1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
// Copyright (C) 2002 Dominique Devriese <devriese@kde.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "calcpaths.h"
#include "../objects/object_calcer.h"
#include "../objects/object_imp.h"
#include <algorithm>
// mp:
// The previous algorithm by Dominique had an exponential complexity
// for some constructions (e.g. a sequence of "n" triangles each inscribed
// into the previous).
// The new version is directly taken from a book of Alan Bertossi
// "Algoritmi e strutture dati"
// temporarily disabling the new algorithm due to the freeze:
// I previously misunderstood the semantics of this function
// and thought that the os vector had to be completed with all
// the subtree generated by it. On the contrary, the os vector
// tqcontains *all* the objects that we want, we only have to
// reorder them. Now it *should* work, however we postpone
// activating this to a more proper moment
// to deactivate the new algorithm change "define" into "undef"
#define NEWCALCPATH
#ifdef NEWCALCPATH
void localdfs( ObjectCalcer* obj,
std::vector<ObjectCalcer*>& visited,
std::vector<ObjectCalcer*>& all);
std::vector<ObjectCalcer*> calcPath( const std::vector<ObjectCalcer*>& os )
{
// "all" is the Objects var we're building, in reverse ordering
std::vector<ObjectCalcer*> visited;
std::vector<ObjectCalcer*> all;
for ( std::vector<ObjectCalcer*>::const_iterator i = os.begin(); i != os.end(); ++i )
{
if ( std::find( visited.begin(), visited.end(), *i ) == visited.end() )
{
localdfs( *i, visited, all );
}
}
// now, we need to remove all objects that are not in os
// (forgot to do this in previous fix :-( )
std::vector<ObjectCalcer*> ret;
for ( std::vector<ObjectCalcer*>::reverse_iterator i = all.rbegin(); i != all.rend(); ++i )
{
// we only add objects that appear in os
if ( std::find( os.begin(), os.end(), *i ) != os.end() ) ret.push_back( *i );
};
return ret;
}
void localdfs( ObjectCalcer* obj,
std::vector<ObjectCalcer*>& visited,
std::vector<ObjectCalcer*>& all)
{
visited.push_back( obj );
const std::vector<ObjectCalcer*> o = obj->children();
for ( std::vector<ObjectCalcer*>::const_iterator i = o.begin(); i != o.end(); ++i )
{
if ( std::find( visited.begin(), visited.end(), *i ) == visited.end() )
localdfs( *i, visited, all );
}
all.push_back( obj );
}
// old calcPath commented out...
#else
// these first two functions were written before i read stuff about
// graph theory and algorithms, so i'm sure they're far from optimal.
// However, they seem to work fine, and i don't think there's a real
// need for optimisation here..
std::vector<ObjectCalcer*> calcPath( const std::vector<ObjectCalcer*>& os )
{
// this is a little experiment of mine, i don't know if it is the
// fastest way to do it, but it seems logical to me...
// the general idea here:
// first we build a new Objects variable. For every object in os,
// we put all of its children at the end of it, and we do the same
// for the ones we add..
// "all" is the Objects var we're building...
std::vector<ObjectCalcer*> all = os;
// tmp is the var containing the objects we're iterating over. The
// first time around this is the os variable, the next time, this
// tqcontains the variables we added in the first round...
std::vector<ObjectCalcer*> tmp = os;
// tmp2 is a temporary var. During a round, it receives all the
// variables we add ( to "all" ) in that round, and at the end of
// the round, it is assigned to tmp.
std::vector<ObjectCalcer*> tmp2;
while ( ! tmp.empty() )
{
for ( std::vector<ObjectCalcer*>::const_iterator i = tmp.begin(); i != tmp.end(); ++i )
{
const std::vector<ObjectCalcer*> o = (*i)->children();
std::copy( o.begin(), o.end(), std::back_inserter( all ) );
std::copy( o.begin(), o.end(), std::back_inserter( tmp2 ) );
};
tmp = tmp2;
tmp2.clear();
};
// now we know that if all objects appear at least once after all of
// their parents. So, we take all, and of every object, we remove
// every reference except the last one...
std::vector<ObjectCalcer*> ret;
ret.reserve( os.size() );
for ( std::vector<ObjectCalcer*>::reverse_iterator i = all.rbegin(); i != all.rend(); ++i )
{
// we only add objects that appear in os and only if they are not
// already in ret..
if ( std::find( ret.begin(), ret.end(), *i ) == ret.end() &&
std::find( os.begin(), os.end(), *i ) != os.end() ) ret.push_back( *i );
};
std::reverse( ret.begin(), ret.end() );
return ret;
}
#endif
bool addBranch( const std::vector<ObjectCalcer*>& o, const ObjectCalcer* to, std::vector<ObjectCalcer*>& ret )
{
bool rb = false;
for ( std::vector<ObjectCalcer*>::const_iterator i = o.begin(); i != o.end(); ++i )
{
if ( *i == to )
rb = true;
else
if ( addBranch( (*i)->children(), to, ret ) )
{
rb = true;
ret.push_back( *i );
};
};
return rb;
}
std::vector<ObjectCalcer*> calcPath( const std::vector<ObjectCalcer*>& from, const ObjectCalcer* to )
{
std::vector<ObjectCalcer*> all;
for ( std::vector<ObjectCalcer*>::const_iterator i = from.begin(); i != from.end(); ++i )
{
(void) addBranch( (*i)->children(), to, all );
};
std::vector<ObjectCalcer*> ret;
for ( std::vector<ObjectCalcer*>::iterator i = all.begin(); i != all.end(); ++i )
{
if ( std::find( ret.begin(), ret.end(), *i ) == ret.end() )
ret.push_back( *i );
};
return std::vector<ObjectCalcer*>( ret.rbegin(), ret.rend() );
}
static void addNonCache( ObjectCalcer* o, std::vector<ObjectCalcer*>& ret )
{
if ( ! o->imp()->isCache() )
if ( std::find( ret.begin(), ret.end(), o ) == ret.end() )
ret.push_back( o );
else
{
std::vector<ObjectCalcer*> parents = o->parents();
for ( uint i = 0; i < parents.size(); ++i )
addNonCache( parents[i], ret );
};
}
static bool visit( const ObjectCalcer* o, const std::vector<ObjectCalcer*>& from, std::vector<ObjectCalcer*>& ret )
{
// this function returns true if the visited object depends on one
// of the objects in from. If we encounter objects that are on the
// side of the tree path ( they do not depend on from themselves,
// but their direct children do ), then we add them to ret.
if ( std::find( from.begin(), from.end(), o ) != from.end() ) return true;
std::vector<bool> deps( o->parents().size(), false );
bool somedepend = false;
bool alldepend = true;
std::vector<ObjectCalcer*> parents = o->parents();
for ( uint i = 0; i < parents.size(); ++i )
{
bool v = visit( parents[i], from, ret );
somedepend |= v;
alldepend &= v;
deps[i] = v;
};
if ( somedepend && ! alldepend )
{
for ( uint i = 0; i < deps.size(); ++i )
if ( ! deps[i] )
addNonCache( parents[i], ret );
};
return somedepend;
}
std::vector<ObjectCalcer*> sideOfTreePath( const std::vector<ObjectCalcer*>& from, const ObjectCalcer* to )
{
std::vector<ObjectCalcer*> ret;
visit( to, from, ret );
return ret;
}
std::vector<ObjectCalcer*> getAllParents( const std::vector<ObjectCalcer*>& objs )
{
using namespace std;
std::set<ObjectCalcer*> ret( objs.begin(),objs.end() );
std::set<ObjectCalcer*> cur = ret;
while ( ! cur.empty() )
{
std::set<ObjectCalcer*> next;
for ( std::set<ObjectCalcer*>::const_iterator i = cur.begin(); i != cur.end(); ++i )
{
std::vector<ObjectCalcer*> parents = (*i)->parents();
next.insert( parents.begin(), parents.end() );
};
ret.insert( next.begin(), next.end() );
cur = next;
};
return std::vector<ObjectCalcer*>( ret.begin(), ret.end() );
}
std::vector<ObjectCalcer*> getAllParents( ObjectCalcer* obj )
{
std::vector<ObjectCalcer*> objs;
objs.push_back( obj );
return getAllParents( objs );
}
bool isChild( const ObjectCalcer* o, const std::vector<ObjectCalcer*>& os )
{
std::vector<ObjectCalcer*> parents = o->parents();
std::set<ObjectCalcer*> cur( parents.begin(), parents.end() );
while ( ! cur.empty() )
{
std::set<ObjectCalcer*> next;
for ( std::set<ObjectCalcer*>::const_iterator i = cur.begin(); i != cur.end(); ++i )
{
if ( std::find( os.begin(), os.end(), *i ) != os.end() ) return true;
std::vector<ObjectCalcer*> parents = (*i)->parents();
next.insert( parents.begin(), parents.end() );
};
cur = next;
};
return false;
}
std::set<ObjectCalcer*> getAllChildren( ObjectCalcer* obj )
{
std::vector<ObjectCalcer*> objs;
objs.push_back( obj );
return getAllChildren( objs );
}
std::set<ObjectCalcer*> getAllChildren( const std::vector<ObjectCalcer*> objs )
{
std::set<ObjectCalcer*> ret;
// objects to iterate over...
std::set<ObjectCalcer*> cur( objs.begin(), objs.end() );
while( !cur.empty() )
{
// tqcontains the objects to iterate over the next time around...
std::set<ObjectCalcer*> next;
for( std::set<ObjectCalcer*>::iterator i = cur.begin();
i != cur.end(); ++i )
{
ret.insert( *i );
std::vector<ObjectCalcer*> children = (*i)->children();
next.insert( children.begin(), children.end() );
};
cur = next;
};
return ret;
}
bool isPointOnCurve( const ObjectCalcer* point, const ObjectCalcer* curve )
{
return point->isDefinedOnOrThrough( curve ) || curve->isDefinedOnOrThrough( point );
}
|