-
State of matter
Form of a substance; dependant on form stability and whether it takes up a definite volume: solid, liquid or gaseous.
Boiling point
Melting point
-
Chemical Symbol
One, two, or three letter abbreviation; set through international convention.
Element
-
Chromatography
Matter separation in a moving medium (mobile phase) through differentiated absorption on a static medium (stationary phase).
-
Distillation
Separation of a liquid solution (homogeneous mix) into its components through evaporation and condensation. In a fractionary distillation the process is repeated several times in a column.
-
Element
Matter that cannot be broken down into simpler matter. Chemical elements are cornerstones of Materials. Elements consist of atoms that consist of a nucleus of positive protons, neutral neutrons, and a shell of electrons.
-
Emulsion
Heterogeneous mix of two liquids.
-
Extraction
Processing a homogeneous or heterogeneous mix to get pure matter.
Mix
-
Filtering
Separation of a solid matter from a liquid matter or gaseous matter with a filter (porous separation wall).
-
Mix
Matter consisting of differentiated matter, combined in non-set ratios. [i]Homogeneous mixes[/i] have a coherent look, [i]heterogeneous mixes[/i] consist of multiple phases.
-
Accuracy
Consisting of accidental and systematic errors.
-
Law of Conservation of Mass
During a chemical reaction mass is neither lost nor gained. The sum mass of the material going into the reaction equals the sum of the mass of the products of the reaction.
-
Law of multiple proportions
An alloy always contains the same elements in the same mass ratio. Should two or more elements bind together then the mass ratio is constant.
-
Crystallization
Separation of solid, crystalline matter from a solution, or the liquid or gaseous phases.
-
Solution
Homogeneous mix of multiple pure materials
-
Mass
Measurement of an amount of matter.
-
Matter
All that takes up space and has mass.
-
Phase
Through chemical composition and physical attributes, homogeneous portion of matter that separated from its environment in its expansion through a surface.
-
Accuracy and precision
Expressed through standard deviation: Values given over accidental errors.
-
Correctness
Values given over accidental errors.
-
SI-Unit
Measurement unit using International Symbols.
-
Significant figures
The number of digits which are meaningful in a number.
-
Standard deviation
An amount with which the precision of a measurement can be estimates.
-
Suspension
Heterogeneous mix consisting of a liquid and solid matter.
-
Alloys
Pure matter consisting of multiple elements in a set ratio.
-
Alpha rays
Rays consisting of alpha particles, consisting of two protons and two neutrons that are emitted from the Atoms of certain radioactive elements.
-
Atom
Atoms are chemically inseparable and building blocks of matter. Atoms of one kind are called an Element.
Element
Electron
Proton
Neutron
-
Atomic nucleus
The small, positively-charged center of an Atom, in which Protons and Neutrons are found.
Atom
-
Atomic Mass
Mass of an atom, taken on a scale where the the mass of a carbon atom is 12u. In elements that consist of different isotopes the mid-range mass of the isotope mix is given.
Atom
Mass
-
Isotope
Isotopes are forms of a chemical element whose nuclei have the same atomic number, Z, but different atomic masses, A. The word isotope, meaning at the same place, comes from the fact that all isotopes of an element are located at the same place on the periodic table.
Atom
-
Spin
The spin is an intrinsic angular momentum associated with microscopic particles. It is a purely quantum mechanical phenomenon without any analogy in classical mechanics. Whereas classical angular momentum arises from the rotation of an extended object, spin is not associated with any rotating internal masses, but is intrinsic to the particle itself.
Isotope
-
Magnetic Moment
The magnetic moment of an object is a vector relating the aligning torque in a magnetic field experienced by the object to the field vector itself. It's measured in units of the nuclear magneton μ[sub]n[/sub]=(5.0507866 ± 0.0000017) 10[sup]-27[/sup] JT[sup]-1[/sup]
Isotope
-
Decay Mode
The decay mode describes a particular way a particle decays. For radioactive decay (the decay of nuclides) the decay modes are:[br] -> alpha decay (emission of a Helium-4 nucleus).[br] -> β[sup]-[/sup] decay (emission of an electron)[br] -> β[sup]+[/sup] decay (emission of a positron) [br] -> electron capture (EC) [br] -> proton emission [br] -> spontaneous fission [br] Typically one decay mode predominates for a particular nuclide.
Isotope
-
Decay Energy
The decay energy is the energy released by a nuclear decay.
Isotope
-
Nuclides
[i]see isotopes[/i]
Isotope
Isotone
Nuclear Isomer
Isobars
-
Isotone
Two nuclides are isotones if they have the same number N of neutrons.
Isotope
Nuclear Isomer
Isobar
-
Isobar
Isobars are nuclides having the same mass number, i.e. sum of protons plus neutrons.
Isotope
Isotone
Nuclear Isomer
-
Nuclear Isomer
A nuclear isomer is a metastable or isomeric state of an atom caused by the excitation of a proton or neutron in its nucleus so that it requires a change in spin before it can release its extra energy. They decay to lower energy states of the nuclide through two isomeric transitions:[br] -> γ- emission (emission of a high-energy photon)[br] -> internal conversion (the energy is used to ionize the atom)[br] Contrast this with the definition of a chemical isomer, the more common use of the word. Also contrast with the meaning of isotope, in which the difference is the number of neutrons in the nucleus. Metastable isomers of a particular atom are usually designated with an "m" (or, in the case of atoms with more than one isomer, 2m, 3m, and so on). This designation is usually placed after the atomic symbol and number of the atom (e.g., Co-58m), but is sometimes placed as a superscript before (e.g., [sup]m[/sup]Co-58 or [sup]58m[/sup]Co).
Isotope
Isobar
Isotone
-
Beta rays
Rays consisting of electrons that are emitted from Atoms of radioactive elements.
-
Electron
The electron is a subatomic particle with a mass of m[sub]e[/sub]=(9.1093897 ± 0.0000054)e-31 kg and a negative charge of [i]e[/i]=(1.60217733 ± 0.00000049)e-19 C
Atom
-
Proton
The proton is a subatomic particle with a mass of m[sub]e[/sub]=(1.6726231 ± 0.0000010) 10[sup]-27[/sup] kg and a positive charge of [i]e[/i]=(1.60217733 ± 0.00000049) 10[sup]-19[/sup] C which occurs in the nucleus of an atom.
Atom
Electron
Neutron
-
Neutron
The neutron is a subatomic particle with a mass of m[sub]e[/sub]=(1.6749286 ± 0.0000010) 10[sup]-27[/sup] kg which occurs in the nucleus of an atom.
Atom
Electron
Proton
-
Cathode Rays
Cathode rays are streams of electrons observed in vacuum tubes, i.e. evacuated glass tubes that are equipped with at least two electrodes, a cathode (negative electrode) and an anode (positive electrode) in a configuration known as a diode.
Electron
-
Ionic Radius
The Ionic Radius is the radius of a charged atom, a so called ion. The ion can have a positive or a negative charge. The charge of the ion which radius you see is also displayed in Kalzium. A positive ion has less electrons in its shell then the atom, a negative ion has more electrons. Therefore, a postive ion has a smaller radius than its atom and vice versa.
Covalent Radius
Atomic Radius
Van der Waals Radius
-
Van der Waals Radius
The van der Waals radius of an atom is the radius of an imaginary hard sphere which can be used to model the atom for many purposes. Van der Waals radii are determined from measurements of atomic spacing between pairs of unbonded atoms in crystals.
Covalent Radius
Atomic Radius
Ionic Radius
-
Atomic Radius
The atomic radius is the distance from the atomic nucleus to the outmost stable electron orbital in a atom that is at equilibrium.
Covalent Radius
Van der Waals Radius
Ionic Radius
-
Covalent Radius
Covalent radius in chemistry corresponds to half of the distance between two identical atomic nuclei, bound by a covalent bond.
Atomic Radius
Ionic Radius
Van der Waals Radius