</dd>
+<dt>ModuleMakefile(Makefile)</dt>
+<dd><p class="first">This class encapsulates a Makefile to build a generic Python extension
+module.</p>
+<dl class="last docutils">
+<dt>__init__(self, configuration, build_file, install_dir=None, static=0, console=0, opengl=0, threaded=0, warnings=None, debug=0, dir=None, makefile=&quot;Makefile&quot;, installs=None, strip=1, export_all=0, universal='')</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p><tt class="docutils literal"><span class="pre">configuration</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">build_file</span></tt> is the name of the build file. Build files are
+generated using the <tt class="docutils literal"><span class="pre">-b</span></tt> SIP command line option.</p>
+<p><tt class="docutils literal"><span class="pre">install_dir</span></tt> is the name of the directory where the module will be
+optionally installed.</p>
+<p><tt class="docutils literal"><span class="pre">static</span></tt> is set if the module should be built as a static library
+(see <a class="reference" href="#builtin-modules-and-custom-interpreters">Builtin Modules and Custom Interpreters</a>).</p>
+<p><tt class="docutils literal"><span class="pre">console</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">qt</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">opengl</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">threaded</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">warnings</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">debug</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">dir</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">makefile</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">installs</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">strip</span></tt> is set if the module should be stripped of unneeded symbols
+after installation. It is ignored if either <tt class="docutils literal"><span class="pre">debug</span></tt> or <tt class="docutils literal"><span class="pre">static</span></tt> is
+set, or if the platform doesn't support it.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">export_all</span></tt> is set if all of the module's symbols should be exported
+rather than just the module's initialisation function. Exporting all
+symbols increases the size of the module and slows down module load
+times but may avoid problems with modules that use C++ exceptions. All
+symbols are exported if either <tt class="docutils literal"><span class="pre">debug</span></tt> or <tt class="docutils literal"><span class="pre">static</span></tt> is set, or if
+the platform doesn't support it.</p>
+</dd>
+<dt>finalise(self)</dt>
+<dd>This is a reimplementation of <tt class="docutils literal"><span class="pre">sipconfig.Makefile.finalise()</span></tt>.</dd>
+<dt>generate_macros_and_rules(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_macros_and_rules()</span></tt>.</dd>
+<dt>generate_target_clean(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_clean()</span></tt>.</dd>
+<dt>generate_target_default(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_default()</span></tt>.</dd>
+<dt>generate_target_install(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_install()</span></tt>.</dd>
+<dt>module_as_lib(self, mname)</dt>
+<dd><p class="first">This returns the name of a SIP v3.x module for when it is used as a
+library to be linked against. An exception will be raised if it is
+used with SIP v4.x modules.</p>
+<p><tt class="docutils literal"><span class="pre">mname</span></tt> is the name of the module.</p>
+<p class="last">Returns the corresponding library name.</p>
+</dd>
+</dl>
+</dd>
+<dt>ParentMakefile(Makefile)</dt>
+<dd><p class="first">This class encapsulates a Makefile that sits above a number of other
+Makefiles in sub-directories.</p>
+<dl class="last docutils">
+<dt>__init__(self, configuration, subdirs, dir=None, makefile=&quot;Makefile&quot;, installs=None)</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p><tt class="docutils literal"><span class="pre">configuration</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">subdirs</span></tt> is the sequence of sub-directories.</p>
+<p><tt class="docutils literal"><span class="pre">dir</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">makefile</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">installs</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+</dd>
+<dt>generate_macros_and_rules(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_macros_and_rules()</span></tt>.</dd>
+<dt>generate_target_clean(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_clean()</span></tt>.</dd>
+<dt>generate_target_default(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_default()</span></tt>.</dd>
+<dt>generate_target_install(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_install()</span></tt>.</dd>
+</dl>
+</dd>
+<dt>ProgramMakefile(Makefile)</dt>
+<dd><p class="first">This class encapsulates a Makefile to build an executable program.</p>
+<dl class="last docutils">
+<dt>__init__(self, configuration, build_file=None, install_dir=None, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=None, debug=0, dir=None, makefile=&quot;Makefile&quot;, installs=None, universal='')</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p><tt class="docutils literal"><span class="pre">configuration</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">build_file</span></tt> is the name of the optional build file. Build files are
+generated using the <tt class="docutils literal"><span class="pre">-b</span></tt> SIP command line option.</p>
+<p><tt class="docutils literal"><span class="pre">install_dir</span></tt> is the name of the directory where the executable
+program will be optionally installed.</p>
+<p><tt class="docutils literal"><span class="pre">console</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">qt</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">opengl</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">python</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">threaded</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">warnings</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">debug</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">dir</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">makefile</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">installs</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+</dd>
+<dt>build_command(self, source)</dt>
+<dd><p class="first">This creates a single command line that will create an executable
+program from a single source file.</p>
+<p><tt class="docutils literal"><span class="pre">source</span></tt> is the name of the source file.</p>
+<p class="last">Returns a tuple of the name of the executable that will be created and
+the command line.</p>
+</dd>
+<dt>finalise(self)</dt>
+<dd>This is a reimplementation of <tt class="docutils literal"><span class="pre">sipconfig.Makefile.finalise()</span></tt>.</dd>
+<dt>generate_macros_and_rules(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_macros_and_rules()</span></tt>.</dd>
+<dt>generate_target_clean(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_clean()</span></tt>.</dd>
+<dt>generate_target_default(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_default()</span></tt>.</dd>
+<dt>generate_target_install(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_install()</span></tt>.</dd>
+</dl>
+</dd>
+<dt>PythonModuleMakefile(Makefile)</dt>
+<dd><p class="first">This class encapsulates a Makefile that installs a pure Python module.</p>
+<dl class="last docutils">
+<dt>__init__(self, configuration, dstdir, srcdir=None, dir=None, makefile=&quot;Makefile&quot;, installs=None)</dt>
+<dd><p class="first">Initialise the instance.</p>
+<p><tt class="docutils literal"><span class="pre">configuration</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">dstdir</span></tt> is the name of the directory in which the module's Python
+code will be installed.</p>
+<p><tt class="docutils literal"><span class="pre">srcdir</span></tt> is the name of the directory (relative to <tt class="docutils literal"><span class="pre">dir</span></tt>)
+containing the module's Python code. It defaults to the same
+directory.</p>
+<p><tt class="docutils literal"><span class="pre">dir</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p><tt class="docutils literal"><span class="pre">makefile</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+<p class="last"><tt class="docutils literal"><span class="pre">installs</span></tt> - see <tt class="docutils literal"><span class="pre">sipconfig.Makefile.__init__()</span></tt>.</p>
+</dd>
+<dt>generate_macros_and_rules(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_macros_and_rules()</span></tt>.</dd>
+<dt>generate_target_install(self, mfile)</dt>
+<dd>This is a reimplementation of
+<tt class="docutils literal"><span class="pre">sipconfig.Makefile.generate_target_install()</span></tt>.</dd>
+</dl>
+</dd>
+<dt>SIPModuleMakefile(ModuleMakefile)</dt>
+<dd><p class="first">This class encapsulates a Makefile to build a SIP generated Python
+extension module.</p>
+<dl class="last docutils">
+<dt>finalise(self)</dt>
+<dd>This is a reimplementation of <tt class="docutils literal"><span class="pre">sipconfig.Makefile.finalise()</span></tt>.</dd>
+</dl>
+</dd>
+</dl>
+</div>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id207" id="building-your-extension-with-distutils" name="building-your-extension-with-distutils">12&nbsp;&nbsp;&nbsp;Building Your Extension with distutils</a></h1>
+<p>To build the example in <a class="reference" href="#a-simple-c-example">A Simple C++ Example</a> using distutils, it is
+sufficient to create a standard <tt class="docutils literal"><span class="pre">setup.py</span></tt>, listing <tt class="docutils literal"><span class="pre">word.sip</span></tt> among the
+files to build, and hook-up SIP into distutils:</p>
+<pre class="literal-block">
+from distutils.core import setup, Extension
+import sipdistutils
+
+setup(
+ name = 'word',
+ versione = '1.0',
+ ext_modules=[
+ Extension(&quot;word&quot;, [&quot;word.sip&quot;, &quot;word.cpp&quot;]),
+ ],
+
+ cmdclass = {'build_ext': sipdistutils.build_ext}
+)
+</pre>
+<p>As we can see, the above is a normal distutils setup script, with just a
+special line which is needed so that SIP can see and process <tt class="docutils literal"><span class="pre">word.sip</span></tt>.
+Then, running <tt class="docutils literal"><span class="pre">setup.py</span> <span class="pre">build</span></tt> will build our extension module.</p>
+</div>
+<div class="section">
+<h1><a class="toc-backref" href="#id208" id="builtin-modules-and-custom-interpreters" name="builtin-modules-and-custom-interpreters">13&nbsp;&nbsp;&nbsp;Builtin Modules and Custom Interpreters</a></h1>
+<p>Sometimes you want to create a custom Python interpreter with some modules
+built in to the interpreter itself rather than being dynamically loaded. To
+do this the module must be created as a static library and linked with a
+custom stub and the normal Python library.</p>
+<p>To build the SIP module as a static library you must pass the <tt class="docutils literal"><span class="pre">-k</span></tt> command
+line option to <tt class="docutils literal"><span class="pre">configure.py</span></tt>. You should then build and install SIP as
+normal. (Note that, because the module is now a static library, you will not
+be able to import it.)</p>
+<p>To build a module you have created for your own library you must modify your
+own configuration script to pass a non-zero value as the <tt class="docutils literal"><span class="pre">static</span></tt> argument
+of the <tt class="docutils literal"><span class="pre">__init__()</span></tt> method of the <tt class="docutils literal"><span class="pre">ModuleMakefile</span></tt> class (or any derived
+class you have created). Normally you would make this configurable using a
+command line option in the same way that SIP's <tt class="docutils literal"><span class="pre">configure.py</span></tt> handles it.</p>
+<p>The next stage is to create a custom stub and a Makefile. The SIP distribution
+contains a directory called <tt class="docutils literal"><span class="pre">custom</span></tt> which contains example stubs and a
+Python script that will create a correct Makefile. Note that, if your copy of
+SIP was part of a standard Linux distribution, the <tt class="docutils literal"><span class="pre">custom</span></tt> directory may
+not be installed on your system.</p>
+<p>The <tt class="docutils literal"><span class="pre">custom</span></tt> directory contains the following files. They are provided as
+examples - each needs to be modified according to your particular
+requirements.</p>
+<blockquote>
+<ul class="simple">
+<li><tt class="docutils literal"><span class="pre">mkcustom.py</span></tt> is a Python script that will create a Makefile which is
+then used to build the custom interpreter. Comments in the file describe
+how it should be modified.</li>
+<li><tt class="docutils literal"><span class="pre">custom.c</span></tt> is a stub for a custom interpreter on Linux/UNIX. It
+should also be used for a custom console interpreter on Windows (i.e.
+like <tt class="docutils literal"><span class="pre">python.exe</span></tt>). Comments in the file describe how it should be
+modified.</li>
+<li><tt class="docutils literal"><span class="pre">customw.c</span></tt> is a stub for a custom GUI interpreter on Windows (i.e.
+like <tt class="docutils literal"><span class="pre">pythonw.exe</span></tt>). Comments in the file describe how it should be
+modified.</li>
+</ul>
+</blockquote>
+<p>Note that this technique does not restrict how the interpreter can be used.
+For example, it still allows users to write their own applications that can
+import your builtin modules. If you want to prevent users from doing that,
+perhaps to protect a proprietary API, then take a look at the
+<a class="reference" href="http://www.riverbankcomputing.co.uk/vendorid/">VendorID</a> package.</p>
+</div>
+</div>
+</body>
+</html>
diff --git a/python/sip/doc/sipref.txt b/python/sip/doc/sipref.txt
new file mode 100644
index 00000000..4e14f79e
--- /dev/null
+++ b/python/sip/doc/sipref.txt
@@ -0,0 +1,5353 @@
+=====================================================================
+ SIP - A Tool for Generating Python Bindings for C and C++ Libraries
+=====================================================================
+
+-----------------
+ Reference Guide
+-----------------
+
+:Contact: info@riverbankcomputing.co.uk
+:Version: 4.6
+:Copyright: Copyright (c) 2007 Riverbank Computing Limited
+
+.. contents::
+.. section-numbering::
+
+
+Introduction
+============
+
+This is the reference guide for SIP 4.6. SIP is a tool for
+automatically generating `Python <http://www.python.org>`__ bindings for C and
+C++ libraries. SIP was originally developed in 1998 for
+`PyQt <http://www.riverbankcomputing.co.uk/pyqt/>`__ - the Python bindings for
+the Qt GUI toolkit - but is suitable for generating bindings for any C or C++
+library.
+
+This version of SIP generates bindings for Python v2.3 or later.
+
+There are many other similar tools available. One of the original such tools
+is `SWIG <http://www.swig.org>`__ and, in fact, SIP is so called because it
+started out as a small SWIG. Unlike SWIG, SIP is specifically designed for
+bringing together Python and C/C++ and goes to great lengths to make the
+integration as tight as possible.
+
+The homepage for SIP is http://www.riverbankcomputing.co.uk/sip/. Here you
+will always find the latest stable version, current development snapshots, and
+the latest version of this documentation.
+
+
+License
+-------
+
+SIP is licensed under the same terms as Python itself. SIP places no
+restrictions on the license you may apply to the bindings you create.
+
+
+Features
+--------
+
+SIP, and the bindings it produces, have the following features.
+
+ - bindings are fast to load and minimise memory consumption especially when
+ only a small sub-set of a large library is being used
+
+ - automatic conversion between standard Python and C/C++ data types
+
+ - overloading of functions and methods with different argument signatures
+
+ - access to a C++ class's protected methods
+
+ - the ability to define a Python class that is a sub-class of a C++ class,
+ including abstract C++ classes
+
+ - Python sub-classes can implement the ``__dtor__(self)`` method which
+ will be called from the C++ class's virtual destructor
+
+ - support for ordinary C++ functions, class methods, static class methods,
+ virtual class methods and abstract class methods
+
+ - the ability to re-implement C++ virtual and abstract methods in Python
+
+ - support for global and class variables
+
+ - support for global and class operators
+
+ - support for C++ namespaces
+
+ - support for C++ templates
+
+ - support for C++ exceptions and wrapping them as Python exceptions
+
+ - the ability to define mappings between C++ classes and similar Python
+ data types that are automatically invoked
+
+ - the ability to automatically exploit any available run time type
+ information to ensure that the class of a Python instance object matches
+ the class of the corresponding C++ instance
+
+ - full support of the Python global interpreter lock, including the ability
+ to specify that a C++ function of method may block, therefore allowing
+ the lock to be released and other Python threads to run
+
+ - support for the concept of ownership of a C++ instance (i.e. what part of
+ the code is responsible for calling the instance's destructor) and how
+ the ownership may change during the execution of an application
+
+ - the ability to generate bindings for a C++ class library that itself is
+ built on another C++ class library which also has had bindings generated
+ so that the different bindings integrate and share code properly
+
+ - a sophisticated versioning system that allows the full lifetime of a C++
+ class library, including any platform specific or optional features, to
+ be described in a single set of specification files
+
+ - the ability to include documentation in the specification files which can
+ be extracted and subsequently processed by external tools
+
+ - the ability to include copyright notices and licensing information in the
+ specification files that is automatically included in all generated
+ source code
+
+ - a build system, written in Python, that you can extend to configure,
+ compile and install your own bindings without worrying about platform
+ specific issues
+
+ - support for building your extensions using distutils
+
+ - SIP, and the bindings it produces, runs under UNIX, Linux, Windows and
+ MacOS/X
+
+
+SIP Components
+--------------
+
+SIP comprises a number of different components.
+
+ - The SIP code generator (``sip`` or ``sip.exe``). This processes ``.sip``
+ specification files and generates C or C++ bindings. It is covered in
+ detail in `Using SIP`_.
+
+ - The SIP header file (``sip.h``). This contains definitions and data
+ structures needed by the generated C and C++ code.
+
+ - The SIP module (``sip.so`` or ``sip.pyd``). This is a Python extension
+ module that is imported automatically by SIP generated bindings and
+ provides them with some common utility functions. See also `Using the
+ SIP Module in Applications`_.
+
+ - The SIP build system (``sipconfig.py``). This is a pure Python module
+ that is created when SIP is configured and encapsulates all the necessary
+ information about your system including relevant directory names,
+ compiler and linker flags, and version numbers. It also includes several
+ Python classes and functions which help you write configuration scripts
+ for your own bindings. It is covered in detail in `The SIP Build
+ System`_.
+
+ - The SIP distutils extension (``sipdistutils.py``). This is a distutils
+ extension that can be used to build your extension modules using
+ distutils and is an alternative to writing configuration scripts with the
+ SIP build system. This can be as simple as adding your .sip files to the
+ list of files needed to build the extension module. It is covered in
+ detail in `Building Your Extension with distutils`_.
+
+
+Qt Support
+----------
+
+SIP has specific support for the creation of bindings based on Trolltech's Qt
+toolkit.
+
+The SIP code generator understands the signal/slot type safe callback mechanism
+that Qt uses to connect objects together. This allows applications to define
+new Python signals, and allows any Python callable object to be used as a slot.
+
+SIP itself does not require Qt to be installed.
+
+
+Potential Incompatibilities with Earlier Versions
+=================================================
+
+SIP v4.4
+--------
+
+ - The ``SIP_BUILD`` C preprocessor symbol has been removed.
+
+ - `sipConvertToCpp()`_, `sipIsSubClassInstance()`_ and the old `Generated
+ Type Convertors`_ have been deprecated. The functions
+ `sipCanConvertToInstance()`_, `sipConvertToInstance()`_,
+ `sipForceConvertToInstance()`_, `sipConvertFromInstance()`_,
+ `sipConvertFromNewInstance()`_, `sipCanConvertToMappedType()`_,
+ `sipConvertToMappedType()`_, `sipForceConvertToMappedType()`_ and
+ `sipConvertFromMappedType()`_ should be used instead. Handwritten
+ `%ConvertFromTypeCode`_ and `%ConvertToTypeCode`_ now has the
+ responsibility for using these to implement the ``Transfer`` and
+ ``TransferBack`` annotations.
+
+
+Installing SIP
+==============
+
+Downloading SIP
+---------------
+
+You can get the latest release of the SIP source code from
+http://www.riverbankcomputing.co.uk/sip/download.php.
+
+SIP is also included with all of the major Linux distributions. However, it
+may be a version or two out of date.
+
+You may also find more up to date pre-compiled binaries on
+`SourceForge <http://sourceforge.net/project/showfiles.php?group_id=61057>`_.
+
+
+Configuring SIP
+---------------
+
+After unpacking the source package (either a ``.tar.gz`` or a ``.zip`` file
+depending on your platform) you should then check for any ``README`` files
+that relate to your platform.
+
+Next you need to configure SIP by executing the ``configure.py`` script. For
+example::
+
+ python configure.py
+
+This assumes that the Python interpreter is on your path. Something like the
+following may be appropriate on Windows::
+
+ c:\python25\python configure.py
+
+If you have multiple versions of Python installed then make sure you use the
+interpreter for which you wish SIP to generate bindings for.
+
+The full set of command line options is:
+
+-h Display a help message.
+-a Export all symbols in any SIP generated module and the SIP module
+ itself. This was the default behaviour of SIP prior to v4.2.
+ Normally only a module's inititialisation function is exported. This
+ option is deprecated as the ``ModuleMakefile`` class of `The SIP Build
+ System`_ allows this to be specified on a per module basis.
+-b dir The SIP code generator will be installed in the directory ``dir``.
+-d dir The SIP module will be installed in the directory ``dir``.
+-e dir The SIP header file will be installed in the directory ``dir``.
+-k The SIP module will be built as a static library. This is useful when
+ building the SIP module as a Python builtin (see
+ `Builtin Modules and Custom Interpreters`_).
+-n The SIP code generator and module will be built as universal binaries
+ under MacOS/X.
+-p plat Explicitly specify the platform/compiler to be used by the build
+ system, otherwise a platform specific default will be used. The
+ ``-h`` option will display all the supported platform/compilers and
+ the default.
+-u The SIP module will be built with debugging symbols.
+-v dir By default ``.sip`` files will be installed in the directory ``dir``.
+
+The configure.py script takes many other options that allows the build system
+to be finely tuned. These are of the form ``name=value`` or ``name+=value``.
+The ``-h`` option will display each supported ``name``, although not all are
+applicable to all platforms.
+
+The ``name=value`` form means that ``value`` will replace the existing value of
+``name``.
+
+The ``name+=value`` form means that ``value`` will be appended to the existing
+value of ``name``.
+
+For example, the following will disable support for C++ exceptions (and so
+reduce the size of module binaries) when used with GCC::
+
+ python configure.py CXXFLAGS+=-fno-exceptions
+
+A pure Python module called ``sipconfig.py`` is generated by ``configure.py``.
+This defines each ``name`` and its corresponding ``value``. Looking at it will
+give you a good idea of how the build system uses the different options. It is
+covered in detail in `The SIP Build System`_.
+
+
+Configuring SIP Using MinGW
+***************************
+
+SIP, and the modules it generates, can be built with MinGW, the Windows port of
+GCC. You must use the ``-p`` command line option to specify the correct
+platform. For example::
+
+ c:\python25\python configure.py -p win32-g++
+
+
+Configuring SIP Using the Borland C++ Compiler
+**********************************************
+
+SIP, and the modules it generates, can be built with the free Borland C++
+compiler. You must use the ``-p`` command line option to specify the correct
+platform. For example::
+
+ c:\python25\python configure.py -p win32-borland
+
+You must also make sure you have a Borland-compatible version of the Python
+library. If you are using the standard Python distribution (built using the
+Microsoft compiler) then you must convert the format of the Python library.
+For example::
+
+ coff2omf python25.lib python25_bcpp.lib
+
+
+Building SIP
+------------
+
+The next step is to build SIP by running your platform's ``make`` command. For
+example::
+
+ make
+
+The final step is to install SIP by running the following command::
+
+ make install
+
+(Depending on your system you may require root or administrator privileges.)
+
+This will install the various SIP components.
+
+
+Using SIP
+=========
+
+Bindings are generated by the SIP code generator from a number of specification
+files, typically with a ``.sip`` extension. Specification files look very
+similar to C and C++ header files, but often with additional information (in
+the form of a *directive* or an *annotation*) and code so that the bindings
+generated can be finely tuned.
+
+
+A Simple C++ Example
+--------------------
+
+We start with a simple example. Let's say you have a (fictional) C++ library
+that implements a single class called ``Word``. The class has one constructor
+that takes a ``\0`` terminated character string as its single argument. The
+class has one method called ``reverse()`` which takes no arguments and returns
+a ``\0`` terminated character string. The interface to the class is defined in
+a header file called ``word.h`` which might look something like this::
+
+ // Define the interface to the word library.
+
+ class Word {
+ const char *the_word;
+
+ public:
+ Word(const char *w);
+
+ char *reverse() const;
+ };
+
+The corresponding SIP specification file would then look something like this::
+
+ // Define the SIP wrapper to the word library.
+
+ %Module word 0
+
+ class Word {
+
+ %TypeHeaderCode
+ #include <word.h>
+ %End
+
+ public:
+ Word(const char *w);
+
+ char *reverse() const;
+ };
+
+Obviously a SIP specification file looks very much like a C++ (or C) header
+file, but SIP does not include a full C++ parser. Let's look at the
+differences between the two files.
+
+ - The `%Module`_ directive has been added [#]_. This is used to name the
+ Python module that is being created and to give it a *generation* number.
+ In this example these are ``word`` and ``0`` respectively. The
+ generation number is effectively the version number of the module.
+
+ - The `%TypeHeaderCode`_ directive has been added. The text between this
+ and the following `%End`_ directive is included literally in the code
+ that SIP generates. Normally it is used, as in this case, to
+ ``#include`` the corresponding C++ (or C) header file [#]_.
+
+ - The declaration of the private variable ``this_word`` has been removed.
+ SIP does not support access to either private or protected instance
+ variables.
+
+If we want to we can now generate the C++ code in the current directory by
+running the following command::
+
+ sip -c . word.sip
+
+However, that still leaves us with the task of compiling the generated code and
+linking it against all the necessary libraries. It's much easier to use the
+SIP build system to do the whole thing.
+
+Using the SIP build system is simply a matter of writing a small Python script.
+In this simple example we will assume that the ``word`` library we are wrapping
+and it's header file are installed in standard system locations and will be
+found by the compiler and linker without having to specify any additional
+flags. In a more realistic example your Python script may take command line
+options, or search a set of directories to deal with different configurations
+and installations.
+
+This is the simplest script (conventionally called ``configure.py``)::
+
+ import os
+ import sipconfig
+
+ # The name of the SIP build file generated by SIP and used by the build
+ # system.
+ build_file = "word.sbf"
+
+ # Get the SIP configuration information.
+ config = sipconfig.Configuration()
+
+ # Run SIP to generate the code.
+ os.system(" ".join([config.sip_bin, "-c", ".", "-b", build_file, "word.sip"]))
+
+ # Create the Makefile.
+ makefile = sipconfig.SIPModuleMakefile(config, build_file)
+
+ # Add the library we are wrapping. The name doesn't include any platform
+ # specific prefixes or extensions (e.g. the "lib" prefix on UNIX, or the
+ # ".dll" extension on Windows).
+ makefile.extra_libs = ["word"]
+
+ # Generate the Makefile itself.
+ makefile.generate()
+
+Hopefully this script is self-documenting. The key parts are the
+``Configuration`` and ``SIPModuleMakefile`` classes. The build system contains
+other Makefile classes, for example to build programs or to call other
+Makefiles in sub-directories.
+
+After running the script (using the Python interpreter the extension module is
+being created for) the generated C++ code and ``Makefile`` will be in the
+current directory.
+
+To compile and install the extension module, just run the following
+commands [#]_::
+
+ make
+ make install
+
+That's all there is to it.
+
+See `Building Your Extension with distutils`_ for an example of how to build
+this example using distutils.
+
+.. [#] All SIP directives start with a ``%`` as the first non-whitespace
+ character of a line.
+.. [#] SIP includes many code directives like this. They differ in where the
+ supplied code is placed by SIP in the generated code.
+.. [#] On Windows you might run ``nmake`` or ``mingw32-make`` instead.
+
+
+A Simple C Example
+------------------
+
+Let's now look at a very similar example of wrapping a fictional C library::
+
+ /* Define the interface to the word library. */
+
+ struct Word {
+ const char *the_word;
+ };
+
+ struct Word *create_word(const char *w);
+ char *reverse(struct Word *word);
+
+The corresponding SIP specification file would then look something like this::
+
+ /* Define the SIP wrapper to the word library. */
+
+ %CModule word 0
+
+ struct Word {
+
+ %TypeHeaderCode
+ #include <word.h>
+ %End
+
+ const char *the_word;
+ };
+
+ struct Word *create_word(const char *w) /Factory/;
+ char *reverse(struct Word *word);
+
+Again, let's look at the differences between the two files.
+
+ - The `%CModule`_ directive has been added. This has the same syntax as
+ the `%Module`_ directive used in the previous example but tells SIP that
+ the library being wrapped is implemented in C rather than C++.
+
+ - The `%TypeHeaderCode`_ directive has been added.
+
+ - The Factory_ annotation has been added to the ``create_word()`` function.
+ This tells SIP that a newly created structure is being returned and it is
+ owned by Python.
+
+The ``configure.py`` build system script described in the previous example can
+be used for this example without change.
+
+
+A More Complex C++ Example
+--------------------------
+
+In this last example we will wrap a fictional C++ library that contains a class
+that is derived from a Qt class. This will demonstrate how SIP allows a class
+hierarchy to be split across multiple Python extension modules, and will
+introduce SIP's versioning system.
+
+The library contains a single C++ class called ``Hello`` which is derived from
+Qt's ``QLabel`` class. It behaves just like ``QLabel`` except that the text
+in the label is hard coded to be ``Hello World``. To make the example more
+interesting we'll also say that the library only supports Qt v3.0 and later,
+and also includes a function called ``setDefault()`` that is not implemented
+in the Windows version of the library.
+
+The ``hello.h`` header file looks something like this::
+
+ // Define the interface to the hello library.
+
+ #include <qlabel.h>
+ #include <qwidget.h>
+ #include <qstring.h>
+
+ class Hello : public QLabel {
+ // This is needed by the Qt Meta-Object Compiler.
+ Q_OBJECT
+
+ public:
+ Hello(QWidget *parent, const char *name = 0, WFlags f = 0);
+
+ private:
+ // Prevent instances from being copied.
+ Hello(const Hello &);
+ Hello &operator=(const Hello &);
+ };
+
+ #if !defined(Q_OS_WIN)
+ void setDefault(const QString &def);
+ #endif
+
+The corresponding SIP specification file would then look something like this::
+
+ // Define the SIP wrapper to the hello library.
+
+ %Module hello 0
+
+ %Import qt/qtmod.sip
+
+ %If (Qt_3_0_0 -)
+
+ class Hello : QLabel {
+
+ %TypeHeaderCode
+ #include <hello.h>
+ %End
+
+ public:
+ Hello(QWidget *parent /TransferThis/, const char *name = 0, WFlags f = 0);
+
+ private:
+ Hello(const Hello &);
+ };
+
+ %If (!WS_WIN)
+ void setDefault(const QString &def);
+ %End
+
+ %End
+
+Again we look at the differences, but we'll skip those that we've looked at in
+previous examples.
+
+ - The `%Import`_ directive has been added to specify that we are extending
+ the class hierarchy defined in the file ``qt/qtmod.sip``. This file is
+ part of PyQt. The build system will take care of finding the file's
+ exact location.
+
+ - The `%If`_ directive has been added to specify that
+ everything [#]_ up to the matching `%End`_ directive only applies to Qt
+ v3.0 and later. ``Qt_3_0_0`` is a *tag* defined in ``qtmod.sip`` [#]_
+ using the `%Timeline`_ directive. `%Timeline`_ is used to define a tag
+ for each version of a library's API you are wrapping allowing you to
+ maintain all the different versions in a single SIP specification. The
+ build system provides support to ``configure.py`` scripts for working out
+ the correct tags to use according to which version of the library is
+ actually installed.
+
+ - The ``public`` keyword used in defining the super-classes has been
+ removed. This is not supported by SIP.
+
+ - The TransferThis_ annotation has been added to the first argument
+ of the constructor. It specifies that if the argument is not 0 (i.e. the
+ ``Hello`` instance being constructed has a parent) then ownership of the
+ instance is transferred from Python to C++. It is needed because Qt
+ maintains objects (i.e. instances derived from the ``QObject`` class) in
+ a hierachy. When an object is destroyed all of its children are also
+ automatically destroyed. It is important, therefore, that the Python
+ garbage collector doesn't also try and destroy them. This is covered in
+ more detail in `Ownership of Objects`_. SIP provides many other
+ annotations that can be applied to arguments, functions and classes.
+ Multiple annotations are separated by commas. Annotations may have
+ values.
+
+ - The ``=`` operator has been removed. This operator is not supported by
+ SIP.
+
+ - The `%If`_ directive has been added to specify that everything up to the
+ matching `%End`_ directive does not apply to Windows. ``WS_WIN`` is
+ another tag defined by PyQt, this time using the `%Platforms`_ directive.
+ Tags defined by the `%Platforms`_ directive are mutually exclusive, i.e.
+ only one may be valid at a time [#]_.
+
+One question you might have at this point is why bother to define the private
+copy constructor when it can never be called from Python? The answer is to
+prevent the automatic generation of a public copy constructor.
+
+We now look at the ``configure.py`` script. This is a little different to the
+script in the previous examples for two related reasons.
+
+Firstly, PyQt includes a pure Python module called ``pyqtconfig`` that extends
+the SIP build system for modules, like our example, that build on top of PyQt.
+It deals with the details of which version of Qt is being used (i.e. it
+determines what the correct tags are) and where it is installed. This is
+called a module's configuration module.
+
+Secondly, we generate a configuration module (called ``helloconfig``) for our
+own ``hello`` module. There is no need to do this, but if there is a chance
+that somebody else might want to extend your C++ library then it would make
+life easier for them.
+
+Now we have two scripts. First the ``configure.py`` script::
+
+ import os
+ import sipconfig
+ import pyqtconfig
+
+ # The name of the SIP build file generated by SIP and used by the build
+ # system.
+ build_file = "hello.sbf"
+
+ # Get the PyQt configuration information.
+ config = pyqtconfig.Configuration()
+
+ # Get the extra SIP flags needed by the imported qt module. Note that
+ # this normally only includes those flags (-x and -t) that relate to SIP's
+ # versioning system.
+ qt_sip_flags = config.pyqt_qt_sip_flags
+
+ # Run SIP to generate the code. Note that we tell SIP where to find the qt
+ # module's specification files using the -I flag.
+ os.system(" ".join([config.sip_bin, "-c", ".", "-b", build_file, "-I", config.pyqt_sip_dir, qt_sip_flags, "hello.sip"]))
+
+ # We are going to install the SIP specification file for this module and
+ # its configuration module.
+ installs = []
+
+ installs.append(["hello.sip", os.path.join(config.default_sip_dir, "hello")])
+
+ installs.append(["helloconfig.py", config.default_mod_dir])
+
+ # Create the Makefile. The QtModuleMakefile class provided by the
+ # pyqtconfig module takes care of all the extra preprocessor, compiler and
+ # linker flags needed by the Qt library.
+ makefile = pyqtconfig.QtModuleMakefile(
+ configuration=config,
+ build_file=build_file,
+ installs=installs
+ )
+
+ # Add the library we are wrapping. The name doesn't include any platform
+ # specific prefixes or extensions (e.g. the "lib" prefix on UNIX, or the
+ # ".dll" extension on Windows).
+ makefile.extra_libs = ["hello"]
+
+ # Generate the Makefile itself.
+ makefile.generate()
+
+ # Now we create the configuration module. This is done by merging a Python
+ # dictionary (whose values are normally determined dynamically) with a
+ # (static) template.
+ content = {
+ # Publish where the SIP specifications for this module will be
+ # installed.
+ "hello_sip_dir": config.default_sip_dir,
+
+ # Publish the set of SIP flags needed by this module. As these are the
+ # same flags needed by the qt module we could leave it out, but this
+ # allows us to change the flags at a later date without breaking
+ # scripts that import the configuration module.
+ "hello_sip_flags": qt_sip_flags
+ }
+
+ # This creates the helloconfig.py module from the helloconfig.py.in
+ # template and the dictionary.
+ sipconfig.create_config_module("helloconfig.py", "helloconfig.py.in", content)
+
+Next we have the ``helloconfig.py.in`` template script::
+
+ import pyqtconfig
+
+ # These are installation specific values created when Hello was configured.
+ # The following line will be replaced when this template is used to create
+ # the final configuration module.
+ # @SIP_CONFIGURATION@
+
+ class Configuration(pyqtconfig.Configuration):
+ """The class that represents Hello configuration values.
+ """
+ def __init__(self, sub_cfg=None):
+ """Initialise an instance of the class.
+
+ sub_cfg is the list of sub-class configurations. It should be None
+ when called normally.
+ """
+ # This is all standard code to be copied verbatim except for the
+ # name of the module containing the super-class.
+ if sub_cfg:
+ cfg = sub_cfg
+ else:
+ cfg = []
+
+ cfg.append(_pkg_config)
+
+ pyqtconfig.Configuration.__init__(self, cfg)
+
+ class HelloModuleMakefile(pyqtconfig.QtModuleMakefile):
+ """The Makefile class for modules that %Import hello.
+ """
+ def finalise(self):
+ """Finalise the macros.
+ """
+ # Make sure our C++ library is linked.
+ self.extra_libs.append("hello")
+
+ # Let the super-class do what it needs to.
+ pyqtconfig.QtModuleMakefile.finalise(self)
+
+Again, we hope that the scripts are self documenting.
+
+.. [#] Some parts of a SIP specification aren't subject to version control.
+.. [#] Actually in ``versions.sip``. PyQt uses the `%Include`_ directive to
+ split the SIP specification for Qt across a large number of separate
+ ``.sip`` files.
+.. [#] Tags can also be defined by the `%Feature`_ directive. These tags are
+ not mutually exclusive, i.e. any number may be valid at a time.
+
+
+Ownership of Objects
+--------------------
+
+When a C++ instance is wrapped a corresponding Python object is created. The
+Python object behaves as you would expect in regard to garbage collection - it
+is garbage collected when its reference count reaches zero. What then happens
+to the corresponding C++ instance? The obvious answer might be that the
+instance's destructor is called. However the library API may say that when the
+instance is passed to a particular function, the library takes ownership of the
+instance, i.e. responsibility for calling the instance's destructor is
+transferred from the SIP generated module to the library.
+
+Ownership of an instance may also be associated with another instance. The
+implication being that the owned instance will automatically be destroyed if
+the owning instance is destroyed. SIP keeps track of these relationships to
+ensure that Python's cyclic garbage collector can detect and break any
+reference cycles between the owning and owned instances. The association is
+implemented as the owning instance taking a reference to the owned instance.
+
+The TransferThis_, Transfer_ and TransferBack annotations are used to specify
+where, and it what direction, transfers of ownership happen. It is very
+important that these are specified correctly to avoid crashes (where both
+Python and C++ call the destructor) and memory leaks (where neither Python and
+C++ call the destructor).
+
+This applies equally to C structures where the structure is returned to the
+heap using the ``free()`` function.
+
+See also `sipTransferTo()`_ and `sipTransferBack()`_.
+
+
+Support for Wide Characters
+---------------------------
+
+SIP v4.6 introduced support for wide characters (i.e. the ``wchar_t`` type).
+Python's C API includes support for converting between unicode objects and wide
+character strings and arrays. When converting from a unicode object to wide
+characters SIP creates the string or array on the heap (using memory allocated
+using `sipMalloc()`_). This then raises the problem of how this memory is
+subsequently freed.
+
+The following describes how SIP handles this memory in the different situations
+where this is an issue.
+
+ - When a wide string or array is passed to a function or method then the
+ memory is freed (using `sipFree()`_) after than function or method
+ returns.
+
+ - When a wide string or array is returned from a virtual method then SIP
+ does not free the memory until the next time the method is called.
+
+ - When an assignment is made to a wide string or array instance variable
+ then SIP does not first free the instance's current string or array.
+
+
+The Python Global Interpreter Lock
+----------------------------------
+
+Python's Global Interpretor Lock (GIL) must be acquired before calls can be
+made to the Python API. It should also be released when a potentially
+blocking call to C/C++ library is made in order to allow other Python threads
+to be executed. In addition, some C/C++ libraries may implement their own
+locking strategies that conflict with the GIL causing application deadlocks.
+SIP provides ways of specifying when the GIL is released and acquired to
+ensure that locking problems can be avoided.
+
+SIP always ensures that the GIL is acquired before making calls to the Python
+API. By default SIP does not release the GIL when making calls to the C/C++
+library being wrapped. The ReleaseGIL_ annotation can be used to override
+this behaviour when required.
+
+If SIP is given the ``-g`` command line option then the default behaviour is
+changed and SIP releases the GIL every time is makes calls to the C/C++
+library being wrapped. The HoldGIL_ annotation can be used to override this
+behaviour when required.
+
+
+The SIP Command Line
+====================
+
+The syntax of the SIP command line is::
+
+ sip [options] [specification]
+
+``specification`` is the name of the specification file for the module. If it
+is omitted then ``stdin`` is used.
+
+The full set of command line options is:
+
+-h Display a help message.
+-V Display the SIP version number.
+-a file
+ The name of the QScintilla API file to generate. This file contains a
+ description of the module API in a form that the QScintilla editor
+ component can use for auto-completion and call tips. (The file may
+ also be used by the SciTE editor but must be sorted first.) By default
+ the file is not generated.
+-b file
+ The name of the build file to generate. This file contains the
+ information about the module needed by the SIP build system to generate
+ a platform and compiler specific Makefile for the module. By default
+ the file is not generated.
+-c dir The name of the directory (which must exist) into which all of the
+ generated C or C++ code is placed. By default no code is generated.
+-d file
+ The name of the documentation file to generate. Documentation is
+ included in specification files using the `%Doc`_ and `%ExportedDoc`_
+ directives. By default the file is not generated.
+-e Support for C++ exceptions is enabled. This causes all calls to C++
+ code to be enclosed in ``try``/``catch`` blocks and C++ exceptions to
+ be converted to Python exceptions. By default exception support is
+ disabled.
+-g The Python GIL is released before making any calls to the C/C++ library
+ being wrapped and reacquired afterwards. See `The Python Global
+ Interpreter Lock`_ and the ReleaseGIL_ and HoldGIL_ annotations.
+-I dir The directory is added to the list of directories searched when looking
+ for a specification file given in an `%Include`_ or `%Import`_
+ directive. This option may be given any number of times.
+-j number
+ The generated code is split into the given number of files. This make
+ it easier to use the parallel build facility of most modern
+ implementations of ``make``. By default 1 file is generated for each C
+ structure or C++ class.
+-r Debugging statements that trace the execution of the bindings are
+ automatically generated. By default the statements are not generated.
+-s suffix
+ The suffix to use for generated C or C++ source files. By default
+ ``.c`` is used for C and ``.cpp`` for C++.
+-t tag The SIP version tag (declared using a `%Timeline`_ directive) or the
+ SIP platform tag (declared using the `%Platforms`_ directive) to
+ generate code for. This option may be given any number of times so
+ long as the tags do not conflict.
+-w The display of warning messages is enabled. By default warning
+ messages are disabled.
+-x feature
+ The feature (declared using the `%Feature`_ directive) is disabled.
+-z file
+ The name of a file containing more command line options.
+
+
+SIP Specification Files
+=======================
+
+A SIP specification consists of some C/C++ type and function declarations and
+some directives. The declarations may contain annotations which provide SIP
+with additional information that cannot be expressed in C/C++. SIP does not
+include a full C/C++ parser.
+
+It is important to understand that a SIP specification describes the Python
+API, i.e. the API available to the Python programmer when they ``import`` the
+generated module. It does not have to accurately represent the underlying
+C/C++ library. There is nothing wrong with omitting functions that make
+little sense in a Python context, or adding functions implemented with
+handwritten code that have no C/C++ equivalent. It is even possible (and
+sometimes necessary) to specify a different super-class hierarchy for a C++
+class. All that matters is that the generated code compiles properly.
+
+In most cases the Python API matches the C/C++ API. In some cases handwritten
+code (see `%MethodCode`_) is used to map from one to the other without SIP
+having to know the details itself. However, there are a few cases where SIP
+generates a thin wrapper around a C++ method or constructor (see `Generated
+Derived Classes`_) and needs to know the exact C++ signature. To deal with
+these cases SIP allows two signatures to be specified. For example::
+
+ class Klass
+ {
+ public:
+ // The Python signature is a tuple, but the underlying C++ signature
+ // is a 2 element array.
+ Klass(SIP_PYTUPLE) [(int *)];
+ %MethodCode
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, "ii", &iarr[0], &iarr[1]))
+ {
+ // Note that we use the SIP generated derived class
+ // constructor.
+ Py_BEGIN_ALLOW_THREADS
+ sipCpp = new sipKlass(iarr);
+ Py_END_ALLOW_THREADS
+ }
+ %End
+ };
+
+
+Syntax Definition
+-----------------
+
+The following is a semi-formal description of the syntax of a specification
+file.
+
+.. parsed-literal::
+
+ *specification* ::= {*module-statement*}
+
+ *module-statement* ::= [*module-directive* | *statement*]
+
+ *module-directive* ::= [`%CModule`_ | `%Copying`_ | `%Doc`_ |
+ `%ExportedDoc`_ | `%ExportedHeaderCode`_ | `%Feature`_ |
+ `%Import`_ | `%Include`_ | `%License`_ | `%MappedType`_ |
+ *mapped-type-template* | `%Module`_ | `%ModuleCode`_ |
+ `%ModuleHeaderCode`_ | `%OptionalInclude`_ | `%Platforms`_ |
+ `%PreInitialisationCode`_ | `%PostInitialisationCode`_ |
+ *sip-option-list* | `%Timeline`_ | `%UnitCode`_]
+
+ *sip-option-list* :: `%SIPOptions`_ ``(`` *option-list* ``)``
+
+ *option-list* ::= *option* [``,`` *option-list*]
+
+ *statement* :: [*class-statement* | *function* | *variable*]
+
+ *class-statement* :: [`%If`_ | *class* | *class-template* | *enum* |
+ *namespace* | *opaque-class* | *operator* | *struct* | *typedef* |
+ *exception*]
+
+ *class* ::= ``class`` *name* [``:`` *super-classes*] [*class-annotations*]
+ ``{`` {*class-line*} ``};``
+
+ *super-classes* ::= *name* [``,`` *super-classes*]
+
+ *class-line* ::= [*class-statement* | `%BIGetReadBufferCode`_ |
+ `%BIGetWriteBufferCode`_ | `%BIGetSegCountCode`_ |
+ `%BIGetCharBufferCode`_ | `%ConvertToSubClassCode`_ |
+ `%ConvertToTypeCode`_ | `%GCClearCode`_ | `%GCTraverseCode`_ |
+ `%TypeCode`_ | `%TypeHeaderCode`_ | *constructor* | *destructor* |
+ *method* | *static-method* | *virtual-method* | *special-method* |
+ *operator* | *virtual-operator* | *class-variable* | ``public:`` |
+ ``public slots:`` | ``protected:`` | ``protected slots:`` |
+ ``private:`` | ``private slots:`` | ``signals:``]
+
+ *constructor* ::= [``explicit``] *name* ``(`` [*argument-list*] ``)``
+ [*exceptions*] [*function-annotations*]
+ [*c++-constructor-signature*] ``;`` [`%MethodCode`_]
+
+ *c++-constructor-signature* ::= ``[(`` [*argument-list*] ``)]``
+
+ *destructor* ::= [``virtual``] ``~`` *name* ``()`` [*exceptions*] [``= 0``]
+ [*function-annotations*] ``;`` [`%MethodCode`_]
+ [`%VirtualCatcherCode`_]
+
+ *method* ::= *type* *name* ``(`` [*argument-list*] ``)`` [``const``]
+ [*exceptions*] [``= 0``] [*function-annotations*] [*c++-signature*]
+ ``;`` [`%MethodCode`_]
+
+ *c++-signature* ::= ``[`` *type* ``(`` [*argument-list*] ``)]``
+
+ *static-method* ::= ``static`` *function*
+
+ *virtual-method* ::= ``virtual`` *type* *name* ``(`` [*argument-list*] ``)``
+ [``const``] [*exceptions*] [``= 0``] [*function-annotations*]
+ [*c++-signature*] ``;`` [`%MethodCode`_] [`%VirtualCatcherCode`_]
+
+ *special-method* ::= *type* *special-method-name*
+ ``(`` [*argument-list*] ``)`` [*function-annotations*] ``;``
+ [`%MethodCode`_]
+
+ *special-method-name* ::= [ ``__abs__`` | ``__add__`` | ``__and__`` |
+ ``__call__`` | ``__cmp__`` | ``__contains__`` | ``__delitem__`` |
+ ``__div__`` | ``__eq__`` | ``__float__`` | ``__ge__`` |
+ ``__getitem__`` | ``__gt__`` | ``__hash__`` | ``__iadd__`` |
+ ``__iand__`` | ``__idiv__`` | ``__ilshift__`` | ``__imod__`` |
+ ``__imul__`` | ``__int__`` | ``__invert__`` | ``__ior__`` |
+ ``__irshift__`` | ``__isub__`` | ``__ixor__`` | ``__le__`` |
+ ``__len__`` | ``__long__`` | ``__lshift__`` | ``__lt__`` |
+ ``__mod__`` | ``__mul__`` | ``__ne__`` | ``__neg__`` |
+ ``__nonzero__`` | ``__or__`` | ``__pos__`` | ``__repr__`` |
+ ``__rshift__`` | ``__setitem__`` | ``__str__`` | ``__sub__`` |
+ ``__xor__``]
+
+ *operator* ::= *operator-type*
+ ``(`` [*argument-list*] ``)`` [``const``] [*exceptions*]
+ [*function-annotations*] ``;`` [`%MethodCode`_]
+
+ *virtual-operator* ::= ``virtual`` *operator-type*
+ ``(`` [*argument-list*] ``)`` [``const``] [*exceptions*] [``= 0``]
+ [*function-annotations*] ``;`` [`%MethodCode`_]
+ [`%VirtualCatcherCode`_]
+
+ *operatator-type* ::= [ *operator-function* | *operator-cast* ]
+
+ *operator-function* ::= *type* ``operator`` *operator-name*
+
+ *operator-cast* ::= ``operator`` *type*
+
+ *operator-name* ::= [``+`` | ``-`` | ``*`` | ``/`` | ``%`` | ``&`` |
+ ``|`` | ``^`` | ``<<`` | ``>>`` | ``+=`` | ``-=`` | ``*=`` |
+ ``/=`` | ``%=`` | ``&=`` | ``|=`` | ``^=`` | ``<<=`` | ``>>=`` |
+ ``~`` | ``()`` | ``[]`` | ``<`` | ``<=`` | ``==`` | ``!=`` |
+ ``>`` | ``>>=``]
+
+ *class-variable* ::= [``static``] *variable*
+
+ *class-template* :: = ``template`` ``<`` *type-list* ``>`` *class*
+
+ *mapped-type-template* :: = ``template`` ``<`` *type-list* ``>``
+ `%MappedType`_
+
+ *enum* ::= ``enum`` [*name*] [*enum-annotations*] ``{`` {*enum-line*} ``};``
+
+ *enum-line* ::= [`%If`_ | *name* [*enum-annotations*] ``,``
+
+ *function* ::= *type* *name* ``(`` [*argument-list*] ``)`` [*exceptions*]
+ [*function-annotations*] ``;`` [`%MethodCode`_]
+
+ *namespace* ::= ``namespace`` *name* ``{`` {*namespace-line*} ``};``
+
+ *namespace-line* ::= [`%TypeHeaderCode`_ | *statement*]
+
+ *opaque-class* ::= ``class`` *scoped-name* ``;``
+
+ *struct* ::= ``struct`` *name* ``{`` {*class-line*} ``};``
+
+ *typedef* ::= ``typedef`` [*typed-name* | *function-pointer*] ``;``
+
+ *variable*::= *typed-name* [*variable-annotations*] ``;`` [`%AccessCode`_]
+ [`%GetCode`_] [`%SetCode`_]
+
+ *exception* ::= `%Exception`_ *exception-name* [*exception-base*] ``{``
+ [`%TypeHeaderCode`_] `%RaiseCode`_ `};``
+
+ *exception-name* ::= *scoped-name*
+
+ *exception-base* ::= ``(`` [*exception-name* | *python-exception*] ``)``
+
+ *python-exception* ::= [``SIP_Exception`` | ``SIP_StopIteration`` |
+ ``SIP_StandardError`` | ``SIP_ArithmeticError`` |
+ ``SIP_LookupError`` | ``SIP_AssertionError`` |
+ ``SIP_AttributeError`` | ``SIP_EOFError`` |
+ ``SIP_FloatingPointError`` | ``SIP_EnvironmentError`` |
+ ``SIP_IOError`` | ``SIP_OSError`` | ``SIP_ImportError`` |
+ ``SIP_IndexError`` | ``SIP_KeyError`` | ``SIP_KeyboardInterrupt`` |
+ ``SIP_MemoryError`` | ``SIP_NameError`` | ``SIP_OverflowError`` |
+ ``SIP_RuntimeError`` | ``SIP_NotImplementedError`` |
+ ``SIP_SyntaxError`` | ``SIP_IndentationError`` | ``SIP_TabError`` |
+ ``SIP_ReferenceError`` | ``SIP_SystemError`` | ``SIP_SystemExit`` |
+ ``SIP_TypeError`` | ``SIP_UnboundLocalError`` |
+ ``SIP_UnicodeError`` | ``SIP_UnicodeEncodeError`` |
+ ``SIP_UnicodeDecodeError`` | ``SIP_UnicodeTranslateError`` |
+ ``SIP_ValueError`` | ``SIP_ZeroDivisionError`` |
+ ``SIP_WindowsError`` | ``SIP_VMSError``]
+
+ *exceptions* ::= ``throw (`` [*exception-list*] ``)``
+
+ *exception-list* ::= *scoped-name* [``,`` *exception-list*]
+
+ *argument-list* ::= *argument* [``,`` *argument-list*] [``,`` ``...``]
+
+ *argument* ::= [*type* [*name*] [*argument-annotations*]
+ [*default-value*] | SIP_ANYSLOT_ [*default-value*] | SIP_QOBJECT_ |
+ SIP_RXOBJ_CON_ | SIP_RXOBJ_DIS_ | SIP_SIGNAL_ [*default-value*] |
+ SIP_SLOT_ [*default-value*] | SIP_SLOT_CON_ | SIP_SLOT_DIS_]
+
+ *default-value* ::= ``=`` *expression*
+
+ *expression* ::= [*value* | *value* *binary-operator* *expression*]
+
+ *value* ::= [*unary-operator*] *simple-value*
+
+ *simple-value* ::= [*scoped-name* | *function-call* | *real-value* |
+ *integer-value* | *boolean-value* | *string-value* |
+ *character-value*]
+
+ *typed-name*::= *type* *name*
+
+ *function-pointer*::= *type* ``(*`` *name* ``)(`` [*type-list*] ``)``
+
+ *type-list* ::= *type* [``,`` *type-list*]
+
+ *function-call* ::= *scoped-name* ``(`` [*value-list*] ``)``
+
+ *value-list* ::= *value* [``,`` *value-list*]
+
+ *real-value* ::= a floating point number
+
+ *integer-value* ::= a number
+
+ *boolean-value* ::= [``true`` | ``false``]
+
+ *string-value* ::= ``"`` {*character*} ``"``
+
+ *character-value* ::= ````` *character* `````
+
+ *unary-operator* ::= [``!`` | ``~`` | ``-`` | ``+``]
+
+ *binary-operator* ::= [``-`` | ``+`` | ``*`` | ``/`` | ``&`` | ``|``]
+
+ *argument-annotations* ::= see `Argument Annotations`_
+
+ *class-annotations* ::= see `Class Annotations`_
+
+ *enum-annotations* ::= see `Enum Annotations`_
+
+ *function-annotations* ::= see `Function Annotations`_
+
+ *variable-annotations* ::= see `Variable Annotations`_
+
+ *type* ::= [``const``] *base-type* {``*``} [``&``]
+
+ *type-list* ::= *type* [``,`` *type-list*]
+
+ *base-type* ::= [*scoped-name* | *template* | ``struct`` *scoped-name* |
+ ``short`` | ``unsigned short`` | ``int`` | ``unsigned`` |
+ ``unsigned int`` | ``long`` | ``unsigned long`` | ``float`` |
+ ``double`` | ``bool`` | ``char`` | ``signed char`` |
+ ``unsigned char`` | ``void`` | ``wchar_t`` | SIP_PYCALLABLE_ |
+ SIP_PYDICT_ | SIP_PYLIST_ | SIP_PYOBJECT_ | SIP_PYSLICE_ |
+ SIP_PYTUPLE_ | SIP_PYTYPE_]
+
+ *scoped-name* ::= *name* [``::`` *scoped-name*]
+
+ *template* ::= *scoped-name* ``<`` *type-list* ``>``
+
+ *name* ::= _A-Za-z {_A-Za-z0-9}
+
+Here is a short list of differences between C++ and the subset supported by
+SIP that might trip you up.
+
+ - SIP does not support the use of ``[]`` in types. Use pointers instead.
+
+ - A global ``operator`` can only be defined if its first argument is a
+ class or a named enum that has been wrapped in the same module.
+
+ - Variables declared outside of a class are effectively read-only.
+
+ - A class's list of super-classes doesn't not include any access specifier
+ (e.g. ``public``).
+
+
+Variable Numbers of Arguments
+-----------------------------
+
+SIP supports the use of ``...`` as the last part of a function signature. Any
+remaining arguments are collected as a Python tuple.
+
+
+Additional SIP Types
+--------------------
+
+SIP supports a number of additional data types that can be used in Python
+signatures.
+
+
+SIP_ANYSLOT
+***********
+
+This is both a ``const char *`` and a ``PyObject *`` that is used as the type
+of the member instead of ``const char *`` in functions that implement the
+connection or disconnection of an explicitly generated signal to a slot.
+Handwritten code must be provided to interpret the conversion correctly.
+
+
+SIP_PYCALLABLE
+**************
+
+This is a ``PyObject *`` that is a Python callable object.
+
+
+SIP_PYDICT
+**********
+
+This is a ``PyObject *`` that is a Python dictionary object.
+
+
+SIP_PYLIST
+**********
+
+This is a ``PyObject *`` that is a Python list object.
+
+
+SIP_PYOBJECT
+************
+
+This is a ``PyObject *`` of any Python type.
+
+
+SIP_PYSLICE
+***********
+
+This is a ``PyObject *`` that is a Python slice object.
+
+
+SIP_PYTUPLE
+***********
+
+This is a ``PyObject *`` that is a Python tuple object.
+
+
+SIP_PYTYPE
+**********
+
+This is a ``PyObject *`` that is a Python type object.
+
+
+SIP_QOBJECT
+***********
+
+This is a ``QObject *`` that is a C++ instance of a class derived from Qt's
+``QObject`` class.
+
+
+SIP_RXOBJ_CON
+*************
+
+This is a ``QObject *`` that is a C++ instance of a class derived from Qt's
+``QObject`` class. It is used as the type of the receiver instead of ``const
+QObject *`` in functions that implement a connection to a slot.
+
+
+SIP_RXOBJ_DIS
+*************
+
+This is a ``QObject *`` that is a C++ instance of a class derived from Qt's
+``QObject`` class. It is used as the type of the receiver instead of ``const
+QObject *`` in functions that implement a disconnection from a slot.
+
+
+SIP_SIGNAL
+**********
+
+This is a ``const char *`` that is used as the type of the signal instead of
+``const char *`` in functions that implement the connection or disconnection
+of an explicitly generated signal to a slot.
+
+
+SIP_SLOT
+********
+
+This is a ``const char *`` that is used as the type of the member instead of
+``const char *`` in functions that implement the connection or disconnection
+of an explicitly generated signal to a slot.
+
+
+SIP_SLOT_CON
+************
+
+This is a ``const char *`` that is used as the type of the member instead of
+``const char *`` in functions that implement the connection of an internally
+generated signal to a slot. The type includes a comma separated list of types
+that is the C++ signature of of the signal.
+
+To take an example, ``QAccel::connectItem()`` connects an internally generated
+signal to a slot. The signal is emitted when the keyboard accelerator is
+activated and it has a single integer argument that is the ID of the
+accelerator. The C++ signature is::
+
+ bool connectItem(int id, const QObject *receiver, const char *member);
+
+The corresponding SIP specification is::
+
+ bool connectItem(int, SIP_RXOBJ_CON, SIP_SLOT_CON(int));
+
+
+SIP_SLOT_DIS
+************
+
+This is a ``const char *`` that is used as the type of the member instead of
+``const char *`` in functions that implement the disconnection of an
+internally generated signal to a slot. The type includes a comma separated
+list of types that is the C++ signature of of the signal.
+
+
+SIP Directives
+==============
+
+In this section we describe each of the directives that can be used in
+specification files. All directives begin with ``%`` as the first
+non-whitespace character in a line.
+
+Some directives have arguments or contain blocks of code or documentation. In
+the following descriptions these are shown in *italics*. Optional arguments
+are enclosed in [*brackets*].
+
+Some directives are used to specify handwritten code. Handwritten code must
+not define names that start with the prefix ``sip``.
+
+
+%AccessCode
+-----------
+
+.. parsed-literal::
+
+ %AccessCode
+ *code*
+ %End
+
+This directive is used immediately after the declaration of an instance of a
+wrapped class or structure, or a pointer to such an instance. You use it to
+provide handwritten code that overrides the default behaviour.
+
+For example::
+
+ class Klass;
+
+ Klass *klassInstance;
+ %AccessCode
+ // In this contrived example the C++ library we are wrapping defines
+ // klassInstance as Klass ** (which SIP doesn't support) so we
+ // explicitly dereference it.
+ if (klassInstance && *klassInstance)
+ return *klassInstance;
+
+ // This will get converted to None.
+ return 0;
+ %End
+
+
+%BIGetCharBufferCode
+--------------------
+
+.. parsed-literal::
+
+ %BIGetCharBufferCode
+ *code*
+ %End
+
+This directive (along with `%BIGetReadBufferCode`_, `%BIGetSegCountCode`_ and
+`%BIGetWriteBufferCode`_) is used to specify code that implements Python's
+buffer interface. See the section `Buffer Object Structures
+<http://www.python.org/dev/doc/devel/api/buffer-structs.html>`__ for the
+details.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+void \*\*sipPtrPtr
+ This is the pointer used to return the address of the character buffer.
+
+SIP_SSIZE_T sipRes
+ The handwritten code should set this to the length of the character buffer
+ or -1 if there was an error.
+
+SIP_SSIZE_T sipSegment
+ This is the number of the segment of the character buffer.
+
+PyObject \*sipSelf
+ This is the Python object that wraps the the structure or class instance,
+ i.e. ``self``.
+
+
+%BIGetReadBufferCode
+--------------------
+
+.. parsed-literal::
+
+ %BIGetReadBufferCode
+ *code*
+ %End
+
+This directive (along with `%BIGetCharBufferCode`_, `%BIGetSegCountCode`_ and
+`%BIGetWriteBufferCode`_) is used to specify code that implements Python's
+buffer interface.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+void \*\*sipPtrPtr
+ This is the pointer used to return the address of the read buffer.
+
+SIP_SSIZE_T sipRes
+ The handwritten code should set this to the length of the read buffer or
+ -1 if there was an error.
+
+SIP_SSIZE_T sipSegment
+ This is the number of the segment of the read buffer.
+
+PyObject \*sipSelf
+ This is the Python object that wraps the the structure or class instance,
+ i.e. ``self``.
+
+
+%BIGetSegCountCode
+------------------
+
+.. parsed-literal::
+
+ %BIGetSegCountCode
+ *code*
+ %End
+
+This directive (along with `%BIGetCharBufferCode`_, `%BIGetReadBufferCode`_ and
+`%BIGetWriteBufferCode`_) is used to specify code that implements Python's
+buffer interface.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+SIP_SSIZE_T \*sipLenPtr
+ This is the pointer used to return the total length in bytes of all
+ segments of the buffer.
+
+SIP_SSIZE_T sipRes
+ The handwritten code should set this to the number of segments that make
+ up the buffer.
+
+PyObject \*sipSelf
+ This is the Python object that wraps the the structure or class instance,
+ i.e. ``self``.
+
+
+%BIGetWriteBufferCode
+---------------------
+
+.. parsed-literal::
+
+ %BIGetWriteBufferCode
+ *code*
+ %End
+
+This directive (along with `%BIGetCharBufferCode`_, `%BIGetReadBufferCode`_
+and `%BIGetSegCountCode`_ is used to specify code that implements Python's
+buffer interface.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+void \*\*sipPtrPtr
+ This is the pointer used to return the address of the write buffer.
+
+SIP_SSIZE_T sipRes
+ The handwritten code should set this to the length of the write buffer or
+ -1 if there was an error.
+
+SIP_SSIZE_T sipSegment
+ This is the number of the segment of the write buffer.
+
+PyObject \*sipSelf
+ This is the Python object that wraps the the structure or class instance,
+ i.e. ``self``.
+
+
+%CModule
+--------
+
+.. parsed-literal::
+
+ %CModule *name* [*version*]
+
+This directive is used to identify that the library being wrapped is a C
+library and to define the name of the module and it's optional version number.
+
+See the `%Module`_ directive for an explanation of the version number.
+
+For example::
+
+ %CModule dbus 1
+
+
+%ConvertFromTypeCode
+--------------------
+
+.. parsed-literal::
+
+ %ConvertFromTypeCode
+ *code*
+ %End
+
+This directive is used as part of the `%MappedType`_ directive to specify the
+handwritten code that converts an instance of a mapped type to a Python
+object.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the instance of the mapped type to be converted. It
+ will never be zero as the conversion from zero to ``Py_None`` is handled
+ before the handwritten code is called.
+
+PyObject \*sipTransferObj
+ This specifies any desired ownership changes to the returned object. If it
+ is ``NULL`` then the ownership should be left unchanged. If it is
+ ``Py_None`` then ownership should be transferred to Python. Otherwise
+ ownership should be transferred to C/C++ and the returned object associated
+ with *sipTransferObj*. The code can choose to interpret these changes in
+ any way. For example, if the code is converting a C++ container of wrapped
+ classes to a Python list it is likely that the ownership changes should be
+ made to each element of the list.
+
+The handwritten code must explicitly return a ``PyObject *``. If there was an
+error then a Python exception must be raised and ``NULL`` returned.
+
+The following example converts a ``QList<QWidget *>`` instance to a Python
+list of ``QWidget`` instances::
+
+ %ConvertFromTypeCode
+ PyObject *l;
+
+ // Create the Python list of the correct length.
+ if ((l = PyList_New(sipCpp -> size())) == NULL)
+ return NULL;
+
+ // Go through each element in the C++ instance and convert it to a
+ // wrapped QWidget.
+ for (int i = 0; i < sipCpp -> size(); ++i)
+ {
+ QWidget *w = sipCpp -> at(i);
+ PyObject *wobj;
+
+ // Get the Python wrapper for the QWidget instance, creating a new
+ // one if necessary, and handle any ownership transfer.
+ if ((wobj = sipConvertFromInstance(w, sipClass_QWidget, sipTransferObj)) == NULL)
+ {
+ // There was an error so garbage collect the Python list.
+ Py_DECREF(l);
+ return NULL;
+ }
+
+ // Add the wrapper to the list.
+ PyList_SET_ITEM(l, i, wobj);
+ }
+
+ // Return the Python list.
+ return l;
+ %End
+
+
+%ConvertToSubClassCode
+----------------------
+
+.. parsed-literal::
+
+ %ConvertToSubClassCode
+ *code*
+ %End
+
+When SIP needs to wrap a C++ class instance it first checks to make sure it
+hasn't already done so. If it has then it just returns a new reference to the
+corresponding Python object. Otherwise it creates a new Python object of the
+appropriate type. In C++ a function may be defined to return an instance of a
+certain class, but can often return a sub-class instead.
+
+This directive is used to specify handwritten code that exploits any available
+real-time type information (RTTI) to see if there is a more specific Python
+type that can be used when wrapping the C++ instance. The RTTI may be
+provided by the compiler or by the C++ instance itself.
+
+The directive is included in the specification of one of the classes that the
+handwritten code handles the type conversion for. It doesn't matter which
+one, but a sensible choice would be the one at the root of that class
+hierarchy in the module.
+
+Note that if a class hierarchy extends over a number of modules then this
+directive should be used in each of those modules to handle the part of the
+hierarchy defined in that module. SIP will ensure that the different pieces
+of code are called in the right order to determine the most specific Python
+type to use.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the C++ class instance.
+
+void \*\*sipCppRet
+ When the sub-class is derived from more than one super-class then it is
+ possible that the C++ address of the instance as the sub-class is
+ different to that of the super-class. If so, then this must be set to the
+ C++ address of the instance when cast (usually using ``static_cast``)
+ from the super-class to the sub-class.
+
+sipWrapperType \*sipClass
+ The handwritten code must set this to the SIP generated Python type object
+ that corresponds to the class instance. (The type object for class
+ ``Klass`` is ``sipClass_Klass``.) If the RTTI of the class instance isn't
+ recognised then ``sipClass`` must be set to ``NULL``. The code doesn't
+ have to recognise the exact class, only the most specific sub-class that
+ it can.
+
+The handwritten code must not explicitly return.
+
+The following example shows the sub-class conversion code for ``QEvent`` based
+class hierarchy in PyQt::
+
+ class QEvent
+ {
+ %ConvertToSubClassCode
+ // QEvent sub-classes provide a unique type ID.
+ switch (sipCpp -> type())
+ {
+ case QEvent::Timer:
+ sipClass = sipClass_QTimerEvent;
+ break;
+
+ case QEvent::KeyPress:
+ case QEvent::KeyRelease:
+ sipClass = sipClass_QKeyEvent;
+ break;
+
+ // Skip the remaining event types to keep the example short.
+
+ default:
+ // We don't recognise the type.
+ sipClass = NULL;
+ }
+ %End
+
+ // The rest of the class specification.
+
+ };
+
+The SIP API includes the `sipMapIntToClass()`_ and `sipMapStringToClass()`_
+functions that convert integer and string based RTTI to Python type objects
+based on ordered lookup tables.
+
+
+%ConvertToTypeCode
+------------------
+
+.. parsed-literal::
+
+ %ConvertToTypeCode
+ *code*
+ %End
+
+This directive is used to specify the handwritten code that converts a Python
+object to a mapped type instance and to handle any ownership transfers. It is
+used as part of the `%MappedType`_ directive and as part of a class
+specification. The code is also called to determine if the Python object is of
+the correct type prior to conversion.
+
+When used as part of a class specification it can automatically convert
+additional types of Python object. For example, PyQt uses it in the
+specification of the ``QString`` class to allow Python string objects and
+unicode objects to be used wherever ``QString`` instances are expected.
+
+The following variables are made available to the handwritten code:
+
+int \*sipIsErr
+ If this is ``NULL`` then the code is being asked to check the type of the
+ Python object. The check must not have any side effects. Otherwise the
+ code is being asked to convert the Python object and a non-zero value
+ should be returned through this pointer if an error occurred during the
+ conversion.
+
+PyObject \*sipPy
+ This is the Python object to be converted.
+
+*type* \*\*sipCppPtr
+ This is a pointer through which the address of the mapped type instance (or
+ zero if appropriate) is returned. Its value is undefined if ``sipIsErr``
+ is ``NULL``.
+
+PyObject \*sipTransferObj
+ This specifies any desired ownership changes to *sipPy*. If it is ``NULL``
+ then the ownership should be left unchanged. If it is ``Py_None`` then
+ ownership should be transferred to Python. Otherwise ownership should be
+ transferred to C/C++ and *sipPy* associated with *sipTransferObj*. The
+ code can choose to interpret these changes in any way.
+
+The handwritten code must explicitly return an ``int`` the meaning of which
+depends on the value of ``sipIsErr``.
+
+If ``sipIsErr`` is ``NULL`` then a non-zero value is returned if the Python
+object has a type that can be converted to the mapped type. Otherwise zero is
+returned.
+
+If ``sipIsErr`` is not ``NULL`` then a combination of the following flags is
+returned.
+
+ - ``SIP_TEMPORARY`` is set to indicate that the returned instance is a
+ temporary and should be released to avoid a memory leak.
+
+ - ``SIP_DERIVED_CLASS`` is set to indicate that the type of the
+ returned instance is a derived class. See `Generated Derived
+ Classes`_.
+
+The following example converts a Python list of ``QPoint`` instances to a
+``QList<QPoint>`` instance::
+
+ %ConvertToTypeCode
+ // See if we are just being asked to check the type of the Python
+ // object.
+ if (!sipIsErr)
+ {
+ // Checking whether or not None has been passed instead of a list
+ // has already been done.
+ if (!PyList_Check(sipPy))
+ return 0;
+
+ // Check the type of each element. We specify SIP_NOT_NONE to
+ // disallow None because it is a list of QPoint, not of a pointer
+ // to a QPoint, so None isn't appropriate.
+ for (int i = 0; i < PyList_GET_SIZE(sipPy); ++i)
+ if (!sipCanConvertToInstance(PyList_GET_ITEM(sipPy, i),
+ sipClass_QPoint, SIP_NOT_NONE))
+ return 0;
+
+ // The type is valid.
+ return 1;
+ }
+
+ // Create the instance on the heap.
+ QList<QPoint> *ql = new QList<QPoint>;
+
+ for (int i = 0; i < PyList_GET_SIZE(sipPy); ++i)
+ {
+ QPoint *qp;
+ int state;
+
+ // Get the address of the element's C++ instance. Note that, in
+ // this case, we don't apply any ownership changes to the list
+ // elements, only to the list itself.
+ qp = reinterpret_cast<QPoint *>(sipConvertToInstance(
+ PyList_GET_ITEM(sipPy, i),
+ sipClass_QPoint, 0,
+ SIP_NOT_NONE,
+ &state, sipIsErr));
+
+ // Deal with any errors.
+ if (*sipIsErr)
+ {
+ sipReleaseInstance(qp, sipClass_QPoint, state);
+
+ // Tidy up.
+ delete ql;
+
+ // There is no temporary instance.
+ return 0;
+ }
+
+ ql -> append(*qp);
+
+ // A copy of the QPoint was appended to the list so we no longer
+ // need it. It may be a temporary instance that should be
+ // destroyed, or a wrapped instance that should not be destroyed.
+ // sipReleaseInstance() will do the right thing.
+ sipReleaseInstance(qp, sipClass_QPoint, state);
+ }
+
+ // Return the instance.
+ *sipCppPtr = ql;
+
+ // The instance should be regarded as temporary (and be destroyed as
+ // soon as it has been used) unless it has been transferred from
+ // Python. sipGetState() is a convenience function that implements
+ // this common transfer behaviour.
+ return sipGetState(sipTransferObj);
+ %End
+
+When used in a class specification the handwritten code replaces the code that
+would normally be automatically generated. This means that the handwritten
+code must also handle instances of the class itself and not just the additional
+types that are being supported. This should be done by making calls to
+`sipCanConvertToInstance()`_ to check the object type and
+`sipConvertToInstance()`_ to convert the object. The ``SIP_NO_CONVERTORS``
+flag *must* be passed to both these functions to prevent recursive calls to the
+handwritten code.
+
+
+%Copying
+--------
+
+.. parsed-literal::
+
+ %Copying
+ *text*
+ %End
+
+This directive is used to specify some arbitrary text that will be included at
+the start of all source files generated by SIP. It is normally used to
+include copyright and licensing terms.
+
+For example::
+
+ %Copying
+ Copyright (c) 2007 Riverbank Computing Limited
+ %End
+
+
+%Doc
+----
+
+.. parsed-literal::
+
+ %Doc
+ *text*
+ %End
+
+This directive is used to specify some arbitrary text that will be extracted
+by SIP when the ``-d`` command line option is used. The directive can be
+specified any number of times and SIP will concatenate all the separate pieces
+of text in the order that it sees them.
+
+Documentation that is specified using this directive is local to the module in
+which it appears. It is ignored by modules that `%Import`_ it. Use the
+`%ExportedDoc`_ directive for documentation that should be included by all
+modules that `%Import`_ this one.
+
+For example::
+
+ %Doc
+ <h1>An Example</h1>
+ <p>
+ This fragment of documentation is HTML and is local to the module in
+ which it is defined.
+ </p>
+ %End
+
+
+%End
+----
+
+This isn't a directive in itself, but is used to terminate a number of
+directives that allow a block of handwritten code or text to be specified.
+
+
+%Exception
+----------
+
+.. parsed-literal::
+
+ %Exception *name* [(*base-exception)]
+ {
+ [*header-code*]
+ *raise-code*
+ };
+
+This directive is used to define new Python exceptions, or to provide a stub
+for existing Python exceptions. It allows handwritten code to be provided
+that implements the translation between C++ exceptions and Python exceptions.
+The arguments to ``throw ()`` specifiers must either be names of classes or the
+names of Python exceptions defined by this directive.
+
+*name* is the name of the exception.
+
+*base-exception* is the optional base exception. This may be either one of
+the standard Python exceptions or one defined with a previous `%Exception`_
+directive.
+
+*header-code* is the optional `%TypeHeaderCode`_ used to specify any external
+interface to the exception being defined.
+
+*raise-code* is the `%RaiseCode`_ used to specify the handwritten code that
+converts a reference to the C++ exception to the Python exception.
+
+For example::
+
+ %Exception std::exception(SIP_Exception) /PyName=StdException/
+ {
+ %TypeHeaderCode
+ #include <exception>
+ %End
+ %RaiseCode
+ const char *detail = sipExceptionReference.what();
+
+ SIP_BLOCK_THREADS
+ PyErr_SetString(sipException_StdException, detail);
+ SIP_UNBLOCK_THREADS
+ %End
+ };
+
+In this example we map the standard C++ exception to a new Python exception.
+The new exception is called ``StdException`` and is derived from the standard
+Python exception ``Exception``.
+
+
+%ExportedDoc
+------------
+
+.. parsed-literal::
+
+ %ExportedDoc
+ *text*
+ %End
+
+This directive is used to specify some arbitrary text that will be extracted
+by SIP when the ``-d`` command line option is used. The directive can be
+specified any number of times and SIP will concatenate all the separate pieces
+of text in the order that it sees them.
+
+Documentation that is specified using this directive will also be included by
+modules that `%Import`_ it.
+
+For example::
+
+ %ExportedDoc
+ ==========
+ An Example
+ ==========
+
+ This fragment of documentation is reStructuredText and will appear in the
+ module in which it is defined and all modules that %Import it.
+ %End
+
+
+%ExportedHeaderCode
+-------------------
+
+.. parsed-literal::
+
+ %ExportedHeaderCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code, typically the declarations
+of types, that is placed in a header file that is included by all generated
+code for all modules. It should not include function declarations because
+Python modules should not explicitly call functions in another Python module.
+
+See also `%ModuleCode`_ and `%ModuleHeaderCode`_.
+
+
+%Feature
+--------
+
+.. parsed-literal::
+
+ %Feature *name*
+
+This directive is used to declare a feature. Features (along with
+`%Platforms`_ and `%Timeline`_) are used by the `%If`_ directive to control
+whether or not parts of a specification are processed or ignored.
+
+Features are mutually independent of each other - any combination of features
+may be enabled or disable. By default all features are enabled. The SIP
+``-x`` command line option is used to disable a feature.
+
+If a feature is enabled then SIP will automatically generate a corresponding C
+preprocessor symbol for use by handwritten code. The symbol is the name of
+the feature prefixed by ``SIP_FEATURE_``.
+
+For example::
+
+ %Feature FOO_SUPPORT
+
+ %If (FOO_SUPPORT)
+ void foo();
+ %End
+
+
+%GCClearCode
+------------
+
+.. parsed-literal::
+
+ %GCClearCode
+ *code*
+ %End
+
+Python has a cyclic garbage collector which can identify and release unneeded
+objects even when their reference counts are not zero. If a wrapped C
+structure or C++ class keeps its own reference to a Python object then, if the
+garbage collector is to do its job, it needs to provide some handwritten code
+to traverse and potentially clear those embedded references.
+
+See the section *Supporting cyclic garbage collection* in `Embedding and
+Extending the Python Interpreter <http://www.python.org/dev/doc/devel/ext/>`__
+for the details.
+
+This directive is used to specify the code that clears any embedded references.
+(See `%GCTraverseCode`_ for specifying the code that traverses any embedded
+references.)
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+int sipRes
+ The handwritten code should set this to the result to be returned.
+
+The following simplified example is taken from PyQt. The ``QCustomEvent``
+class allows arbitary data to be attached to the event. In PyQt this data is
+always a Python object and so should be handled by the garbage collector::
+
+ %GCClearCode
+ PyObject *obj;
+
+ // Get the object.
+ obj = reinterpret_cast<PyObject *>(sipCpp -> data());
+
+ // Clear the pointer.
+ sipCpp -> setData(0);
+
+ // Clear the reference.
+ Py_XDECREF(obj);
+
+ // Report no error.
+ sipRes = 0;
+ %End
+
+
+%GCTraverseCode
+---------------
+
+.. parsed-literal::
+
+ %GCTraverseCode
+ *code*
+ %End
+
+This directive is used to specify the code that traverses any embedded
+references for Python's cyclic garbage collector. (See `%GCClearCode`_ for a
+full explanation.)
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class.
+
+visitproc sipVisit
+ This is the visit function provided by the garbage collector.
+
+void \*sipArg
+ This is the argument to the visit function provided by the garbage
+ collector.
+
+int sipRes
+ The handwritten code should set this to the result to be returned.
+
+The following simplified example is taken from PyQt's ``QCustomEvent`` class::
+
+ %GCTraverseCode
+ PyObject *obj;
+
+ // Get the object.
+ obj = reinterpret_cast<PyObject *>(sipCpp -> data());
+
+ // Call the visit function if there was an object.
+ if (obj)
+ sipRes = sipVisit(obj, sipArg);
+ else
+ sipRes = 0;
+ %End
+
+
+%GetCode
+--------
+
+.. parsed-literal::
+
+ %GetCode
+ *code*
+ %End
+
+This directive is used after the declaration of a C++ class variable or C
+structure member to specify handwritten code to convert it to a Python object.
+It is usually used to handle types that SIP cannot deal with automatically.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class. It is not made available if the
+ variable being wrapped is a static class variable.
+
+PyObject \*sipPy
+ The handwritten code must set this to the Python representation of the
+ class variable or structure member. If there is an error then the code
+ must raise an exception and set this to ``NULL``.
+
+For example::
+
+ struct Entity
+ {
+ /*
+ * In this contrived example the C library we are wrapping actually
+ * defines this as char buffer[100] which SIP cannot handle
+ * automatically.
+ */
+ char *buffer;
+ %GetCode
+ sipPy = PyString_FromStringAndSize(sipCpp -> buffer, 100);
+ %End
+ %SetCode
+ char *ptr;
+ int length;
+
+ if (PyString_AsStringAndSize(sipPy, &ptr, &length) == -1)
+ sipErr = 1;
+ else if (length != 100)
+ {
+ /*
+ * Raise an exception because the length isn't exactly right.
+ */
+
+ PyErr_SetString(PyExc_ValueError, "an Entity.buffer must be exactly 100 bytes");
+ sipErr = 1;
+ }
+ else
+ memcpy(sipCpp -> buffer, ptr, 100);
+ %End
+ }
+
+
+%If
+---
+
+.. parsed-literal::
+
+ %If (*expression*)
+ *specification*
+ %End
+
+where
+
+.. parsed-literal::
+
+ *expression* ::= [*ored-qualifiers* | *range*]
+
+ *ored-qualifiers* ::= [*qualifier* | *qualifier* ``||`` *ored-qualifiers*]
+
+ *qualifier* ::= [``!``] [*feature* | *platform*]
+
+ *range* ::= [*version*] ``-`` [*version*]
+
+This directive is used in conjunction with features (see `%Feature`_),
+platforms (see `%Platforms`_) and versions (see `%Timeline`_) to control
+whether or not parts of a specification are processed or not.
+
+A *range* of versions means all versions starting with the lower bound up to
+but excluding the upper bound. If the lower bound is omitted then it is
+interpreted as being before the earliest version. If the upper bound is
+omitted then it is interpreted as being after the latest version.
+
+For example::
+
+ %Feature SUPPORT_FOO
+ %Platforms {WIN32_PLATFORM POSIX_PLATFORM MACOS_PLATFORM}
+ %Timeline {V1_0 V1_1 V2_0 V3_0}
+
+ %If (!SUPPORT_FOO)
+ // Process this if the SUPPORT_FOO feature is disabled.
+ %End
+
+ %If (POSIX_PLATFORM || MACOS_PLATFORM)
+ // Process this if either the POSIX_PLATFORM or MACOS_PLATFORM
+ // platforms are enabled.
+ %End
+
+ %If (V1_0 - V2_0)
+ // Process this if either V1_0 or V1_1 is enabled.
+ %End
+
+ %If (V2_0 - )
+ // Process this if either V2_0 or V3_0 is enabled.
+ %End
+
+ %If ( - )
+ // Always process this.
+ %End
+
+Note that this directive is not implemented as a preprocessor. Only the
+following parts of a specification are affected by it:
+
+ - ``class``
+ - `%ConvertFromTypeCode`_
+ - `%ConvertToSubClassCode`_
+ - `%ConvertToTypeCode`_
+ - ``enum``
+ - `%ExportedHeaderCode`_
+ - functions
+ - `%GCClearCode`_
+ - `%GCTraverseCode`_
+ - `%If`_
+ - `%MappedType`_
+ - `%MethodCode`_
+ - `%ModuleCode`_
+ - `%ModuleHeaderCode`_
+ - ``namespace``
+ - `%PostInitialisationCode`_
+ - `%PreInitialisationCode`_
+ - ``struct``
+ - ``typedef``
+ - `%TypeCode`_
+ - `%TypeHeaderCode`_
+ - `%UnitCode`_
+ - variables
+ - `%VirtualCatcherCode`_
+
+Also note that the only way to specify the logical and of qualifiers is to use
+nested `%If`_ directives.
+
+
+%Import
+-------
+
+.. parsed-literal::
+
+ %Import *filename*
+
+This directive is used to import the specification of another module. This is
+needed if the current module makes use of any types defined in the imported
+module, e.g. as an argument to a function, or to sub-class.
+
+If *filename* cannot be opened then SIP prepends *filename* with the name of
+the directory containing the current specification file (i.e. the one
+containing the `%Import`_ directive) and tries again. If this also fails then
+SIP prepends *filename* with each of the directories, in turn, specified by
+the ``-I`` command line option.
+
+For example::
+
+ %Import qt/qtmod.sip
+
+
+%Include
+--------
+
+.. parsed-literal::
+
+ %Include *filename*
+
+This directive is used to include contents of another file as part of the
+specification of the current module. It is the equivalent of the C
+preprocessor's ``#include`` directive and is used to structure a large module
+specification into manageable pieces.
+
+`%Include`_ follows the same search process as `%Import`_ when trying to open
+*filename*.
+
+For example::
+
+ %Include qwidget.sip
+
+
+%License
+--------
+
+.. parsed-literal::
+
+ %License /*license-annotations*/
+
+This directive is used to specify the contents of an optional license
+dictionary. The license dictionary is called ``__license__`` and is stored in
+the module dictionary. The elements of the dictionary are specified using the
+Licensee_, Signature_, Timestamp_ and Type_ annotations. Only the Type_
+annotation is compulsory.
+
+Note that this directive isn't an attempt to impose any licensing restrictions
+on a module. It is simply a method for easily embedding licensing information
+in a module so that it is accessible to Python scripts.
+
+For example::
+
+ %License /Type="GPL"/
+
+
+%MappedType
+-----------
+
+.. parsed-literal::
+
+ template<*type-list*>
+ %MappedType *type*
+ {
+ [*header-code*]
+ [*convert-to-code*]
+ [*convert-from-code*]
+ };
+
+ %MappedType *type*
+ {
+ [*header-code*]
+ [*convert-to-code*]
+ [*convert-from-code*]
+ };
+
+This directive is used to define an automatic mapping between a C or C++ type
+and a Python type. It can be used as part of a template, or to map a specific
+type.
+
+When used as part of a template *type* cannot itself refer to a template. Any
+occurrences of any of the type names (but not any ``*`` or ``&``) in
+*type-list* will be replaced by the actual type names used when the template is
+instantiated. Template mapped types are instantiated automatically as required
+(unlike template classes which are only instantiated using ``typedef``).
+
+Any explicit mapped type will be used in preference to any template that maps
+the same type, ie. a template will not be automatically instantiated if there
+is an explicit mapped type.
+
+*header-code* is the `%TypeHeaderCode`_ used to specify the library interface
+to the type being mapped.
+
+*convert-to-code* is the `%ConvertToTypeCode`_ used to specify the handwritten
+code that converts a Python object to an instance of the mapped type.
+
+*convert-from-code* is the `%ConvertFromTypeCode`_ used to specify the
+handwritten code that converts an instance of the mapped type to a Python
+object.
+
+For example::
+
+ template<Type *>
+ %MappedType QList
+ {
+ %TypeHeaderCode
+ // Include the library interface to the type being mapped.
+ #include <qlist.h>
+ %End
+
+ %ConvertToTypeCode
+ // See if we are just being asked to check the type of the Python
+ // object.
+ if (sipIsErr == NULL)
+ {
+ // Check it is a list.
+ if (!PyList_Check(sipPy))
+ return 0;
+
+ // Now check each element of the list is of the type we expect.
+ // The template is for a pointer type so we don't disallow None.
+ for (int i = 0; i < PyList_GET_SIZE(sipPy); ++i)
+ if (!sipCanConvertToInstance(PyList_GET_ITEM(sipPy, i),
+ sipClass_Type, 0))
+ return 0;
+
+ return 1;
+ }
+
+ // Create the instance on the heap.
+ QList<Type *> *ql = new QList<Type *>;
+
+ for (int i = 0; i < PyList_GET_SIZE(sipPy); ++i)
+ {
+ // Use the SIP API to convert the Python object to the
+ // corresponding C++ instance. Note that we apply any ownership
+ // transfer to the list itself, not the individual elements.
+ Type *t = reinterpret_cast<Type *>(sipConvertToInstance(
+ PyList_GET_ITEM(sipPy, i),
+ sipClass_Type, 0, 0, 0,
+ sipIsErr));
+
+ if (*sipIsErr)
+ {
+ // Tidy up.
+ delete ql;
+
+ // There is nothing on the heap.
+ return 0;
+ }
+
+ // Add the pointer to the C++ instance.
+ ql -> append(t);
+ }
+
+ // Return the instance on the heap.
+ *sipCppPtr = ql;
+
+ // Apply the normal transfer.
+ return sipGetState(sipTransferObj);
+ %End
+
+ %ConvertFromTypeCode
+ PyObject *l;
+
+ // Create the Python list of the correct length.
+ if ((l = PyList_New(sipCpp -> size())) == NULL)
+ return NULL;
+
+ // Go through each element in the C++ instance and convert it to the
+ // corresponding Python object.
+ for (int i = 0; i < sipCpp -> size(); ++i)
+ {
+ Type *t = sipCpp -> at(i);
+ PyObject *tobj;
+
+ if ((tobj = sipConvertFromInstance(t, sipClass_Type, sipTransferObj)) == NULL)
+ {
+ // There was an error so garbage collect the Python list.
+ Py_DECREF(l);
+ return NULL;
+ }
+
+ PyList_SET_ITEM(l, i, tobj);
+ }
+
+ // Return the Python list.
+ return l;
+ %End
+ }
+
+Using this we can use, for example, ``QList<QObject *>`` throughout the
+module's specification files (and in any module that imports this one). The
+generated code will automatically map this to and from a Python list of QObject
+instances when appropriate.
+
+
+%MethodCode
+-----------
+
+.. parsed-literal::
+
+ %MethodCode
+ *code*
+ %End
+
+This directive is used as part of the specification of a global function, class
+method, operator, constructor or destructor to specify handwritten code that
+replaces the normally generated call to the function being wrapped. It is
+usually used to handle argument types and results that SIP cannot deal with
+automatically.
+
+The specified code is embedded in-line after the function's arguments have
+been successfully converted from Python objects to their C or C++ equivalents.
+The specified code must not include any ``return`` statements.
+
+In the context of a destructor the specified code is embedded in-line in the
+Python type's deallocation function. Unlike other contexts it supplements
+rather than replaces the normally generated code, so it must not include code
+to return the C structure or C++ class instance to the heap. The code is only
+called if ownership of the structure or class is with Python.
+
+The specified code must also handle the Python Global Interpreter Lock (GIL).
+If compatibility with SIP v3.x is required then the GIL must be released
+immediately before the C++ call and reacquired immediately afterwards as shown
+in this example fragment::
+
+ Py_BEGIN_ALLOW_THREADS
+ sipCpp -> foo();
+ Py_END_ALLOW_THREADS
+
+If compatibility with SIP v3.x is not required then this is optional but
+should be done if the C++ function might block the current thread or take a
+significant amount of time to execute. (See `The Python Global Interpreter
+Lock`_ and the ReleaseGIL_ and HoldGIL_ annotations.)
+
+The following variables are made available to the handwritten code:
+
+*type* a0
+ There is a variable for each argument of the Python signature (excluding
+ any ``self`` argument) named ``a0``, ``a1``, etc. The *type* of the
+ variable is the same as the type defined in the specification with the
+ following exceptions:
+
+ - if the argument is only used to return a value (e.g. it is an ``int *``
+ without an In_ annotation) then the type has one less level of
+ indirection (e.g. it will be an ``int``)
+ - if the argument is a structure or class (or a reference or a pointer to a
+ structure or class) then *type* will always be a pointer to the structure
+ or class.
+
+ Note that handwritten code for destructors never has any arguments.
+
+PyObject \*a0Wrapper
+ This variable is made available only if the corresponding argument wraps a
+ C structure or C++ class instance and the GetWrapper_ annotation is
+ specified. The variable is a pointer to the Python object that wraps the
+ argument.
+
+*type* \*sipCpp
+ If the directive is used in the context of a class constructor then this
+ must be set by the handwritten code to the constructed instance. In any
+ other context then this is a pointer to the C structure or C++ class
+ instance. Its *type* is a pointer to the structure or class.
+
+int sipIsErr
+ The handwritten code should set this to a non-zero value, and raise an
+ appropriate Python exception, if an error is detected.
+
+ ``sipIsErr`` is not provided for destructors.
+
+*type* sipRes
+ The handwritten code should set this to the result to be returned. The
+ *type* of the variable is the same as the type defined in the Python
+ signature in the specification with the following exception:
+
+ - if the argument is a structure or class (or a reference or a pointer to a
+ structure or class) then *type* will always be a pointer to the structure
+ or class.
+
+ ``sipRes`` is not provided for inplace operators (e.g. ``+=`` or
+ ``__imul__``) as their results are handled automatically, nor for class
+ constructors.
+
+PyObject \*sipSelf
+ If the directive is used in the context of a class constructor or method
+ then this is the Python object that wraps the the structure or class
+ instance, i.e. ``self``.
+
+bool sipSelfWasArg
+ This is only made available for non-abstract, virtual methods. It is set
+ if ``self`` was explicitly passed as the first argument of the method
+ rather than being bound to the method. In other words, the call was::
+
+ Klass.foo(self, ...)
+
+ rather than::
+
+ self.foo(...)
+
+The following is a complete example::
+
+ class Klass
+ {
+ public:
+ virtual int foo(SIP_PYTUPLE);
+ %MethodCode
+ // The C++ API takes a 2 element array of integers but passing a
+ // two element tuple is more Pythonic.
+
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, "ii", &iarr[0], &iarr[1]))
+ {
+ Py_BEGIN_ALLOW_THREADS
+ sipRes = sipSelfWasArg ? sipCpp -> Klass::foo(iarr)
+ : sipCpp -> foo(iarr);
+ Py_END_ALLOW_THREADS
+ }
+ else
+ {
+ // PyArg_ParseTuple() will have raised the exception.
+ sipIsErr = 1;
+ }
+ %End
+ };
+
+As the example is a virtual method [#]_, note the use of ``sipSelfWasArg`` to
+determine exactly which implementation of ``foo()`` to call.
+
+If a method is in the ``protected`` section of a C++ class then the call
+should instead be::
+
+ sipRes = sipCpp -> sipProtectVirt_foo(sipSelfWasArg, iarr);
+
+If a method is in the ``protected`` section of a C++ class but is not virtual
+then the call should instead be::
+
+ sipRes = sipCpp -> sipProtect_foo(iarr);
+
+.. [#] See `%VirtualCatcherCode`_ for a description of how SIP generated code
+ handles the reimplementation of C++ virtual methods in Python.
+
+
+%Module
+-------
+
+.. parsed-literal::
+
+ %Module *name* [*version*]
+
+This directive is used to identify that the library being wrapped is a C++
+library and to define the name of the module and it's optional version number.
+
+The name may contain periods to specify that the module is part of a Python
+package.
+
+The optional version number is useful if you (or others) might create other
+modules that build on this module, i.e. if another module might `%Import`_
+this module. Under the covers, a module exports an API that is used by modules
+that `%Import`_ it and the API is given a version number. A module built on
+that module knows the version number of the API that it is expecting. If,
+when the modules are imported at run-time, the version numbers do not match
+then a Python exception is raised. The dependent module must then be re-built
+using the correct specification files for the base module.
+
+The version number should be incremented whenever a module is changed. Some
+changes don't affect the exported API, but it is good practice to change the
+version number anyway.
+
+For example::
+
+ %Module qt 5
+
+
+%ModuleCode
+-----------
+
+.. parsed-literal::
+
+ %ModuleCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code, typically the
+implementations of utility functions, that can be called by other handwritten
+code in the module.
+
+For example::
+
+ %ModuleCode
+ // Print an object on stderr for debugging purposes.
+ void dump_object(PyObject *o)
+ {
+ PyObject_Print(o, stderr, 0);
+ fprintf(stderr, "\n");
+ }
+ %End
+
+See also `%ExportedHeaderCode`_ and `%ModuleHeaderCode`_.
+
+
+%ModuleHeaderCode
+-----------------
+
+.. parsed-literal::
+
+ %ModuleHeaderCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code, typically the declarations
+of utility functions, that is placed in a header file that is included by all
+generated code for the same module.
+
+For example::
+
+ %ModuleHeaderCode
+ void dump_object(PyObject *o);
+ %End
+
+See also `%ExportedHeaderCode`_ and `%ModuleCode`_.
+
+
+%OptionalInclude
+----------------
+
+.. parsed-literal::
+
+ %OptionalInclude *filename*
+
+This directive is identical to the `%Include`_ directive except that SIP
+silently continues processing if *filename* could not be opened.
+
+For example::
+
+ %OptionalInclude license.sip
+
+
+%Platforms
+----------
+
+.. parsed-literal::
+
+ %Platforms {*name* *name* ...}
+
+This directive is used to declare a set of platforms. Platforms (along with
+`%Feature`_ and `%Timeline`_) are used by the `%If`_ directive to control
+whether or not parts of a specification are processed or ignored.
+
+Platforms are mutually exclusive - only one platform can be enabled at a time.
+By default all platforms are disabled. The SIP ``-t`` command line option is
+used to enable a platform.
+
+For example::
+
+ %Platforms {WIN32_PLATFORM POSIX_PLATFORM MACOS_PLATFORM}
+
+ %If (WIN32_PLATFORM)
+ void undocumented();
+ %End
+
+ %If (POSIX_PLATFORM)
+ void documented();
+ %End
+
+
+%PostInitialisationCode
+-----------------------
+
+.. parsed-literal::
+
+ %PostInitialisationCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code that is embedded in-line
+at the very end of the generated module initialisation code.
+
+The following variables are made available to the handwritten code:
+
+PyObject \*sipModule
+ This is the module object returned by ``Py_InitModule()``.
+
+PyObject \*sipModuleDict
+ This is the module's dictionary object returned by ``Py_ModuleGetDict()``.
+
+For example::
+
+ %PostInitialisationCode
+ // The code will be executed when the module is first imported and
+ // after all other initialisation has been completed.
+ %End
+
+
+%PreInitialisationCode
+----------------------
+
+.. parsed-literal::
+
+ %PreInitialisationCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code that is embedded in-line
+at the very start of the generated module initialisation code.
+
+For example::
+
+ %PreInitialisationCode
+ // The code will be executed when the module is first imported and
+ // before other initialisation has been completed.
+ %End
+
+
+%RaiseCode
+----------
+
+.. parsed-literal::
+
+ %RaiseCode
+ *code*
+ %End
+
+This directive is used as part of the definition of an exception using the
+`%Exception`_ directive to specify handwritten code that raises a Python
+exception when a C++ exception has been caught. The code is embedded in-line
+as the body of a C++ ``catch ()`` clause.
+
+The specified code must handle the Python Global Interpreter Lock (GIL) if
+necessary. The GIL must be acquired before any calls to the Python API and
+released after the last call as shown in this example fragment::
+
+ SIP_BLOCK_THREADS
+ PyErr_SetNone(PyErr_Exception);
+ SIP_UNBLOCK_THREADS
+
+Finally, the specified code must not include any ``return`` statements.
+
+The following variable is made available to the handwritten code:
+
+*type* &sipExceptionRef
+ This is a reference to the caught C++ exception. The *type* of the
+ reference is the same as the type defined in the ``throw ()`` specifier.
+
+See the `%Exception`_ directive for an example.
+
+
+%SetCode
+--------
+
+.. parsed-literal::
+
+ %SetCode
+ *code*
+ %End
+
+This directive is used after the declaration of a C++ class variable or C
+structure member to specify handwritten code to convert it from a Python
+object. It is usually used to handle types that SIP cannot deal with
+automatically.
+
+The following variables are made available to the handwritten code:
+
+*type* \*sipCpp
+ This is a pointer to the structure or class instance. Its *type* is a
+ pointer to the structure or class. It is not made available if the
+ variable being wrapped is a static class variable.
+
+int sipErr
+ If the conversion failed then the handwritten code should raise a Python
+ exception and set this to a non-zero value. Its initial value will be
+ automatically set to zero.
+
+PyObject \*sipPy
+ This is the Python object that the handwritten code should convert.
+
+See the `%GetCode`_ directive for an example.
+
+
+%SIPOptions
+-----------
+
+This directive sets one or more options that controls different aspects of
+SIP's behaviour. In this version all the available options are provided
+specifically to support PyQt and so are not documented.
+
+
+%Timeline
+---------
+
+.. parsed-literal::
+
+ %Timeline {*name* *name* ...}
+
+This directive is used to declare a set of versions released over a period of
+time. Versions (along with `%Feature`_ and `%Platforms`_) are used by the
+`%If`_ directive to control whether or not parts of a specification are
+processed or ignored.
+
+Versions are mutually exclusive - only one version can be enabled at a time.
+By default all versions are disabled. The SIP ``-t`` command line option is
+used to enable a version.
+
+For example::
+
+ %Timeline {V1_0 V1_1 V2_0 V3_0}
+
+ %If (V1_0 - V2_0)
+ void foo();
+ %End
+
+ %If (V2_0 -)
+ void foo(int = 0);
+ %End
+
+`%Timeline`_ can be used any number of times in a module to allow multiple
+libraries to be wrapped in the same module.
+
+
+%TypeCode
+---------
+
+.. parsed-literal::
+
+ %TypeCode
+ *code*
+ %End
+
+This directive is used as part of the specification of a C structure or a C++
+class to specify handwritten code, typically the implementations of utility
+functions, that can be called by other handwritten code in the structure or
+class.
+
+For example::
+
+ class Klass
+ {
+ %TypeCode
+ // Print an instance on stderr for debugging purposes.
+ static void dump_klass(const Klass *k)
+ {
+ fprintf(stderr,"Klass %s at %p\n", k -> name(), k);
+ }
+ %End
+
+ // The rest of the class specification.
+
+ };
+
+Because the scope of the code is normally within the generated file that
+implements the type, any utility functions would normally be declared
+``static``. However a naming convention should still be adopted to prevent
+clashes of function names within a module in case the SIP ``-j`` command line
+option is used.
+
+
+%TypeHeaderCode
+---------------
+
+.. parsed-literal::
+
+ %TypeHeaderCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code that defines the interface
+to a C or C++ type being wrapped, either a structure, a class, or a template.
+It is used within a class definition or a `%MappedType`_ directive.
+
+Normally *code* will be a pre-processor ``#include`` statement.
+
+For example::
+
+ // Wrap the Klass class.
+ class Klass
+ {
+ %TypeHeaderCode
+ #include <klass.h>
+ %End
+
+ // The rest of the class specification.
+ };
+
+
+%UnitCode
+---------
+
+.. parsed-literal::
+
+ %UnitCode
+ *code*
+ %End
+
+This directive is used to specify handwritten code that it included at the very
+start of a generated compilation unit (ie. C or C++ source file). It is
+typically used to ``#include`` a C++ precompiled header file.
+
+
+%VirtualCatcherCode
+-------------------
+
+.. parsed-literal::
+
+ %VirtualCatcherCode
+ *code*
+ %End
+
+For most classes there are corresponding `generated derived classes`_ that
+contain reimplementations of the class's virtual methods. These methods (which
+SIP calls catchers) determine if there is a corresponding Python
+reimplementation and call it if so. If there is no Python reimplementation
+then the method in the original class is called instead.
+
+This directive is used to specify handwritten code that replaces the normally
+generated call to the Python reimplementation and the handling of any returned
+results. It is usually used to handle argument types and results that SIP
+cannot deal with automatically.
+
+This directive can also be used in the context of a class destructor to
+specify handwritten code that is embedded in-line in the internal derived
+class's destructor.
+
+In the context of a method the Python Global Interpreter Lock (GIL) is
+automatically acquired before the specified code is executed and automatically
+released afterwards.
+
+In the context of a destructor the specified code must handle the GIL. The
+GIL must be acquired before any calls to the Python API and released after the
+last call as shown in this example fragment::
+
+ SIP_BLOCK_THREADS
+ Py_DECREF(obj);
+ SIP_UNBLOCK_THREADS
+
+The following variables are made available to the handwritten code in the
+context of a method:
+
+*type* a0
+ There is a variable for each argument of the C++ signature named ``a0``,
+ ``a1``, etc. The *type* of the variable is the same as the type defined in
+ the specification.
+
+int sipIsErr
+ The handwritten code should set this to a non-zero value, and raise an
+ appropriate Python exception, if an error is detected.
+
+PyObject \*sipMethod
+ This object is the Python reimplementation of the virtual C++ method. It
+ is normally passed to `sipCallMethod()`_.
+
+*type* sipRes
+ The handwritten code should set this to the result to be returned. The
+ *type* of the variable is the same as the type defined in the C++ signature
+ in the specification.
+
+No variables are made available in the context of a destructor.
+
+For example::
+
+ class Klass
+ {
+ public:
+ virtual int foo(SIP_PYTUPLE) [int (int *)];
+ %MethodCode
+ // The C++ API takes a 2 element array of integers but passing a
+ // two element tuple is more Pythonic.
+
+ int iarr[2];
+
+ if (PyArg_ParseTuple(a0, "ii", &iarr[0], &iarr[1]))
+ {
+ Py_BEGIN_ALLOW_THREADS
+ sipRes = sipCpp -> Klass::foo(iarr);
+ Py_END_ALLOW_THREADS
+ }
+ else
+ {
+ // PyArg_ParseTuple() will have raised the exception.
+ sipIsErr = 1;
+ }
+ %End
+ %VirtualCatcherCode
+ // Convert the 2 element array of integers to the two element
+ // tuple.
+
+ PyObject *result;
+
+ result = sipCallMethod(&sipIsErr, sipMethod, "ii", a0[0], a0[1]);
+
+ if (result != NULL)
+ {
+ // Convert the result to the C++ type.
+ sipParseResult(&sipIsErr, sipMethod, result, "i", &sipRes);
+
+ Py_DECREF(result);
+ }
+ %End
+ };
+
+
+SIP Annotations
+===============
+
+In this section we describe each of the annotations that can be used in
+specification files.
+
+Annotations can either be argument annotations, class annotations, enum
+annotations, exception annotations, function annotations, license annotations,
+or variable annotations depending on the context in which they can be used.
+
+Annotations are placed between forward slashes (``/``). Multiple annotations
+are comma separated within the slashes.
+
+Annotations have a type and, possibly, a value. The type determines the
+format of the value. The name of an annotation and its value are separated by
+``=``.
+
+Annotations can have one of the following types:
+
+boolean
+ This type of annotation has no value and is implicitly true.
+
+name
+ The value is a name that is compatible with a C/C++ identifier. In some
+ cases the value is optional.
+
+string
+ The value is a double quoted string.
+
+The following example shows argument and function annotations::
+
+ void exec(QWidget * /Transfer/) /ReleaseGIL, PyName=call_exec/;
+
+Note that the current version of SIP does not complain about unknown
+annotations, or annotations used out of their correct context.
+
+
+Argument Annotations
+--------------------
+
+AllowNone
+*********
+
+This boolean annotation specifies that the value of the corresponding argument
+(which should be either SIP_PYCALLABLE_, SIP_PYDICT_, SIP_PYLIST_,
+SIP_PYSLICE_, SIP_PYTUPLE_ or SIP_PYTYPE_) may be ``None``.
+
+
+Array
+*****
+
+This boolean annotation specifies that the corresponding argument (which
+should be either ``char *`` or ``unsigned char *``) refers to an array
+rather than a ``'\0'`` terminated string. There must be a corresponding
+argument with the ArraySize_ annotation specified. The annotation may only be
+specified once in a list of arguments.
+
+
+ArraySize
+*********
+
+This boolean annotation specifies that the corresponding argument (which
+should be either ``short``, ``unsigned short``, ``int``, ``unsigned``,
+``long`` or ``unsigned long``) refers to the size of an array. There must be
+a corresponding argument with the Array_ annotation specified. The annotation
+may only be specified once in a list of arguments.
+
+
+Constrained
+***********
+
+Python will automatically convert between certain compatible types. For
+example, if a floating pointer number is expected and an integer supplied,
+then the integer will be converted appropriately. This can cause problems
+when wrapping C or C++ functions with similar signatures. For example::
+
+ // The wrapper for this function will also accept an integer argument
+ // which Python will automatically convert to a floating point number.
+ void foo(double);
+
+ // The wrapper for this function will never get used.
+ void foo(int);
+
+This boolean annotation specifies that the corresponding argument (which
+should be either ``bool``, ``int``, ``float``, ``double`` or a wrapped class)
+must match the type without any automatic conversions. In the context of a
+wrapped class the invocation of any `%ConvertToTypeCode`_ is suppressed.
+
+The following example gets around the above problem::
+
+ // The wrapper for this function will only accept floating point numbers.
+ void foo(double /Constrained/);
+
+ // The wrapper for this function will be used for anything that Python can
+ // convert to an integer, except for floating point numbers.
+ void foo(int);
+
+
+GetWrapper
+**********
+
+This boolean annotation is only ever used in conjunction with handwritten code
+specified with the `%MethodCode`_ directive. It causes an extra variable to
+be generated for the corresponding argument (which should be a wrapped C
+structure or C++ class instance) which is a pointer to the Python object that
+wraps the argument.
+
+See the `%MethodCode`_ directive for more detail.
+
+
+In
+**
+
+This boolean annotation is used to specify that the corresponding argument
+(which should be a pointer type) is used to pass a value to the function.
+
+For pointers to wrapped C structures or C++ class instances, ``char *`` and
+``unsigned char *`` then this annotation is assumed unless the Out_ annotation
+is specified.
+
+For pointers to other types then this annotation must be explicitly specified
+if required. The argument will be dereferenced to obtain the actual value.
+
+Both In_ and Out_ may be specified for the same argument.
+
+
+Out
+***
+
+This boolean annotation is used to specify that the corresponding argument
+(which should be a pointer type) is used by the function to return a value as
+an element of a tuple.
+
+For pointers to wrapped C structures or C++ class instances, ``char *`` and
+``unsigned char *`` then this annotation must be explicitly specified if
+required.
+
+For pointers to other types then this annotation is assumed unless the In_
+annotation is specified.
+
+Both In_ and Out_ may be specified for the same argument.
+
+
+Transfer
+********
+
+This boolean annotation is used to specify that ownership of the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is
+transferred from Python to C++. In addition, if the argument is of a class
+method, then it is associated with the class instance with regard to the
+cyclic garbage collector.
+
+See `Ownership of Objects`_ for more detail.
+
+
+TransferBack
+************
+
+This boolean annotation is used to specify that ownership of the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is
+transferred back to Python from C++. In addition, any association of the
+argument with regard to the cyclic garbage collector with another instance is
+removed.
+
+Note that this can also be used as a function annotation.
+
+See `Ownership of Objects`_ for more detail.
+
+
+TransferThis
+************
+
+This boolean annotation is only used in C++ constructors or methods. In the
+context of a constructor or factory method it specifies that ownership of the
+instance being created is transferred from Python to C++ if the corresponding
+argument (which should be a wrapped C structure or C++ class instance) is not
+``None``. In addition, the newly created instance is associated with the
+argument with regard to the cyclic garbage collector.
+
+In the context of a non-factory method it specifies that ownership of ``this``
+is transferred from Python to C++ if the corresponding argument is not
+``None``. If it is ``None`` then ownership is transferred to Python.
+
+The annotation may be used more that once, in which case ownership is
+transferred to last instance that is not ``None``.
+
+See `Ownership of Objects`_ for more detail.
+
+
+Class Annotations
+-----------------
+
+Abstract
+********
+
+This boolean annotation is used to specify that the class has additional pure
+virtual methods that have not been specified and so it cannot be instantiated
+or sub-classed from Python.
+
+
+DelayDtor
+*********
+
+This boolean annotation is used to specify that the class's destructor should
+not be called until the Python interpreter exits. It would normally only be
+applied to singleton classes.
+
+When the Python interpreter exits the order in which any wrapped instances are
+garbage collected is unpredictable. However, the underlying C or C++ instances
+may need to be destroyed in a certain order. If this annotation is specified
+then when the wrapped instance is garbage collected the C or C++ instance is
+not destroyed but instead added to a list of delayed instances. When the
+interpreter exits then the function ``sipDelayedDtors`` is called with the
+list of delayed instances. ``sipDelayedDtors`` can then choose to call (or
+ignore) the destructors in any desired order.
+
+The ``sipDelayedDtors`` function must be specified using the `%ModuleCode`_
+directive. It's signature is as follows::
+
+ static void sipDelayedDtors(const sipDelayedDtor *dd_list);
+
+``dd_list`` is the linked list of delayed instances. The following fields are
+defined.
+
+const char \*dd_name
+ This is the name of the class excluding any package or module name.
+
+void \*dd_ptr
+ This is the address of the C or C++ instance to be destroyed. It's exact
+ type depends on the value of ``dd_isderived``.
+
+int dd_isderived
+ This is non-zero if the type of ``dd_ptr`` is actually the generated
+ derived class. This allows the correct destructor to be called. See
+ `Generated Derived Classes`_.
+
+sipDelayedDtor \*dd_next
+ This is the address of the next entry in the list or zero if this is the
+ last one.
+
+Note that the above applies only to C and C++ instances that are owned by
+Python.
+
+
+External
+********
+
+This boolean annotation is used to specify that the class is defined in another
+module. Declarations of external classes are private to the module in which
+they appear.
+
+
+NoDefaultCtors
+**************
+
+This boolean annotation is used to suppress the automatic generation of default
+constructors for the class.
+
+
+PyName
+******
+
+This name annotation specifies an alternative name for the class being wrapped
+which is used when it is referred to from Python. It is required when a class
+name is the same as a Python keyword. It may also be used to avoid name
+clashes with other objects (e.g. enums, exceptions, functions) that have the
+same name in the same C++ scope.
+
+
+Enum Annotations
+----------------
+
+PyName
+******
+
+This name annotation specifies an alternative name for the enum or enum member
+being wrapped which is used when it is referred to from Python. It is required
+when an enum or enum member name is the same as a Python keyword. It may also
+be used to avoid name clashes with other objects (e.g. classes, exceptions,
+functions) that have the same name in the same C++ scope.
+
+
+Exception Annotations
+---------------------
+
+PyName
+******
+
+This name annotation specifies an alternative name for the exception being
+defined which is used when it is referred to from Python. It is required when
+an exception name is the same as a Python keyword. It may also be used to
+avoid name clashes with other objects (e.g. classes, enums, functions) that
+have the same name.
+
+
+Function Annotations
+--------------------
+
+AutoGen
+*******
+
+This optional name annotation is used with class methods to specify that the
+method be automatically included in all sub-classes. The value is the name of
+a feature (specified using the `%Feature`_ directive) which must be enabled
+for the method to be generated.
+
+
+Default
+*******
+
+This boolean annotation is only used with C++ constructors. Sometimes SIP
+needs to create a class instance. By default it uses a constructor with no
+compulsory arguments if one is specified. (SIP will automatically generate a
+constructor with no arguments if no constructors are specified.) This
+annotation is used to explicitly specify which constructor to use. Zero is
+passed as the value of any arguments to the constructor.
+
+
+Factory
+*******
+
+This boolean annotation specifies that the value returned by the function
+(which should be a wrapped C structure or C++ class instance) is a newly
+created instance and is owned by Python.
+
+See `Ownership of Objects`_ for more detail.
+
+
+HoldGIL
+*******
+
+This boolean annotation specifies that the Python Global Interpreter Lock (GIL)
+is not released before the call to the underlying C or C++ function. See
+`The Python Global Interpreter Lock`_ and the ReleaseGIL_ annotation.
+
+
+NewThread
+*********
+
+This boolean annotation specifies that the function will create a new thread.
+
+
+NoDerived
+*********
+
+This boolean annotation is only used with C++ constructors. In many cases SIP
+generates a derived class for each class being wrapped (see `Generated Derived
+Classes`_). This derived class contains constructors with the same C++
+signatures as the class being wrapped. Sometimes you may want to define a
+Python constructor that has no corresponding C++ constructor. This annotation
+is used to suppress the generation of the constructor in the derived class.
+
+
+Numeric
+*******
+
+This boolean annotation specifies that the operator should be interpreted as a
+numeric operator rather than a sequence operator. Python uses the ``+``
+operator for adding numbers and concatanating sequences, and the ``*`` operator
+for multiplying numbers and repeating sequences. SIP tries to work out which
+is meant by looking at other operators that have been defined for the type.
+If it finds either ``-``, ``-=``, ``/``, ``/=``, ``%`` or ``%=`` defined then
+it assumes that ``+``, ``+=``, ``*`` and ``*=`` should be numeric operators.
+Otherwise, if it finds either ``[]``, ``__getitem__()``, ``__setitem__()`` or
+``__delitem__()`` defined then it assumes that they should be sequence
+operators. This annotation is used to force SIP to treat the operator as
+numeric.
+
+
+PostHook
+********
+
+This name annotation is used to specify the name of a Python builtin that is
+called immediately after the call to the underlying C or C++ function or any
+handwritten code. The builtin is not called if an error occurred. It is
+primarily used to integrate with debuggers.
+
+
+PreHook
+*******
+
+This name annotation is used to specify the name of a Python builtin that is
+called immediately after the function's arguments have been successfully
+parsed and before the call to the underlying C or C++ function or any
+handwritten code. It is primarily used to integrate with debuggers.
+
+
+PyName
+******
+
+This name annotation specifies an alternative name for the function being
+wrapped which is used when it is referred to from Python. It is required when
+a function or method name is the same as a Python keyword. It may also be used
+to avoid name clashes with other objects (e.g. classes, enums, exceptions) that
+have the same name in the same C++ scope.
+
+
+ReleaseGIL
+**********
+
+This boolean annotation specifies that the Python Global Interpreter Lock (GIL)
+is released before the call to the underlying C or C++ function and reacquired
+afterwards. It should be used for functions that might block or take a
+significant amount of time to execute. See `The Python Global Interpreter
+Lock`_ and the HoldGIL_ annotation.
+
+
+TransferBack
+************
+
+This boolean annotation specifies that ownership of the value returned by the
+function (which should be a wrapped C structure or C++ class instance) is
+transferred back to Python from C++. Normally returned values (unless they are
+new references to already wrapped values) are owned by C++. In addition, any
+association of the returned value with regard to the cyclic garbage collector
+with another instance is removed.
+
+Note that this can also be used as an argument annotation.
+
+See `Ownership of Objects`_ for more detail.
+
+
+License Annotations
+-------------------
+
+Licensee
+********
+
+This optional string annotation specifies the license's licensee. No
+restrictions are placed on the contents of the string.
+
+See the `%License`_ directive.
+
+
+Signature
+*********
+
+This optional string annotation specifies the license's signature. No
+restrictions are placed on the contents of the string.
+
+See the `%License`_ directive.
+
+
+Timestamp
+*********
+
+This optional string annotation specifies the license's timestamp. No
+restrictions are placed on the contents of the string.
+
+See the `%License`_ directive.
+
+
+Type
+****
+
+This string annotation specifies the license's type. No restrictions are
+placed on the contents of the string.
+
+See the `%License`_ directive.
+
+
+Variable Annotations
+--------------------
+
+PyName
+******
+
+This name annotation specifies an alternative name for the variable being
+wrapped which is used when it is referred to from Python. It is required when
+a variable name is the same as a Python keyword. It may also be used to avoid
+name clashes with other objects (e.g. classes, functions) that have the same
+name in the same C++ scope.
+
+
+SIP API for Handwritten Code
+============================
+
+In this section we describe the API that can be used by handwritten code in
+specification files.
+
+
+SIP_API_MAJOR_NR
+----------------
+
+This is a C preprocessor symbol that defines the major number of the SIP API.
+Its value is a number. There is no direct relationship between this and the
+SIP version number.
+
+
+SIP_API_MINOR_NR
+----------------
+
+This is a C preprocessor symbol that defines the minor number of the SIP API.
+Its value is a number. There is no direct relationship between this and the
+SIP version number.
+
+
+SIP_BLOCK_THREADS
+-----------------
+
+This is a C preprocessor macro that will make sure the Python Global
+Interpreter Lock (GIL) is acquired. Python API calls must only be made when
+the GIL has been acquired. There must be a corresponding
+`SIP_UNBLOCK_THREADS`_ at the same lexical scope.
+
+
+SIP_SSIZE_T
+-----------
+
+This is a C preprocessor macro that is defined as ``Py_ssize_t`` for Python
+v2.5 and later, and as ``int`` for earlier versions of Python. It makes it
+easier to write PEP 353 compliant handwritten code.
+
+
+SIP_UNBLOCK_THREADS
+-------------------
+
+This is a C preprocessor macro that will restore the Python Global Interpreter
+Lock (GIL) to the state it was prior to the corresponding `SIP_BLOCK_THREADS`_.
+
+
+SIP_VERSION
+-----------
+
+This is a C preprocessor symbol that defines the SIP version number
+represented as a 3 part hexadecimal number (e.g. v4.0.0 is represented as
+``0x040000``).
+
+
+SIP_VERSION_STR
+---------------
+
+This is a C preprocessor symbol that defines the SIP version number
+represented as a string. For development snapshots it will start with
+``snapshot-``.
+
+
+sipBadCatcherResult()
+---------------------
+
+void sipBadCatcherResult(PyObject \*method)
+ This raises a Python exception when the result of a Python reimplementation
+ of a C++ method doesn't have the expected type. It is normally called by
+ handwritten code specified with the `%VirtualCatcherCode`_ directive.
+ *method* is the Python method and would normally be the supplied
+ ``sipMethod``.
+
+
+sipBadLengthForSlice()
+----------------------
+
+void sipBadLengthForSlice(SIP_SSIZE_T seqlen, SIP_SSIZE_T slicelen)
+ This raises a Python exception when the length of a slice object is
+ inappropriate for a sequence-like object. It is normally called by
+ handwritten code specified for ``__setitem__()`` methods. *seqlen* is the
+ length of the sequence. *slicelen* is the length of the slice. With
+ versions of Python prior to v2.5 the arguments have type ``int``.
+
+
+sipBuildResult()
+----------------
+
+PyObject \*sipBuildResult(int \*iserr, const char \*format, ...)
+ This creates a Python object based on a format string and associated
+ values in a similar way to the Python ``Py_BuildValue()`` function. If
+ there was an error then ``NULL`` is returned and a Python exception is
+ raised. If *iserr* is not ``NULL`` then the location it points to is set
+ to a non-zero value. *format* is the string of format characters.
+
+ If *format* begins and ends with parentheses then a tuple of objects is
+ created. If *format* contains more than one format character then
+ parentheses must be specified.
+
+ In the following description the first letter is the format character, the
+ entry in parentheses is the Python object type that the format character
+ will create, and the entry in brackets are the types of the C/C++ values
+ to be passed.
+
+ ``a`` (string) [char \*, int]
+ Convert a C/C++ character array and its length to a Python string. If
+ the array is ``NULL`` then the length is ignored and the result is
+ ``Py_None``.
+
+ ``b`` (boolean) [int]
+ Convert a C/C++ ``int`` to a Python boolean.
+
+ ``c`` (string) [char]
+ Convert a C/C++ ``char`` to a Python string.
+
+ ``d`` (float) [double]
+ Convert a C/C++ ``double`` to a Python floating point number.
+
+ ``e`` (integer) [enum]
+ Convert an anonymous C/C++ ``enum`` to a Python integer.
+
+ ``f`` (float) [float]
+ Convert a C/C++ ``float`` to a Python floating point number.
+
+ ``h`` (integer) [short]
+ Convert a C/C++ ``short`` to a Python integer.
+
+ ``i`` (integer) [int]
+ Convert a C/C++ ``int`` to a Python integer.
+
+ ``l`` (long) [long]
+ Convert a C/C++ ``long`` to a Python integer.
+
+ ``m`` (long) [unsigned long]
+ Convert a C/C++ ``unsigned long`` to a Python long.
+
+ ``n`` (long) [long long]
+ Convert a C/C++ ``long long`` to a Python long.
+
+ ``o`` (long) [unsigned long long]
+ Convert a C/C++ ``unsigned long long`` to a Python long.
+
+ ``s`` (string) [char \*]
+ Convert a C/C++ ``'\0'`` terminated string to a Python string. If the
+ string pointer is ``NULL`` then the result is ``Py_None``.
+
+ ``t`` (long) [unsigned short]
+ Convert a C/C++ ``unsigned short`` to a Python long.
+
+ ``u`` (long) [unsigned int]
+ Convert a C/C++ ``unsigned int`` to a Python long.
+
+ ``w`` (unicode) [wchar_t]
+ Convert a C/C++ wide character to a Python unicode object.
+
+ ``x`` (unicode) [wchar_t \*]
+ Convert a C/C++ ``L'\0'`` terminated wide character string to a Python
+ unicode object. If the string pointer is ``NULL`` then the result is
+ ``Py_None``.
+
+ ``A`` (unicode) [wchar_t \*, int]
+ Convert a C/C++ wide character array and its length to a Python unicode
+ object. If the array is ``NULL`` then the length is ignored and the
+ result is ``Py_None``.
+
+ ``B`` (wrapped instance) [*type* \*, sipWrapperType \*, PyObject \*]
+ Convert a new C structure or a new C++ class instance to a Python class
+ instance object. Ownership of the structure or instance is determined
+ by the ``PyObject *`` argument. If it is ``NULL`` and the instance has
+ already been wrapped then the ownership is unchanged. If it is
+ ``NULL`` or ``Py_None`` then ownership will be with Python. Otherwise
+ ownership will be with C/C++ and the instance associated with the
+ ``PyObject *`` argument. The Python class is influenced by any
+ applicable `%ConvertToSubClassCode`_ code.
+
+ ``C`` (wrapped instance) [*type* \*, sipWrapperType \*, PyObject \*]
+ Convert a C structure or a C++ class instance to a Python class
+ instance object. If the structure or class instance has already been
+ wrapped then the result is a new reference to the existing class
+ instance object. Ownership of the structure or instance is determined
+ by the ``PyObject *`` argument. If it is ``NULL`` and the instance has
+ already been wrapped then the ownership is unchanged. If it is
+ ``NULL`` and the instance is newly wrapped then ownership will be with
+ C/C++. If it is ``Py_None`` then ownership is transferred to Python
+ via a call to `sipTransferBack()`_. Otherwise ownership is transferred
+ to C/C++ and the instance associated with the ``PyObject *`` argument
+ via a call to `sipTransferTo()`_. The Python class is influenced by
+ any applicable `%ConvertToSubClassCode`_ code.
+
+ ``D`` (object) [*type* \*, const sipMappedType \*, PyObject \*]
+ Convert a C structure or a C++ class instance wrapped as a mapped type
+ to a Python object. Ownership of the structure or instance is
+ determined by the ``PyObject *`` argument. If it is ``NULL`` then the
+ ownership is unchanged. If it is ``Py_None`` then ownership is
+ transferred to Python via a call to `sipTransferBack()`_. Otherwise
+ ownership is transferred to C/C++ and the instance associated with the
+ ``PyObject *`` argument via a call to `sipTransferTo()`_.
+
+ ``E`` (wrapped enum) [enum, PyTypeObject \*]
+ Convert a named C/C++ ``enum`` to an instance of the corresponding
+ Python named enum type.
+
+ ``M`` (wrapped instance) [*type* \*, sipWrapperType \*]
+ Convert a C structure or a C++ class instance to a Python class
+ instance object. If the structure or class instance has already been
+ wrapped then the result is a new reference to the existing class
+ instance object. If the instance has already been wrapped then the
+ ownership is unchanged. If the instance is newly wrapped then
+ ownership will be with C/C++. The Python class is influenced by any
+ applicable `%ConvertToSubClassCode`_ code. This is deprecated from
+ SIP v4.4.
+
+ ``N`` (wrapped instance) [*type* \*, sipWrapperType \*]
+ Convert a C structure or a C++ class instance to a Python class
+ instance object. This should not be used if the structure or class
+ instance might already have been wrapped. Ownership of the structure
+ or instance will be with Python. The Python class is influenced by
+ any applicable `%ConvertToSubClassCode`_ code. This is deprecated
+ from SIP v4.4.
+
+ ``O`` (wrapped instance) [*type* \*, sipWrapperType \*]
+ Convert a C structure or a C++ class instance to a Python class
+ instance object. If the structure or class instance has already been
+ wrapped then the result is a new reference to the existing class
+ instance object. Ownership of the structure or instance will be with
+ C/C++. This is deprecated from SIP v4.4.
+
+ ``P`` (wrapped instance) [*type* \*, sipWrapperType \*]
+ Convert a C structure or a C++ class instance to a Python class
+ instance object. This should not be used if the structure or class
+ instance might already have been wrapped. Ownership of the structure
+ or instance will be with Python. This is deprecated from SIP v4.4.
+
+ ``R`` (object) [PyObject \*]
+ The result is value passed without any conversions. The reference
+ count is unaffected, i.e. a reference is taken.
+
+ ``S`` (object) [PyObject \*]
+ The result is value passed without any conversions. The reference
+ count is incremented.
+
+ ``T`` (object) [void \*, PyObject \*(\*)(void \*cppptr)]
+ Convert a C structure or a C++ class instance to a Python object using
+ a convertor function. See `Generated Type Convertors`_. This is
+ deprecated from SIP v4.4.
+
+ ``V`` (sip.voidptr) [void \*]
+ Convert a C/C++ ``void *`` Python ``sip.voidptr`` object.
+
+
+sipCallMethod()
+---------------
+
+PyObject \*sipCallMethod(int \*iserr, PyObject \*method, const char \*format, ...)
+ This calls a Python method passing a tuple of arguments based on a format
+ string and associated values in a similar way to the Python
+ ``PyObject_CallObject()`` function. If there was an error then ``NULL`` is
+ returned and a Python exception is raised. If *iserr* is not ``NULL``
+ then the location it points to is set to a non-zero value. *method* is the
+ Python bound method to call. *format* is the string of format characters
+ (see `sipBuildResult()`_).
+
+ This is normally called by handwritten code specified with the
+ `%VirtualCatcherCode`_ directive with *method* being the supplied
+ ``sipMethod``.
+
+
+sipCanConvertToInstance()
+-------------------------
+
+int sipCanConvertToInstance(PyObject \*obj, sipWrapperType \*type, int flags)
+ This returns a non-zero value if a Python object can be converted to an
+ instance of a C structure or C++ class. *obj* is the Python object.
+ *type* is the generated type corresponding to the C/C++ type being checked.
+ *flags* is any combination of the following values used to fine tune the
+ check.
+
+ - ``SIP_NOT_NONE`` causes the check to fail if *obj* is ``None``.
+
+ - ``SIP_NO_CONVERTORS`` suppresses the use of of any
+ `%ConvertToTypeCode`_ for *type*.
+
+
+sipCanConvertToMappedType()
+---------------------------
+
+int sipCanConvertToMappedType(PyObject \*obj, const sipMappedType \*mt, int flags)
+ This returns a non-zero value if a Python object can be converted to an
+ instance of a C structure or C++ class which has been implemented as a
+ mapped type. *obj* is the Python object. *mt* is an opaque structure
+ returned by `sipFindMappedType()`_. *flags* is any combination of the
+ following values used to fine tune the check.
+
+ - ``SIP_NOT_NONE`` causes the check to fail if *obj* is ``None``.
+
+
+sipClassName()
+--------------
+
+PyObject \*sipClassName(PyObject \*obj)
+ This returns the class name of a wrapped instance as a Python string. It
+ comes with a reference.
+
+
+sipConnectRx()
+--------------
+
+PyObject \*sipConnectRx(PyObject \*sender, const char \*signal, PyObject \*receiver, const char \*slot, int type)
+ This connects a signal to a signal or slot and returns ``Py_True`` if the
+ signal was connected or ``Py_False`` if not. If there was some other
+ error then a Python exception is raised and ``NULL`` is returned. *sender*
+ is the wrapped ``QObject`` derived instance that emits the signal.
+ *signal* is the typed name of the signal. *receiver* is the wrapped
+ ``QObject`` derived instance or Python callable that the signal is
+ connected to. *slot* is the typed name of the slot, or ``NULL`` if
+ *receiver* is a Python callable. *type* is the type of connection and is
+ cast from Qt::ConnectionType. It is normally only used by PyQt to
+ implement ``QObject.connect()``.
+
+
+sipConvertFromInstance()
+------------------------
+
+PyObject \*sipConvertFromInstance(void \*cpp, sipWrapperType \*type, PyObject \*transferObj)
+ Convert a C structure or a C++ class instance to a Python class instance
+ object. *cpp* is the C/C++ instance. If the instance has already been
+ wrapped then the result is a new reference to the existing instance object.
+ *type* is the generated type corresponding to the C/C++ type.
+ *transferObj* controls the ownership of the returned value. If the
+ structure or class instance has already been wrapped then the result is a
+ new reference to the existing class instance object. If it is ``NULL`` and
+ the instance has already been wrapped then the ownership is unchanged. If
+ it is ``NULL`` and the instance is newly wrapped then ownership will be
+ with C/C++. If it is ``Py_None`` then ownership is transferred to Python
+ via a call to `sipTransferBack()`_. Otherwise ownership is transferred to
+ C/C++ and the instance associated with *transferObj* via a call to
+ `sipTransferTo()`_. The Python class is influenced by any applicable
+ `%ConvertToSubClassCode`_ code.
+
+
+sipConvertFromMappedType()
+--------------------------
+
+PyObject \*sipConvertFromMappedType(void \*cpp, const sipMappedType \*mt, PyObject \*transferObj)
+ Convert a C structure or a C++ class instance wrapped as a mapped type to a
+ Python object. *cpp* is the C/C++ instance. *mt* is the opaque structure
+ returned by `sipFindMappedType()`_. *transferObj* controls any ownership
+ changes to *obj*. If it is ``NULL`` then the ownership is unchanged. If
+ it is ``Py_None`` then ownership is transferred to Python via a call to
+ `sipTransferBack()`_. Otherwise ownership is transferred to C/C++ and the
+ instance associated with the ``PyObject *`` argument via a call to
+ `sipTransferTo()`_.
+
+
+sipConvertFromNamedEnum()
+-------------------------
+
+PyObject \*sipConvertFromNamedEnum(int eval, PyTypeObject \*type)
+ Convert a named C/C++ ``enum`` to an instance of the corresponding Python
+ named enum type. *eval* is the enumerated value to convert. *type* is the
+ generated Python type object (see `Generated Named Enum Type Objects`_).
+
+
+sipConvertFromNewInstance()
+---------------------------
+
+PyObject \*sipConvertFromNewInstance(void \*cpp, sipWrapperType \*type, PyObject \*transferObj)
+ Convert a new C structure or a new C++ class instance to a Python class
+ instance object. *cpp* is the C/C++ instance. *type* is the generated
+ type corresponding to the C/C++ type. *transferObj* controls the ownership
+ of the returned value. If it is ``NULL`` or ``Py_None`` then ownership
+ will be with Python. Otherwise ownership will be with C/C++ and the
+ instance associated with *transferObj*. The Python class is influenced by
+ any applicable `%ConvertToSubClassCode`_ code.
+
+
+sipConvertFromSequenceIndex()
+-----------------------------
+
+SIP_SSIZE_T sipConvertFromSequenceIndex(SIP_SSIZE_T idx, SIP_SSIZE_T len)
+ This converts a Python sequence index (i.e. where a negative value refers
+ to the offset from the end of the sequence) to a C/C++ array index. If the
+ index was out of range then a negative value is returned and a Python
+ exception raised. With versions of Python prior to v2.5 the result and the
+ arguments have type ``int``.
+
+
+sipConvertFromSliceObject()
+---------------------------
+
+int sipConvertFromSliceObject(PyObject \*slice, SIP_SSIZE_T length, SIP_SSIZE_T \*start, SIP_SSIZE_T \*stop, SIP_SSIZE_T \*step, SIP_SSIZE_T \*slicelength)
+ This is a thin wrapper around the Python ``PySlice_GetIndicesEx()``
+ function provided to make it easier to write handwritten code that is
+ compatible with SIP v3.x and versions of Python earlier that v2.3.
+
+
+sipConvertToCpp()
+-----------------
+
+void \*sipConvertToCpp(PyObject \*obj, sipWrapperType \*type, int \*iserr)
+ This function is deprecated from SIP v4.4. It is equivalent to::
+
+ sipConvertToInstance(obj, type, NULL, SIP_NO_CONVERTORS, NULL, iserr);
+
+
+sipConvertToInstance()
+----------------------
+
+void \*sipConvertToInstance(PyObject \*obj, sipWrapperType \*type, PyObject \*transferObj, int flags, int \*state, int \*iserr)
+ This converts a Python object to an instance of a C structure or C++ class
+ assuming that a previous call to `sipCanConvertToInstance()`_ has been
+ successful. *obj* is the Python object. *type* is the generated type
+ corresponding to the C/C++ type returned. It may be any class in the
+ object's class hierarchy. *transferObj* controls any ownership changes to
+ *obj*. If it is ``NULL`` then the ownership is unchanged. If it is
+ ``Py_None`` then ownership is transferred to Python via a call to
+ `sipTransferBack()`_. Otherwise ownership is transferred to C/C++ and
+ *obj* associated with *transferObj* via a call to `sipTransferTo()`_.
+ *flags* is any combination of the following values used to fine tune the
+ check.
+
+ - ``SIP_NOT_NONE`` causes the check to fail if *obj* is ``None``.
+
+ - ``SIP_NO_CONVERTORS`` suppresses the use of of any
+ `%ConvertToTypeCode`_ for *type*.
+
+ If *state* is not ``NULL`` then the location it points to is set to
+ describe the state of the returned C/C++ instance and is the value returned
+ by any `%ConvertToTypeCode`_. The calling code must then release the value
+ at some point to prevent a memory leak by calling `sipReleaseInstance()`_.
+ If there is an error then the location *iserr* points to is set to a
+ non-zero value. If it was initially a non-zero value then the conversion
+ isn't attempted in the first place. (This allows several calls to be made
+ that share the same error flag so that it only needs to be tested once
+ rather than after each call.)
+
+
+sipConvertToMappedType()
+------------------------
+
+void \*sipConvertToMappedType(PyObject \*obj, const sipMappedType \*mt, PyObject \*transferObj, int flags, int \*state, int \*iserr)
+ This converts a Python object to an instance of a C structure or C++
+ class that is implemented as a mapped type assuming that a previous call to
+ `sipCanConvertToMappedType()`_ has been successful. *obj* is the Python
+ object. *mt* is the opaque structure returned by `sipFindMappedType()`_.
+ *transferObj* controls any ownership changes to *obj*. If it is ``NULL``
+ then the ownership is unchanged. If it is ``Py_None`` then ownership is
+ transferred to Python via a call to `sipTransferBack()`_. Otherwise
+ ownership is transferred to C/C++ and *obj* associated with *transferObj*
+ via a call to `sipTransferTo()`_. *flags* is any combination of the
+ following values used to fine tune the check.
+
+ - ``SIP_NOT_NONE`` causes the check to fail if *obj* is ``None``.
+
+ If *state* is not ``NULL`` then the location it points to is set to
+ describe the state of the returned C/C++ instance and is the value returned
+ by any `%ConvertToTypeCode`_. The calling code must then release the value
+ at some point to prevent a memory leak by calling
+ `sipReleaseMappedType()`_. If there is an error then the location *iserr*
+ points to is set to a non-zero value. If it was initially a non-zero value
+ then the conversion isn't attempted in the first place. (This allows
+ several calls to be made that share the same error flag so that it only
+ needs to be tested once rather than after each call.)
+
+
+sipDisconnectRx()
+-----------------
+
+PyObject \*sipDisconnectRx(PyObject \*sender, const char \*signal, PyObject \*receiver, const char \*slot)
+ This disconnects a signal from a signal or slot and returns ``Py_True`` if
+ the signal was disconnected or ``Py_False`` if not. If there was some
+ other error then a Python exception is raised and ``NULL`` is returned.
+ *sender* is the wrapped ``QObject`` derived instance that emits the signal.
+ *signal* is the typed name of the signal. *receiver* is the wrapped
+ ``QObject`` derived instance or Python callable that the signal is
+ connected to. *slot* is the typed name of the slot, or ``NULL`` if
+ *receiver* is a Python callable. It is normally only used by PyQt to
+ implement ``QObject.disconnect()``.
+
+
+sipEmitSignal()
+---------------
+
+int sipEmitSignal(PyObject \*txobj, const char \*signal, PyObject \*args)
+ This emits a signal and returns zero if there was no error. If there was
+ an error then a Python exception is raised and a negative value is
+ returned. *txobj* is the wrapped ``QObject`` derived instance that emits
+ the signal. *signal* is the typed name of the signal. *args* is a Python
+ tuple of the signal arguments. It is normally only used by PyQt to
+ implement ``QObject.emit()``.
+
+
+sipExportSymbol()
+-----------------
+
+int sipExportSymbol(const char \*name, void \*sym)
+ Python does not allow extension modules to directly access symbols in
+ another extension module. This exports a symbol, referenced by a name,
+ that can subsequently be imported, using `sipImportSymbol()`_, by another
+ module. *name* is the name of the symbol and *sym* is its value. Zero is
+ returned if there was no error. A negative value is returned if *name* is
+ already associated with a symbol or there was some other error.
+
+
+sipFindClass()
+--------------
+
+sipWrapperType \*sipFindClass(const char \*type)
+ This returns a pointer to the generated type corresponding to a C/C++ type.
+ *type* is the C/C++ declaration of the type. ``NULL`` is returned if the
+ C/C++ type doesn't exist. The value of the pointer will not change and
+ may be saved in a static cache.
+
+
+sipFindMappedType()
+-------------------
+
+const sipMappedType \*sipFindMappedType(const char \*type)
+ This returns a pointer to an opaque structure describing a mapped type.
+ *type* is the C/C++ declaration of the type. ``NULL`` is returned if the
+ mapped type doesn't exist. The value of the pointer will not change and
+ may be saved in a static cache.
+
+
+sipFindNamedEnum()
+------------------
+
+PyTypeObject \*sipFindNamedEnum(const char \*type)
+ This returns a pointer to the generated type corresponding to a named C/C++
+ enum. *type* is the C/C++ declaration of the enum. ``NULL`` is returned
+ if the named C/C++ enum doesn't exist. The value of the pointer will not
+ change and may be saved in a static cache.
+
+
+sipForceConvertToInstance()
+---------------------------
+
+void \*sipForceConvertToInstance(PyObject \*obj, sipWrapperType \*type, PyObject \*transferObj, int flags, int \*state, int \*iserr)
+ This converts a Python object to an instance of a C structure or C++ class
+ by calling `sipCanConvertToInstance()`_ and, if it is successfull, calling
+ `sipConvertToInstance()`_. See `sipConvertToInstance()`_ for a full
+ description of the arguments.
+
+
+sipForceConvertToMappedType()
+-----------------------------
+
+void \*sipForceConvertToMappedType(PyObject \*obj, const sipMappedType \*mt, PyObject \*transferObj, int flags, int \*state, int \*iserr)
+ This converts a Python object to an instance of a C structure or C++ class
+ which has been implemented as a mapped type by calling
+ `sipCanConvertToMappedType()`_ and, if it is successfull, calling
+ `sipConvertToMappedType()`_. See `sipConvertToMappedType()`_ for a full
+ description of the arguments.
+
+
+sipFree()
+---------
+
+void sipFree(void \*mem)
+ This returns an area of memory allocated by `sipMalloc()`_ to the heap.
+ *mem* is a pointer to the area of memory.
+
+
+sipGetSender()
+--------------
+
+const void \*sipGetSender()
+ This returns a pointer to the last ``QObject`` instance that emitted a Qt
+ signal. It is normally only used by PyQt to implement
+ ``QObject.sender()``.
+
+
+sipGetWrapper()
+---------------
+
+PyObject \*sipGetWrapper(void \*cppptr, sipWrapperType \*type)
+ This returns a borrowed reference to the wrapped instance object for a C
+ structure or C++ class instance. If the structure or class instance
+ hasn't been wrapped then ``NULL`` is returned (and no Python exception is
+ raised). *cppptr* is the pointer to the structure or class instance.
+ *type* is the generated type corresponding to the C/C++ type.
+
+
+sipImportSymbol()
+-----------------
+
+void \*sipImportSymbol(const char \*name)
+ Python does not allow extension modules to directly access symbols in
+ another extension module. This imports a symbol, referenced by a name,
+ that has previously been exported, using `sipExportSymbol()`_, by another
+ module. *name* is the name of the symbol. The value of the symbol is
+ returned if there was no error. ``NULL`` is returned if there is no such
+ symbol.
+
+
+sipIntTypeClassMap
+------------------
+
+This C structure is used with `sipMapIntToClass()`_ to define a mapping
+between integer based RTTI and `generated type objects`_. The structure
+elements are as follows.
+
+int typeInt
+ The integer RTTI.
+
+sipWrapperType \*\*pyType.
+ A pointer to the corresponding Python type object.
+
+
+sipIsSubClassInstance()
+-----------------------
+
+int sipIsSubClassInstance(PyObject \*obj, sipWrapperType \*type)
+ This function is deprecated from SIP v4.4. It is equivalent to::
+
+ sipCanConvertToInstance(obj, type, SIP_NOT_NONE | SIP_NO_CONVERTORS);
+
+
+sipLong_AsUnsignedLong()
+------------------------
+
+unsigned long sipLong_AsUnsignedLong(PyObject \*obj)
+ This function is a thin wrapper around PyLong_AsUnsignedLong() that works
+ around a bug in Python v2.3.x and earlier when converting integer objects.
+
+
+sipMalloc()
+-----------
+
+void \*sipMalloc(size_t nbytes)
+ This allocates an area of memory of size *nytes* on the heap using the
+ Python ``PyMem_Malloc()`` function. If there was an error then ``NULL`` is
+ returned and a Python exception raised. See `sipFree()`_.
+
+
+sipMapIntToClass()
+------------------
+
+sipWrapperType \*sipMapIntToClass(int type, const sipIntTypeClassMap \*map, int maplen)
+ This is used in `%ConvertToSubClassCode`_ code as a convenient way of
+ converting integer based RTTI to the corresponding Python type object.
+ *type* is the RTTI. *map* is the table of known RTTI and the corresponding
+ type objects (see sipIntTypeClassMap_). The entries in the table must be
+ sorted in ascending order of RTTI. *maplen* is the number of entries in
+ the table. The corresponding Python type object is returned, or ``NULL``
+ if *type* wasn't in *map*.
+
+
+sipMapStringToClass()
+---------------------
+
+sipWrapperType \*sipMapStringToClass(char \*type, const sipStringTypeClassMap \*map, int maplen)
+ This is used in `%ConvertToSubClassCode`_ code as a convenient way of
+ converting ``'\0'`` terminated string based RTTI to the corresponding
+ Python type object. *type* is the RTTI. *map* is the table of known RTTI
+ and the corresponding type objects (see sipStringTypeClassMap_). The
+ entries in the table must be sorted in ascending order of RTTI. *maplen*
+ is the number of entries in the table. The corresponding Python type
+ object is returned, or ``NULL`` if *type* wasn't in *map*.
+
+
+sipParseResult()
+----------------
+
+int sipParseResult(int \*iserr, PyObject \*method, PyObject \*result, const char \*format, ...)
+ This converts a Python object (usually returned by a method) to C/C++ based
+ on a format string and associated values in a similar way to the Python
+ ``PyArg_ParseTuple()`` function. If there was an error then a negative
+ value is returned and a Python exception is raised. If *iserr* is not
+ ``NULL`` then the location it points to is set to a non-zero value.
+ *method* is the Python bound method that returned the *result* object.
+ *format* is the string of format characters.
+
+ This is normally called by handwritten code specified with the
+ `%VirtualCatcherCode`_ directive with *method* being the supplied
+ ``sipMethod`` and ``result`` being the value returned by
+ `sipCallMethod()`_.
+
+ If *format* begins and ends with parentheses then *result* must be a Python
+ tuple and the rest of *format* is applied to the tuple contents.
+
+ In the following description the first letter is the format character, the
+ entry in parentheses is the Python object type that the format character
+ will convert, and the entry in brackets are the types of the C/C++ values
+ to be passed.
+
+ ``a`` (string) [char \*\*, int \*]
+ Convert a Python string to a C/C++ character array and its length. If
+ the Python object is ``Py_None`` then the array and length are ``NULL``
+ and zero respectively.
+
+ ``b`` (integer) [bool \*]
+ Convert a Python integer to a C/C++ ``bool``.
+
+ ``c`` (string) [char \*]
+ Convert a Python string of length 1 to a C/C++ ``char``.
+
+ ``d`` (float) [double \*]
+ Convert a Python floating point number to a C/C++ ``double``.
+
+ ``e`` (integer) [enum \*]
+ Convert a Python integer to an anonymous C/C++ ``enum``.
+
+ ``f`` (float) [float \*]
+ Convert a Python floating point number to a C/C++ ``float``.
+
+ ``h`` (integer) [short \*]
+ Convert a Python integer to a C/C++ ``short``.
+
+ ``i`` (integer) [int \*]
+ Convert a Python integer to a C/C++ ``int``.
+
+ ``l`` (long) [long \*]
+ Convert a Python long to a C/C++ ``long``.
+
+ ``m`` (long) [unsigned long \*]
+ Convert a Python long to a C/C++ ``unsigned long``.
+
+ ``n`` (long) [long long \*]
+ Convert a Python long to a C/C++ ``long long``.
+
+ ``o`` (long) [unsigned long long \*]
+ Convert a Python long to a C/C++ ``unsigned long long``.
+
+ ``s`` (string) [char \*\*]
+ Convert a Python string to a C/C++ ``'\0'`` terminated string. If the
+ Python object is ``Py_None`` then the string is ``NULL``.
+
+ ``t`` (long) [unsigned short \*]
+ Convert a Python long to a C/C++ ``unsigned short``.
+
+ ``u`` (long) [unsigned int \*]
+ Convert a Python long to a C/C++ ``unsigned int``.
+
+ ``w`` (unicode) [wchar_t \*]
+ Convert a Python unicode object of length 1 to a C/C++ wide character.
+
+ ``x`` (unicode) [wchar_t \*\*]
+ Convert a Python unicode object to a C/C++ ``L'\0'`` terminated wide
+ character string. If the Python object is ``Py_None`` then the string
+ is ``NULL``.
+
+ ``A`` (unicode) [wchar_t \*\*, int \*]
+ Convert a Python unicode object to a C/C++ wide character array and its
+ length. If the Python object is ``Py_None`` then the array and length
+ are ``NULL`` and zero respectively.
+
+ ``Cf`` (wrapped class) [sipWrapperType \*, int \*, void \*\*]
+ Convert a Python object to a C structure or a C++ class instance and
+ return its state as described in `sipConvertToInstance()`_. ``f`` is a
+ combination of the following flags encoded as an ASCII character by
+ adding ``0`` to the combined value:
+
+ 0x01 disallows the conversion of ``Py_None`` to ``NULL``
+
+ 0x02 implements the `Factory`_ annotation
+
+ 0x04 suppresses the return of the state of the returned C/C++
+ instance. Note that the ``int *`` used to return the state is
+ not passed if this flag is specified.
+
+ ``Df`` (mapped type) [const sipMappedType \*, int \*, void \*\*]
+ Convert a Python object to a C structure or a C++ class instance
+ implemented as a mapped type and return its state as described in
+ `sipConvertToMappedType()`_. ``f`` is a combination of the following
+ flags encoded as an ASCII character by adding ``0`` to the combined
+ value:
+
+ 0x01 disallows the conversion of ``Py_None`` to ``NULL``
+
+ 0x02 implements the `Factory`_ annotation
+
+ 0x04 suppresses the return of the state of the returned C/C++
+ instance. Note that the ``int *`` used to return the state is
+ not passed if this flag is specified.
+
+ ``E`` (wrapped enum) [PyTypeObject \*, enum \*]
+ Convert a Python named enum type to the corresponding C/C++ ``enum``.
+
+ ``L`` (object) [*type* \*(\*)(PyObject \*obj, int \*iserr), void \*\*]
+ Convert a Python object to a C structure or a C++ class instance using
+ a convertor function. See `Generated Type Convertors`_. This is
+ deprecated from SIP v4.4.
+
+ ``M`` (object) [*type* \*(\*)(PyObject \*obj, int \*iserr), void \*\*]
+ Convert a Python object to a C structure or a C++ class instance using
+ a convertor function. If the structure or class instance pointer is
+ ``NULL`` then return an error. See `Generated Type Convertors`_. This
+ is deprecated from SIP v4.4.
+
+ ``N`` (object) [PyTypeObject \*, PyObject \*\*]
+ A Python object is checked to see if it is a certain type and then
+ returned without any conversions. The reference count is incremented.
+ The Python object may be ``Py_None``.
+
+ ``O`` (object) [PyObject \*\*]
+ A Python object is returned without any conversions. The reference
+ count is incremented.
+
+ ``T`` (object) [PyTypeObject \*, PyObject \*\*]
+ A Python object is checked to see if it is a certain type and then
+ returned without any conversions. The reference count is incremented.
+ The Python object may not be ``Py_None``.
+
+ ``V`` (sip.voidptr) [void \*]
+ Convert a Python ``sip.voidptr`` object to a C/C++ ``void *``.
+
+ ``Z`` (object) []
+ Check that a Python object is ``Py_None``. No value is returned.
+
+
+sipReleaseInstance()
+--------------------
+
+void sipReleaseInstance(void \*cpp, sipWrapperType \*type, int state)
+ This destroys a wrapped C/C++ instance if it was a temporary instance. It
+ is called after a call to either `sipConvertToInstance()`_ or
+ `sipForceConvertToInstance()`_. *cpp* is the wrapped C/C++ instance.
+ *type* is the generated type corresponding to *cpp*. *state* describes the
+ state of the instance.
+
+
+sipReleaseMappedType()
+----------------------
+
+void sipReleaseMappedType(void \*cpp, const sipMappedType \*mt, int state)
+ This destroys a wrapped C/C++ mapped type if it was a temporary instance.
+ It is called after a call to either `sipConvertToMappedType()`_ or
+ `sipForceConvertToMappedType()`_. *cpp* is the wrapped C/C++ instance.
+ *mt* is the opaque structure returned by `sipFindMappedType()`_. *state*
+ describes the state of the instance.
+
+
+sipStringTypeClassMap
+---------------------
+
+This C structure is used with `sipMapStringToClass()`_ to define a mapping
+between ``'\0'`` terminated string based RTTI and `generated type objects`_.
+The structure elements are as follows.
+
+char \*typeString
+ The ``'\0'`` terminated string RTTI.
+
+sipWrapperType \*\*pyType.
+ A pointer to the corresponding Python type object.
+
+
+sipTransfer()
+-------------
+
+void sipTransfer(PyObject \*obj, int tocpp)
+ This function is deprecated from SIP v4.3. If *tocpp* is non-zero then the
+ equivalent call is::
+
+ sipTransferTo(obj, obj);
+
+ If *tocpp* is zero then the equivalent call is::
+
+ sipTransferBack(obj);
+
+
+sipTransferBack()
+-----------------
+
+void sipTransferBack(PyObject \*obj)
+ This transfers ownership of a Python wrapped instance to Python (see
+ `Ownership of Objects`_). *obj* is the wrapped instance. In addition,
+ any association of the instance with regard to the cyclic garbage
+ collector with another instance is removed.
+
+
+sipTransferTo()
+---------------
+
+void sipTransferTo(PyObject \*obj, PyObject \*owner)
+ This transfers ownership of a Python wrapped instance to C++ (see
+ `Ownership of Objects`_). *obj* is the wrapped instance. *owner* is an
+ optional wrapped instance that *obj* becomes associated with with regard
+ to the cyclic garbage collector. If *owner* is ``NULL`` then no such
+ association is made. If *owner* is the same value as *obj* then any
+ reference cycles involving *obj* can never be detected or broken by the
+ cyclic garbage collector. Responsibility for calling the C++ instance's
+ destructor is always transfered to C++.
+
+
+sipWrapper
+----------
+
+This is a C structure that represents a Python wrapped instance. It is an
+extension of the Python ``PyObject`` structure and so may be safely cast to
+``PyObject``. It includes a member called ``user`` which is of type
+``PyObject *``. This can be used for any purpose by handwritten code and will
+automatically be garbage collected at the appropriate time.
+
+
+sipWrapper_Check()
+------------------
+
+int sipWrapper_Check(PyObject \*obj)
+ This returns a non-zero value if a Python object is a wrapped instance.
+ *obj* is the Python object.
+
+
+sipWrapperType
+--------------
+
+This is a C structure that represents a SIP generated type object. It is an
+extension of the Python ``PyTypeObject`` structure (which is itself an
+extension of the Python ``PyObject`` structure) and so may be safely cast to
+``PyTypeObject`` (and ``PyObject``).
+
+
+Generated Type Convertors
+-------------------------
+
+These functions are deprecated from SIP v4.4.
+
+SIP generates functions for all types being wrapped (including mapped types
+defined with the `%MappedType`_ directive) that convert a Python object to the
+C structure or C++ class instance. The name of this convertor is the name of
+the structure or class prefixed by ``sipForceConvertTo_``.
+
+void \*sipForceConvertTo_*class*(PyObject \*obj, int \*iserr)
+ *obj* is the Python object to convert. If *obj* is ``NULL`` or the
+ location pointed to by *iserr* is non-zero then the conversion is not
+ attempted and ``NULL`` is returned. If there was an error then the
+ location pointed to by *iserr* is set to a non-zero value, a Python
+ exception is raised, and ``NULL`` is returned.
+
+SIP also generates functions for mapped types that convert a C structure or
+C++ class instance to a Python object. The name of this convertor is the name
+of the structure or class prefixed by ``sipConvertFrom_``.
+
+PyObject \*sipConvertFrom_*class*(void \*cppptr)
+ *cppptr* is a pointer to the C structure or C++ class instance to convert.
+ If there was an error then ``NULL`` is returned and a Python exception
+ raised.
+
+The convertor functions of all imported types are available to handwritten
+code.
+
+
+Generated Type Objects
+----------------------
+
+SIP generates a type object for each C structure or C++ class being wrapped.
+These are sipWrapperType_ structures and are used extensively by the SIP API.
+
+These objects are named with the structure or class name prefixed by
+``sipClass_``. For example, the type object for class ``Klass`` is
+``sipClass_Klass``.
+
+The type objects of all imported classes are available to handwritten code.
+
+
+Generated Named Enum Type Objects
+---------------------------------
+
+SIP generates a type object for each named enum being wrapped. These are
+PyTypeObject structures. (Anonymous enums are wrapped as Python integers.)
+
+These objects are named with the fully qualified enum name (i.e. including any
+enclosing scope) prefixed by ``sipEnum_``. For example, the type object for
+enum ``Enum`` defined in class ``Klass`` is ``sipEnum_Klass_Enum``.
+
+The type objects of all imported named enums are available to handwritten code.
+
+
+Generated Derived Classes
+-------------------------
+
+For most C++ classes being wrapped SIP generates a derived class with the same
+name prefixed by ``sip``. For example, the derived class for class ``Klass``
+is ``sipKlass``.
+
+If a C++ class doesn't have any virtual or protected methods in it or any of
+it's super-class hierarchy, or does not emit any Qt signals, then a derived
+class is not generated.
+
+Most of the time handwritten code should ignore the derived classes. The only
+exception is that handwritten constructor code specified using the
+`%MethodCode`_ directive should call the derived class's constructor (which
+has the same C++ signature) rather then the wrapped class's constructor.
+
+
+Generated Exception Objects
+---------------------------
+
+SIP generates a Python object for each exception defined with the `%Exception_`
+directive.
+
+These objects are named with the fully qualified exception name (i.e. including
+any enclosing scope) prefixed by ``sipException_``. For example, the type
+object for enum ``Except`` defined in class ``Klass`` is
+``sipException_Klass_Except``.
+
+The objects of all imported exceptions are available to handwritten code.
+
+
+Using the SIP Module in Applications
+====================================
+
+The main purpose of the SIP module is to provide functionality common to all
+SIP generated bindings. It is loaded automatically and most of the time you
+will completely ignore it. However, it does expose some functionality that can
+be used by applications.
+
+cast(obj, type)
+ This does the Python equivalent of casting a C++ instance to one of its
+ sub or super-class types. *obj* is the Python object and *type* is the
+ type. A new Python object is returned that wraps the same C++ instance as
+ *obj*, but has the type *type*.
+
+delete(obj)
+ For C++ instances this calls the C++ destructor. For C structures it
+ returns the structure's memory to the heap. *obj* is the Python object.
+
+isdeleted(obj)
+ This returns True if the C++ instance or C structure has been destroyed or
+ returned to the heap. *obj* is the Python object.
+
+setdeleted(obj)
+ This marks the C++ instance or C structure as having been destroyed or
+ returned to the heap so that future references to it raise an exception
+ rather than cause a program crash. Normally SIP handles such things
+ automatically, but there are circumstances where this isn't possible.
+ *obj* is the Python object.
+
+settracemask(mask)
+ If the bindings have been created with SIP's ``-r`` command line option
+ then the generated code will produce debugging statements that trace the
+ execution of the code. (It is particularly useful when trying to
+ understand the operation of a C++ library's virtual function calls.)
+
+ Debugging statements are generated at the following points:
+
+ - in a C++ virtual function (*mask* is ``0x0001``)
+ - in a C++ constructor (*mask* is ``0x0002``)
+ - in a C++ destructor (*mask* is ``0x0004``)
+ - in a Python type's __init__ method (*mask* is ``0x0008``)
+ - in a Python type's __del__ method (*mask* is ``0x0010``)
+ - in a Python type's ordinary method (*mask* is ``0x0020``).
+
+ By default the trace mask is zero and all debugging statements are
+ disabled.
+
+SIP_VERSION
+ This is a Python integer object that represents the SIP version number as
+ a 3 part hexadecimal number (e.g. v4.0.0 is represented as ``0x040000``).
+ It was first implemented in SIP v4.2.
+
+SIP_VERSION_STR
+ This is a Python string object that defines the SIP version number as
+ represented as a string. For development snapshots it will start with
+ ``snapshot-``. It was first implemented in SIP v4.3.
+
+transfer(obj, direction)
+ This function is deprecated from SIP v4.3. If *direction* is non-zero then
+ the equivalent call is::
+
+ sip.transferto(obj, None)
+
+ If *direction* is zero then the equivalent call is::
+
+ sip.transferback(obj)
+
+transferback(obj)
+ This function is a wrapper around `sipTransferBack()`_.
+
+transferto(obj, owner)
+ This function is a wrapper around `sipTransferTo()`_.
+
+unwrapinstance(obj)
+ Return the address, as a number, of the wrapped C/C++ structure or class
+ instance *obj*.
+
+voidptr
+ This is the type object for the type SIP uses to represent a C/C++
+ ``void *``. The type constructor takes a single argument that must either
+ be another ``voidptr``, ``None``, a Python CObject, or an integer. The
+ type has the following methods:
+
+ __int__()
+ This returns the pointer as an integer.
+
+ __hex__()
+ This returns the pointer as a hexadecimal string.
+
+ ascobject()
+ This returns the pointer as a Python CObject.
+
+ asstring(nbytes)
+ This returns a copy of the first *nbytes* of memory at the pointer as a
+ Python string.
+
+wrapinstance(addr, type)
+ A C/C++ structure or class instance is wrapped and the Python object
+ created is returned. If the instance has already been wrapped then a new
+ reference to the existing object is returned. *addr* is the address of
+ the instance represented as a number. *type* is the type of the object
+ (e.g. ``qt.QWidget``).
+
+wrapper
+ This is the type object of the base type of all instances wrapped by SIP.
+
+wrappertype
+ This is the type object of the metatype of the ``wrapper`` type.
+
+
+The SIP Build System
+====================
+
+The purpose of the build system is to make it easy for you to write
+configuration scripts in Python for your own bindings. The build system takes
+care of the details of particular combinations of platform and compiler. It
+supports over 50 different platform/compiler combinations.
+
+The build system is implemented as a pure Python module called ``sipconfig``
+that contains a number of classes and functions. Using this module you can
+write bespoke configuration scripts (e.g. PyQt's ``configure.py``) or use it
+with other Python based build systems (e.g.
+`Distutils <http://www.python.org/sigs/distutils-sig/distutils.html>`_ and
+`SCons <http://www.scons.org>`_).
+
+An important feature of SIP is the ability to generate bindings that are built
+on top of existing bindings. For example, both
+`PyKDE <http://www.riverbankcomputing.co.uk/pykde/>`_ and
+`PyQwt <http://pyqwt.sourceforge.net/>`_ are built on top of PyQt but all three
+packages are maintained by different developers. To make this easier PyQt
+includes its own configuration module, ``pyqtconfig``, that contains additional
+classes intended to be used by the configuration scripts of bindings built on
+top of PyQt. The SIP build system includes facilities that do a lot of the
+work of creating these additional configuration modules.
+
+
+``sipconfig`` Functions
+-----------------------
+
+create_config_module(module, template, content, macros=None)
+ This creates a configuration module (e.g. ``pyqtconfig``) from a template
+ file and a string.
+
+ ``module`` is the name of the configuration module file to create.
+
+ ``template`` is the name of the template file.
+
+ ``content`` is a string which replaces every occurence of the pattern
+ ``@SIP_CONFIGURATION@`` in the template file. The content string is
+ usually created from a Python dictionary using
+ ``sipconfig.create_content()``. ``content`` may also be a dictionary, in
+ which case ``sipconfig.create_content()`` is automatically called to
+ convert it to a string.
+
+ ``macros`` is an optional dictionary of platform specific build macros. It
+ is only used if ``sipconfig.create_content()`` is called automatically to
+ convert a ``content`` dictionary to a string.
+
+create_content(dict, macros=None)
+ This converts a Python dictionary to a string that can be parsed by the
+ Python interpreter and converted back to an equivalent dictionary. It is
+ typically used to generate the content string for
+ ``sipconfig.create_config_module()``.
+
+ ``dict`` is the Python dictionary to convert.
+
+ ``macros`` is the optional dictionary of platform specific build macros.
+
+ Returns the dictionary as a string.
+
+create_wrapper(script, wrapper, gui=0)
+ This creates a platform dependent executable wrapper around a Python
+ script.
+
+ ``script`` is the full pathname of the script.
+
+ ``wrapper`` is the pathname of the wrapper to create.
+
+ ``gui`` is non-zero if a GUI enabled version of the interpreter should be
+ used on platforms that require it.
+
+ Returns the platform specific name of the wrapper.
+
+error(msg)
+ This displays an error message on ``stderr`` and calls ``sys.exit()`` with
+ a value of 1.
+
+ ``msg`` is the text of the message and should not include any newline
+ characters.
+
+format(msg, leftmargin=0, rightmargin=78)
+ This formats a message by inserting newline characters at appropriate
+ places.
+
+ ``msg`` is the text of the message and should not include any newline
+ characters.
+
+ ``leftmargin`` is the optional position of the left margin.
+
+ ``rightmargin`` is the optional position of the right margin.
+
+inform(msg)
+ This displays an information message on ``stdout``.
+
+ ``msg`` is the text of the message and should not include any newline
+ characters.
+
+parse_build_macros(filename, names, overrides=None, properties=None)
+ This parses a qmake compatible file of build system macros and converts it
+ to a dictionary. A macro is a name/value pair. The dictionary is returned
+ or None if any of the overrides was invalid.
+
+ ``filename`` is the name of the file to parse.
+
+ ``names`` is a list of the macro names to extract from the file.
+
+ ``overrides`` is an optional list of macro names and values that modify
+ those found in the file. They are of the form *name=value* (in which case
+ the value replaces the value found in the file) or *name+=value* (in which
+ case the value is appended to the value found in the file).
+
+ ``properties`` is an optional dictionary of property name and values that
+ are used to resolve any expressions of the form ``$[name]`` in the file.
+
+read_version(filename, description, numdefine=None, strdefine=None)
+ This extracts version information for a package from a file, usually a C or
+ C++ header file. The version information must each be specified as a
+ ``#define`` of a numeric (hexadecimal or decimal) value and/or a string
+ value.
+
+ ``filename`` is the name of the file to read.
+
+ ``description`` is a descriptive name of the package used in error
+ messages.
+
+ ``numdefine`` is the optional name of the ``#define`` of the version as a
+ number. If it is ``None`` then the numeric version is ignored.
+
+ ``strdefine`` is the optional name of the ``#define`` of the version as a
+ string. If it is ``None`` then the string version is ignored.
+
+ Returns a tuple of the numeric and string versions. ``sipconfig.error()``
+ is called if either were required but could not be found.
+
+version_to_sip_tag(version, tags, description)
+ This converts a version number to a SIP version tag. SIP uses the
+ `%Timeline`_ directive to define the chronology of the different versions
+ of the C/C++ library being wrapped. Typically it is not necessary to
+ define a version tag for every version of the library, but only for those
+ versions that affect the library's API as SIP sees it.
+
+ ``version`` is the numeric version number of the C/C++ library being
+ wrapped. If it is negative then the latest version is assumed. (This is
+ typically useful if a snapshot is indicated by a negative version number.)
+
+ ``tags`` is the dictionary of SIP version tags keyed by the corresponding
+ C/C++ library version number. The tag used is the one with the smallest
+ key (i.e. earliest version) that is greater than ``version``.
+
+ ``description`` is a descriptive name of the C/C++ library used in error
+ messages.
+
+ Returns the SIP version tag. ``sipconfig.error()`` is called if the C/C++
+ library version number did not correspond to a SIP version tag.
+
+version_to_string(v)
+ This converts a 3 part version number encoded as a hexadecimal value to a
+ string.
+
+ ``v`` is the version number.
+
+ Returns a string.
+
+
+``sipconfig`` Classes
+---------------------
+
+Configuration
+ This class encapsulates configuration values that can be accessed as
+ instance objects. A sub-class may provide a dictionary of additional
+ configuration values in its constructor the elements of which will have
+ precedence over the super-class's values.
+
+ The following configuration values are provided:
+
+ default_bin_dir
+ The name of the directory where executables should be installed by
+ default.
+
+ default_mod_dir
+ The name of the directory where SIP generated modules should be
+ installed by default.
+
+ default_sip_dir
+ The name of the base directory where the ``.sip`` files for SIP
+ generated modules should be installed by default. A sub-directory
+ with the same name as the module should be created and its ``.sip``
+ files should be installed in the sub-directory. The ``.sip``
+ files only need to be installed if you might want to build other
+ bindings based on them.
+
+ platform
+ The name of the platform/compiler for which the build system has
+ been configured for.
+
+ py_conf_inc_dir
+ The name of the directory containing the ``pyconfig.h`` header
+ file.
+
+ py_inc_dir
+ The name of the directory containing the ``Python.h`` header file.
+
+ py_lib_dir
+ The name of the directory containing the Python interpreter
+ library.
+
+ py_version
+ The Python version as a 3 part hexadecimal number (e.g. v2.3.3 is
+ represented as ``0x020303``).
+
+ sip_bin
+ The full pathname of the SIP executable.
+
+ sip_config_args
+ The command line passed to ``configure.py`` when SIP was
+ configured.
+
+ sip_inc_dir
+ The name of the directory containing the ``sip.h`` header file.
+
+ sip_mod_dir
+ The name of the directory containing the SIP module.
+
+ sip_version
+ The SIP version as a 3 part hexadecimal number (e.g. v4.0.0 is
+ represented as ``0x040000``).
+
+ sip_version_str
+ The SIP version as a string. For development snapshots it will
+ start with ``snapshot-``.
+
+ universal
+ The name of the MacOS/X SDK used when creating universal binaries.
+
+ __init__(self, sub_cfg=None)
+ Initialise the instance.
+
+ ``sub_cfg`` is an optional list of sub-class configurations. It should
+ only be used by the ``__init__()`` method of a sub-class to append its
+ own dictionary of configuration values before passing the list to its
+ super-class.
+
+ build_macros(self)
+ Return the dictionary of platform specific build macros.
+
+ set_build_macros(self, macros)
+ Set the dictionary of platform specific build macros to be use when
+ generating Makefiles. Normally there is no need to change the default
+ macros.
+
+Makefile
+ This class encapsulates a Makefile. It is intended to be sub-classed to
+ generate Makefiles for particular purposes. It handles all platform and
+ compiler specific flags, but allows them to be adjusted to suit the
+ requirements of a particular module or program. These are defined using a
+ number of macros which can be accessed as instance objects.
+
+ The following instance objects are provided to help in fine tuning the
+ generated Makefile:
+
+ chkdir
+ A string that will check for the existence of a directory.
+
+ config
+ A reference to the ``configuration`` argument that was passed to
+ the constructor.
+
+ console
+ A reference to the ``console`` argument that was passed to the
+ constructor.
+
+ copy
+ A string that will copy a file.
+
+ extra_cflags
+ A list of additional flags passed to the C compiler.
+
+ extra_cxxflags
+ A list of additional flags passed to the C++ compiler.
+
+ extra_defines
+ A list of additional macro names passed to the C/C++ preprocessor.
+
+ extra_include_dirs
+ A list of additional include directories passed to the C/C++
+ preprocessor.
+
+ extra_lflags
+ A list of additional flags passed to the linker.
+
+ extra_lib_dirs
+ A list of additional library directories passed to the linker.
+
+ extra_libs
+ A list of additional libraries passed to the linker. The names of
+ the libraries must be in platform neutral form (i.e. without any
+ platform specific prefixes, version numbers or extensions).
+
+ generator
+ A string that defines the platform specific style of Makefile. The
+ only supported values are ``UNIX`` and something else that is not
+ ``UNIX``.
+
+ mkdir
+ A string that will create a directory.
+
+ rm
+ A string that will remove a file.
+
+ __init__(self, configuration, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=None, debug=0, dir=None, makefile="Makefile", installs=None, universal='')
+ Initialise the instance.
+
+ ``configuration`` is the current configuration and is an instance of
+ the ``Configuration`` class or a sub-class.
+
+ ``console`` is set if the target is a console (rather than GUI) target.
+ This only affects Windows and is ignored on other platforms.
+
+ ``qt`` is set if the target uses Qt. For Qt v4 a list of Qt libraries
+ may be specified and a simple non-zero value implies QtCore and QtGui.
+
+ ``opengl`` is set if the target uses OpenGL.
+
+ ``python`` is set if the target uses Python.h.
+
+ ``threaded`` is set if the target requires thread support. It is set
+ automatically if the target uses Qt and Qt has thread support enabled.
+
+ ``warnings`` is set if compiler warning messages should be enabled.
+ The default of ``None`` means that warnings are enabled for SIP v4.x
+ and disabled for SIP v3.x.
+
+ ``debug`` is set if debugging symbols should be generated.
+
+ ``dir`` is the name of the directory where build files are read from
+ and Makefiles are written to. The default of ``None`` means the
+ current directory is used.
+
+ ``makefile`` is the name of the generated Makefile.
+
+ ``installs`` is a list of extra install targets. Each element is a two
+ part list, the first of which is the source and the second is the
+ destination. If the source is another list then it is a list of source
+ files and the destination is a directory.
+
+ ``universal`` is the name of the SDK if universal binaries are to be
+ created under MacOS/X.
+
+ clean_build_file_objects(self, mfile, build)
+ This generates the Makefile commands that will remove any files
+ generated during the build of the default target.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ ``build`` is the dictionary created from parsing the build file.
+
+ finalise(self)
+ This is called just before the Makefile is generated to ensure that it
+ is fully configured. It must be reimplemented by a sub-class.
+
+ generate(self)
+ This generates the Makefile.
+
+ generate_macros_and_rules(self, mfile)
+ This is the default implementation of the Makefile macros and rules
+ generation.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ generate_target_clean(self, mfile)
+ This is the default implementation of the Makefile clean target
+ generation.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ generate_target_default(self, mfile)
+ This is the default implementation of the Makefile default target
+ generation.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ generate_target_install(self, mfile)
+ This is the default implementation of the Makefile install target
+ generation.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ install_file(self, mfile, src, dst, strip=0)
+ This generates the Makefile commands to install one or more files to a
+ directory.
+
+ ``mfile`` is the Python file object of the Makefile.
+
+ ``src`` is the name of a single file to install or a list of a number
+ of files to install.
+
+ ``dst`` is the name of the destination directory.
+
+ ``strip`` is set if the files should be stripped of unneeded symbols
+ after having been installed.
+
+ optional_list(self, name)
+ This returns an optional Makefile macro as a list.
+
+ ``name`` is the name of the macro.
+
+ Returns the macro as a list.
+
+ optional_string(self, name, default="")
+ This returns an optional Makefile macro as a string.
+
+ ``name`` is the name of the macro.
+
+ ``default`` is the optional default value of the macro.
+
+ Returns the macro as a string.
+
+ parse_build_file(self, filename)
+ This parses a build file (created with the ``-b`` SIP command line
+ option) and converts it to a dictionary. It can also validate an
+ existing dictionary created through other means.
+
+ ``filename`` is the name of the build file, or is a dictionary to be
+ validated. A valid dictionary will contain the name of the target to
+ build (excluding any platform specific extension) keyed by ``target``;
+ the names of all source files keyed by ``sources``; and, optionally,
+ the names of all header files keyed by ``headers``.
+
+ Returns a dictionary corresponding to the parsed build file.
+
+ platform_lib(self, clib, framework=0)
+ This converts a library name to a platform specific form.
+
+ ``clib`` is the name of the library in cannonical form.
+
+ ``framework`` is set if the library is implemented as a MacOS
+ framework.
+
+ Return the platform specific name.
+
+ ready(self)
+ This is called to ensure that the Makefile is fully configured. It is
+ normally called automatically when needed.
+
+ required_string(self, name)
+ This returns a required Makefile macro as a string.
+
+ ``name`` is the name of the macro.
+
+ Returns the macro as a string. An exception is raised if the macro
+ does not exist or has an empty value.
+
+ModuleMakefile(Makefile)
+ This class encapsulates a Makefile to build a generic Python extension
+ module.
+
+ __init__(self, configuration, build_file, install_dir=None, static=0, console=0, opengl=0, threaded=0, warnings=None, debug=0, dir=None, makefile="Makefile", installs=None, strip=1, export_all=0, universal='')
+ Initialise the instance.
+
+ ``configuration`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``build_file`` is the name of the build file. Build files are
+ generated using the ``-b`` SIP command line option.
+
+ ``install_dir`` is the name of the directory where the module will be
+ optionally installed.
+
+ ``static`` is set if the module should be built as a static library
+ (see `Builtin Modules and Custom Interpreters`_).
+
+ ``console`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``qt`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``opengl`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``threaded`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``warnings`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``debug`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``dir`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``makefile`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``installs`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``strip`` is set if the module should be stripped of unneeded symbols
+ after installation. It is ignored if either ``debug`` or ``static`` is
+ set, or if the platform doesn't support it.
+
+ ``export_all`` is set if all of the module's symbols should be exported
+ rather than just the module's initialisation function. Exporting all
+ symbols increases the size of the module and slows down module load
+ times but may avoid problems with modules that use C++ exceptions. All
+ symbols are exported if either ``debug`` or ``static`` is set, or if
+ the platform doesn't support it.
+
+ finalise(self)
+ This is a reimplementation of ``sipconfig.Makefile.finalise()``.
+
+ generate_macros_and_rules(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_macros_and_rules()``.
+
+ generate_target_clean(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_clean()``.
+
+ generate_target_default(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_default()``.
+
+ generate_target_install(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_install()``.
+
+ module_as_lib(self, mname)
+ This returns the name of a SIP v3.x module for when it is used as a
+ library to be linked against. An exception will be raised if it is
+ used with SIP v4.x modules.
+
+ ``mname`` is the name of the module.
+
+ Returns the corresponding library name.
+
+ParentMakefile(Makefile)
+ This class encapsulates a Makefile that sits above a number of other
+ Makefiles in sub-directories.
+
+ __init__(self, configuration, subdirs, dir=None, makefile="Makefile", installs=None)
+ Initialise the instance.
+
+ ``configuration`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``subdirs`` is the sequence of sub-directories.
+
+ ``dir`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``makefile`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``installs`` - see ``sipconfig.Makefile.__init__()``.
+
+ generate_macros_and_rules(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_macros_and_rules()``.
+
+ generate_target_clean(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_clean()``.
+
+ generate_target_default(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_default()``.
+
+ generate_target_install(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_install()``.
+
+ProgramMakefile(Makefile)
+ This class encapsulates a Makefile to build an executable program.
+
+ __init__(self, configuration, build_file=None, install_dir=None, console=0, qt=0, opengl=0, python=0, threaded=0, warnings=None, debug=0, dir=None, makefile="Makefile", installs=None, universal='')
+ Initialise the instance.
+
+ ``configuration`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``build_file`` is the name of the optional build file. Build files are
+ generated using the ``-b`` SIP command line option.
+
+ ``install_dir`` is the name of the directory where the executable
+ program will be optionally installed.
+
+ ``console`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``qt`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``opengl`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``python`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``threaded`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``warnings`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``debug`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``dir`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``makefile`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``installs`` - see ``sipconfig.Makefile.__init__()``.
+
+ build_command(self, source)
+ This creates a single command line that will create an executable
+ program from a single source file.
+
+ ``source`` is the name of the source file.
+
+ Returns a tuple of the name of the executable that will be created and
+ the command line.
+
+ finalise(self)
+ This is a reimplementation of ``sipconfig.Makefile.finalise()``.
+
+ generate_macros_and_rules(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_macros_and_rules()``.
+
+ generate_target_clean(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_clean()``.
+
+ generate_target_default(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_default()``.
+
+ generate_target_install(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_install()``.
+
+PythonModuleMakefile(Makefile)
+ This class encapsulates a Makefile that installs a pure Python module.
+
+ __init__(self, configuration, dstdir, srcdir=None, dir=None, makefile="Makefile", installs=None)
+ Initialise the instance.
+
+ ``configuration`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``dstdir`` is the name of the directory in which the module's Python
+ code will be installed.
+
+ ``srcdir`` is the name of the directory (relative to ``dir``)
+ containing the module's Python code. It defaults to the same
+ directory.
+
+ ``dir`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``makefile`` - see ``sipconfig.Makefile.__init__()``.
+
+ ``installs`` - see ``sipconfig.Makefile.__init__()``.
+
+ generate_macros_and_rules(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_macros_and_rules()``.
+
+ generate_target_install(self, mfile)
+ This is a reimplementation of
+ ``sipconfig.Makefile.generate_target_install()``.
+
+SIPModuleMakefile(ModuleMakefile)
+ This class encapsulates a Makefile to build a SIP generated Python
+ extension module.
+
+ finalise(self)
+ This is a reimplementation of ``sipconfig.Makefile.finalise()``.
+
+
+Building Your Extension with distutils
+======================================
+
+To build the example in `A Simple C++ Example`_ using distutils, it is
+sufficient to create a standard ``setup.py``, listing ``word.sip`` among the
+files to build, and hook-up SIP into distutils::
+
+ from distutils.core import setup, Extension
+ import sipdistutils
+
+ setup(
+ name = 'word',
+ versione = '1.0',
+ ext_modules=[
+ Extension("word", ["word.sip", "word.cpp"]),
+ ],
+
+ cmdclass = {'build_ext': sipdistutils.build_ext}
+ )
+
+As we can see, the above is a normal distutils setup script, with just a
+special line which is needed so that SIP can see and process ``word.sip``.
+Then, running ``setup.py build`` will build our extension module.
+
+
+Builtin Modules and Custom Interpreters
+=======================================
+
+Sometimes you want to create a custom Python interpreter with some modules
+built in to the interpreter itself rather than being dynamically loaded. To
+do this the module must be created as a static library and linked with a
+custom stub and the normal Python library.
+
+To build the SIP module as a static library you must pass the ``-k`` command
+line option to ``configure.py``. You should then build and install SIP as
+normal. (Note that, because the module is now a static library, you will not
+be able to import it.)
+
+To build a module you have created for your own library you must modify your
+own configuration script to pass a non-zero value as the ``static`` argument
+of the ``__init__()`` method of the ``ModuleMakefile`` class (or any derived
+class you have created). Normally you would make this configurable using a
+command line option in the same way that SIP's ``configure.py`` handles it.
+
+The next stage is to create a custom stub and a Makefile. The SIP distribution
+contains a directory called ``custom`` which contains example stubs and a
+Python script that will create a correct Makefile. Note that, if your copy of
+SIP was part of a standard Linux distribution, the ``custom`` directory may
+not be installed on your system.
+
+The ``custom`` directory contains the following files. They are provided as
+examples - each needs to be modified according to your particular
+requirements.
+
+ - ``mkcustom.py`` is a Python script that will create a Makefile which is
+ then used to build the custom interpreter. Comments in the file describe
+ how it should be modified.
+
+ - ``custom.c`` is a stub for a custom interpreter on Linux/UNIX. It
+ should also be used for a custom console interpreter on Windows (i.e.
+ like ``python.exe``). Comments in the file describe how it should be
+ modified.
+
+ - ``customw.c`` is a stub for a custom GUI interpreter on Windows (i.e.
+ like ``pythonw.exe``). Comments in the file describe how it should be
+ modified.
+
+Note that this technique does not restrict how the interpreter can be used.
+For example, it still allows users to write their own applications that can
+import your builtin modules. If you want to prevent users from doing that,
+perhaps to protect a proprietary API, then take a look at the
+`VendorID <http://www.riverbankcomputing.co.uk/vendorid/>`__ package.