diff options
author | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
---|---|---|
committer | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
commit | ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2 (patch) | |
tree | d3bb9f5d25a2dc09ca81adecf39621d871534297 /doc/kstars/calc-geodetic.docbook | |
download | tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.tar.gz tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.zip |
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdeedu@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'doc/kstars/calc-geodetic.docbook')
-rw-r--r-- | doc/kstars/calc-geodetic.docbook | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/doc/kstars/calc-geodetic.docbook b/doc/kstars/calc-geodetic.docbook new file mode 100644 index 00000000..b8b9655f --- /dev/null +++ b/doc/kstars/calc-geodetic.docbook @@ -0,0 +1,43 @@ +<sect2 id="calc-geodetic"> +<title>Geodetic Coordinates module</title> +<indexterm><primary>Tools</primary> +<secondary>Astrocalculator</secondary> +<tertiary>Geodetic Coordinates module</tertiary> +</indexterm> + +<screenshot> +<screeninfo> +The Geodetic Coordinates calculator module +</screeninfo> +<mediaobject> + <imageobject> + <imagedata fileref="calc-geodetic.png" format="PNG"/> + </imageobject> + <textobject> + <phrase>Geodetic Coordinates</phrase> + </textobject> +</mediaobject> +</screenshot> + +<para> +The normal <link linkend="ai-geocoords">geographic coordinate +system</link> assumes that the Earth is a perfect sphere. This is +nearly true, so for most purposes geographic coordinates are fine. +If very high precision is required, then we must take the true shape +of the Earth into account. The Earth is an ellipsoid; the distance +around the equator is about 0.3% longer than a <link +linkend="ai-greatcircle">Great Circle</link> that passes through the +poles. The <firstterm>Geodetic Coordinate system</firstterm> takes +this ellipsoidal shape into account, and expresses the position +on the Earth's surface in Cartesian coordinates (X, Y, and Z). +</para> +<para> +To use the module, first select which coordinates you will use as +input in the <guilabel>Input Selection</guilabel> section. Then, fill +in the input coordinates in either the <guilabel>Cartesian +Coordinates</guilabel> section or the <guilabel>Geographic +Coordinates</guilabel> section. When you press the +<guibutton>Compute</guibutton> button, the corresponding +coordinates will be filled in. +</para> +</sect2> |