summaryrefslogtreecommitdiffstats
path: root/doc/kstars/calc-geodetic.docbook
diff options
context:
space:
mode:
authortoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
committertoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
commitce599e4f9f94b4eb00c1b5edb85bce5431ab3df2 (patch)
treed3bb9f5d25a2dc09ca81adecf39621d871534297 /doc/kstars/calc-geodetic.docbook
downloadtdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.tar.gz
tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.zip
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923 git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdeedu@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'doc/kstars/calc-geodetic.docbook')
-rw-r--r--doc/kstars/calc-geodetic.docbook43
1 files changed, 43 insertions, 0 deletions
diff --git a/doc/kstars/calc-geodetic.docbook b/doc/kstars/calc-geodetic.docbook
new file mode 100644
index 00000000..b8b9655f
--- /dev/null
+++ b/doc/kstars/calc-geodetic.docbook
@@ -0,0 +1,43 @@
+<sect2 id="calc-geodetic">
+<title>Geodetic Coordinates module</title>
+<indexterm><primary>Tools</primary>
+<secondary>Astrocalculator</secondary>
+<tertiary>Geodetic Coordinates module</tertiary>
+</indexterm>
+
+<screenshot>
+<screeninfo>
+The Geodetic Coordinates calculator module
+</screeninfo>
+<mediaobject>
+ <imageobject>
+ <imagedata fileref="calc-geodetic.png" format="PNG"/>
+ </imageobject>
+ <textobject>
+ <phrase>Geodetic Coordinates</phrase>
+ </textobject>
+</mediaobject>
+</screenshot>
+
+<para>
+The normal <link linkend="ai-geocoords">geographic coordinate
+system</link> assumes that the Earth is a perfect sphere. This is
+nearly true, so for most purposes geographic coordinates are fine.
+If very high precision is required, then we must take the true shape
+of the Earth into account. The Earth is an ellipsoid; the distance
+around the equator is about 0.3% longer than a <link
+linkend="ai-greatcircle">Great Circle</link> that passes through the
+poles. The <firstterm>Geodetic Coordinate system</firstterm> takes
+this ellipsoidal shape into account, and expresses the position
+on the Earth's surface in Cartesian coordinates (X, Y, and Z).
+</para>
+<para>
+To use the module, first select which coordinates you will use as
+input in the <guilabel>Input Selection</guilabel> section. Then, fill
+in the input coordinates in either the <guilabel>Cartesian
+Coordinates</guilabel> section or the <guilabel>Geographic
+Coordinates</guilabel> section. When you press the
+<guibutton>Compute</guibutton> button, the corresponding
+coordinates will be filled in.
+</para>
+</sect2>