/** This file is part of Kig, a KDE program for Interactive Geometry... Copyright (C) 2002 Dominique Devriese This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA **/ #ifndef KIG_MISC_COMMON_H #define KIG_MISC_COMMON_H #include "coordinate.h" #include "rect.h" #include #include #include #include #ifdef KDE_IS_VERSION #if KDE_IS_VERSION( 3, 1, 0 ) #define KIG_USE_KDOUBLEVALIDATOR #else #undef KIG_USE_KDOUBLEVALIDATOR #endif #else #undef KIG_USE_KDOUBLEVALIDATOR #endif class ObjectImp; class KigWidget; extern const double double_inf; /** * Here, we define some algorithms which we need in * various places... */ double getDoubleFromUser( const TQString& caption, const TQString& label, double value, TQWidget* parent, bool* ok, double min, double max, int decimals ); /** * Simple class representing a line. Used by various functions in Kig. */ class LineData { public: /** * \ifnot creating-python-scripting-doc * Default constructor. Sets a and b to the origin. * \endif */ LineData() : a(), b() {} /** * Constructor. Sets a and b to the given Coordinates. */ LineData( const Coordinate& na, const Coordinate& nb ) : a( na ), b( nb ) {} /** * One point on the line. */ Coordinate a; /** * Another point on the line. */ Coordinate b; /** * The direction of the line. Equivalent to b - a. */ const Coordinate dir() const { return b - a; } /** * The length from a to b. */ double length() const { return ( b - a ).length(); } /** * Return true if this line is parallel to l. */ bool isParallelTo( const LineData& l ) const; /** * Return true if this line is orthogonal to l. */ bool isOrthogonalTo( const LineData& l ) const; }; /** * Equality. Tests two LineData's for equality. */ bool operator==( const LineData& l, const LineData& r ); /** * This calcs the rotation of point a around point c by arc arc. Arc * is in radians, in the range 0 < arc < 2*pi ... */ Coordinate calcRotatedPoint( const Coordinate& a, const Coordinate& c, const double arc ); /** * this returns a point, so that the line through point t * and the point returned is perpendicular to the line l. */ Coordinate calcPointOnPerpend( const LineData& l, const Coordinate& t ); /** * this returns a point, so that the line through point t and the * point returned is perpendicular to the direction given in dir... */ Coordinate calcPointOnPerpend( const Coordinate& dir, const Coordinate& t ); /** * this returns a point, so that the line through point t * and the point returned is parallel with the line l */ Coordinate calcPointOnParallel( const LineData& l, const Coordinate& t ); /** * this returns a point, so that the line through point t * and the point returned is parallel with the direction given in dir... */ Coordinate calcPointOnParallel( const Coordinate& dir, const Coordinate& t ); /** * this calcs the point where the lines l and m intersect... */ Coordinate calcIntersectionPoint( const LineData& l, const LineData& m ); /** * this calcs the intersection points of the circle with center c and * radius sqrt( r ), and the line l. As a circle and a * line have two intersection points, side tells us which one we * need... It should be 1 or -1. If the line and the circle have no * intersection, valid is set to false, otherwise to true... * Note that sqr is the _square_ of the radius. We do this to avoid * rounding errors... */ const Coordinate calcCircleLineIntersect( const Coordinate& c, const double sqr, const LineData& l, int side ); /** * this calcs the intersection points of the arc with center c, * radius sqrt( r ), start angle sa and angle angle, and the line l. * As a arc and a line can have max two intersection points, side * tells us which one we need... It should be 1 or -1. If the line * and the arc have no intersection, valid is set to false, otherwise * to true... Note that sqr is the _square_ of the radius. We do * this to avoid rounding errors... */ const Coordinate calcArcLineIntersect( const Coordinate& c, const double sqr, const double sa, const double angle, const LineData& l, int side ); /** * this calculates the perpendicular projection of point p on line * ab... */ const Coordinate calcPointProjection( const Coordinate& p, const LineData& l ); /** * calc the distance of point p to the line through a and b... */ double calcDistancePointLine( const Coordinate& p, const LineData& l ); /** * this sets p1 and p2 to p1' and p2' so that p1'p2' is the same line * as p1p2, and so that p1' and p2' are on the border of the Rect... */ void calcBorderPoints( Coordinate& p1, Coordinate& p2, const Rect& r ); /** * overload... */ void calcBorderPoints( double& xa, double& xb, double& ya, double& yb, const Rect& r); /** * cleaner overload, intended to tqreplace the above two... */ const LineData calcBorderPoints( const LineData& l, const Rect& r ); /** * this does the same as the above function, but only for b.. */ void calcRayBorderPoints( const Coordinate& a, Coordinate& b, const Rect& r ); /** * This function calculates the center of the circle going through the * three given points.. */ const Coordinate calcCenter( const Coordinate& a, const Coordinate& b, const Coordinate& c ); /** * overload... */ void calcRayBorderPoints( const double xa, const double xb, double& ya, double& yb, const Rect& r ); /** * calc the mirror point of p over the line l */ const Coordinate calcMirrorPoint( const LineData& l, const Coordinate& p ); /** * test collinearity of three points */ bool areCollinear( const Coordinate& p1, const Coordinate& p2, const Coordinate& p3 ); /** * test if a 2x2 matrix is singular (relatively to the * norm of the two row vectors) */ bool isSingular( const double& a, const double& b, const double& c, const double& d ); /** * is o on the line defined by point a and point b ? * fault is the allowed difference... */ bool isOnLine( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ); /** * is o on the segment defined by point a and point b ? * this calls isOnLine(), but also checks if o is "between" a and b... * fault is the allowed difference... */ bool isOnSegment( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ); bool isOnRay( const Coordinate& o, const Coordinate& a, const Coordinate& b, const double fault ); bool isOnArc( const Coordinate& o, const Coordinate& c, const double r, const double sa, const double a, const double fault ); Coordinate calcCircleRadicalStartPoint( const Coordinate& ca, const Coordinate& cb, double sqra, double sqrb ); /** * Is the line, segment, ray or vector inside r ? We need the imp to * distinguish between rays, lines, segments or whatever.. ( we use * their tqcontains functions actually.. ) */ bool lineInRect( const Rect& r, const Coordinate& a, const Coordinate& b, const int width, const ObjectImp* imp, const KigWidget& w ); template T kigMin( const T& a, const T& b ) { return a < b ? a : b; } template T kigMax( const T& a, const T& b ) { return a > b ? a : b; } template T kigAbs( const T& a ) { return a >= 0 ? a : -a; } template int kigSgn( const T& a ) { return a == 0 ? 0 : a > 0 ? +1 : -1; } extern const double test_threshold; #endif