1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
// Copyright (C) 2004 Pino Toscano <toscano.pino@tiscali.it>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "polygon_imp.h"
#include "bogus_imp.h"
#include "line_imp.h"
#include "point_imp.h"
#include "../misc/common.h"
#include "../misc/coordinate.h"
#include "../misc/kigpainter.h"
#include "../misc/kigtransform.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include <klocale.h>
#include <cmath>
PolygonImp::PolygonImp( uint npoints, const std::vector<Coordinate>& points,
const Coordinate& centerofmass )
: mnpoints( npoints ), mpoints( points ), mcenterofmass( centerofmass )
{
// mpoints = points;
}
PolygonImp::PolygonImp( const std::vector<Coordinate>& points )
{
uint npoints = points.size();
Coordinate centerofmassn = Coordinate( 0, 0 );
for ( uint i = 0; i < npoints; ++i )
{
centerofmassn += points[i];
}
mpoints = points;
mcenterofmass = centerofmassn/npoints;
mnpoints = npoints;
}
PolygonImp::~PolygonImp()
{
}
Coordinate PolygonImp::attachPoint() const
{
return mcenterofmass;
}
ObjectImp* PolygonImp::transform( const Transformation& t ) const
{
/*mp:
* any projective transformation makes sense for a polygon,
* since segments transform into segments (but see below...)
* of course regular polygons will no longer be
* regular if t is not homothetic.
* for projective transformations the polygon could transform to
* an unbounded nonconnected polygon; this happens if some side
* of the polygon crosses the critical line that maps to infinity
* this can be easily checked using the getProjectiveIndicator
* function
*/
// if ( ! t.isHomothetic() )
// return new InvalidImp();
if ( ! t.isAffine() ) /* in this case we need a more extensive test */
{
double maxp = -1.0;
double minp = 1.0;
for ( uint i = 0; i < mpoints.size(); ++i )
{
double p = t.getProjectiveIndicator( mpoints[i] );
if ( p > maxp ) maxp = p;
if ( p < minp ) minp = p;
}
if ( maxp > 0 && minp < 0 ) return new InvalidImp;
}
std::vector<Coordinate> np;
for ( uint i = 0; i < mpoints.size(); ++i )
{
Coordinate nc = t.apply( mpoints[i] );
if ( !nc.valid() )
return new InvalidImp;
np.push_back( nc );
}
return new PolygonImp( np );
}
void PolygonImp::draw( KigPainter& p ) const
{
p.drawPolygon( mpoints );
}
bool PolygonImp::isInPolygon( const Coordinate& p ) const
{
// (algorithm sent to me by domi)
// We intersect with the horizontal ray from point to the right and
// count the number of intersections. That, along with some
// minor optimalisations of the intersection test..
bool inside_flag = false;
double cx = p.x;
double cy = p.y;
Coordinate prevpoint = mpoints.back();
bool prevpointbelow = mpoints.back().y >= cy;
for ( uint i = 0; i < mpoints.size(); ++i )
{
Coordinate point = mpoints[i];
bool pointbelow = point.y >= cy;
if ( prevpointbelow != pointbelow )
{
// possibility of intersection: points on different side from
// the X axis
//bool rightofpt = point.x >= cx;
// mp: we need to be a little bit more conservative here, in
// order to treat properly the case when the point is on the
// boundary
//if ( rightofpt == ( prevpoint.x >= cx ) )
if ( ( point.x - cx )*(prevpoint.x - cx ) > 0 )
{
// points on same side of Y axis -> easy to test intersection
// intersection iff one point to the right of c
if ( point.x >= cx )
inside_flag = !inside_flag;
}
else
{
// points on different sides of Y axis -> we need to calculate
// the intersection.
// mp: we want to check if the point is on the boundary, and
// return false in such case
double num = ( point.y - cy )*( prevpoint.x - point.x );
double den = prevpoint.y - point.y;
if ( num == den*( point.x - cx ) ) return false;
if ( num/den <= point.x - cx )
inside_flag = !inside_flag;
}
}
prevpoint = point;
prevpointbelow = pointbelow;
}
return inside_flag;
}
#define selectpolygonwithinside 1
#ifdef selectpolygonwithinside
bool PolygonImp::contains( const Coordinate& p, int, const KigWidget& ) const
{
return isInPolygon( p );
}
#else
bool PolygonImp::contains( const Coordinate& p, int width, const KigWidget& w ) const
{
bool ret = false;
uint reduceddim = mpoints.size() - 1;
for ( uint i = 0; i < reduceddim; ++i )
{
ret |= isOnSegment( p, mpoints[i], mpoints[i+1], w.screenInfo().normalMiss( width ) );
}
ret |= isOnSegment( p, mpoints[reduceddim], mpoints[0], w.screenInfo().normalMiss( width ) );
return ret;
}
#endif
bool PolygonImp::inRect( const Rect& r, int width, const KigWidget& w ) const
{
bool ret = false;
uint reduceddim = mpoints.size() - 1;
for ( uint i = 0; i < reduceddim; ++i )
{
SegmentImp* s = new SegmentImp( mpoints[i], mpoints[i+1] );
ret |= lineInRect( r, mpoints[i], mpoints[i+1], width, s, w );
delete s;
s = 0;
}
SegmentImp* t = new SegmentImp( mpoints[reduceddim], mpoints[0] );
ret |= lineInRect( r, mpoints[reduceddim], mpoints[0], width, t, w );
delete t;
t = 0;
return ret;
}
bool PolygonImp::valid() const
{
return true;
}
const uint PolygonImp::numberOfProperties() const
{
return Parent::numberOfProperties() + 5;
}
const QCStringList PolygonImp::propertiesInternalNames() const
{
QCStringList l = Parent::propertiesInternalNames();
l += "polygon-number-of-sides";
l += "polygon-perimeter";
l += "polygon-surface";
l += "polygon-center-of-mass";
l += "polygon-winding-number";
assert( l.size() == PolygonImp::numberOfProperties() );
return l;
}
const QCStringList PolygonImp::properties() const
{
QCStringList l = Parent::properties();
l += I18N_NOOP( "Number of sides" );
l += I18N_NOOP( "Perimeter" );
l += I18N_NOOP( "Surface" );
l += I18N_NOOP( "Center of Mass of the Vertices" );
l += I18N_NOOP( "Winding Number" );
assert( l.size() == PolygonImp::numberOfProperties() );
return l;
}
const ObjectImpType* PolygonImp::impRequirementForProperty( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::impRequirementForProperty( which );
else return PolygonImp::stype();
}
const char* PolygonImp::iconForProperty( uint which ) const
{
assert( which < PolygonImp::numberOfProperties() );
if ( which < Parent::numberOfProperties() )
return Parent::iconForProperty( which );
else if ( which == Parent::numberOfProperties() )
return "en"; // number of sides
else if ( which == Parent::numberOfProperties() + 1 )
return "circumference"; // perimeter
else if ( which == Parent::numberOfProperties() + 2 )
return "areaCircle"; // surface
else if ( which == Parent::numberOfProperties() + 3 )
return "point"; // center of mass
else if ( which == Parent::numberOfProperties() + 4 )
return "w"; // winding number
else assert( false );
return "";
}
ObjectImp* PolygonImp::property( uint which, const KigDocument& w ) const
{
assert( which < PolygonImp::numberOfProperties() );
if ( which < Parent::numberOfProperties() )
return Parent::property( which, w );
else if ( which == Parent::numberOfProperties() )
{
// number of points
return new IntImp( mnpoints );
}
else if ( which == Parent::numberOfProperties() + 1)
{
double circumference = 0.;
// circumference
for ( uint i = 0; i < mpoints.size(); ++i )
{
uint prev = ( i + mpoints.size() - 1 ) % mpoints.size();
circumference += ( mpoints[i] - mpoints[prev] ).length();
}
return new DoubleImp( circumference );
}
else if ( which == Parent::numberOfProperties() + 2)
{
int wn = windingNumber (); // not able to compute area for such polygons...
if ( wn < 0 ) wn = -wn;
if ( wn != 1 ) return new InvalidImp;
double surface2 = 0.0;
Coordinate prevpoint = mpoints.back();
for ( uint i = 0; i < mpoints.size(); ++i )
{
Coordinate point = mpoints[i];
surface2 += ( point.x - prevpoint.x ) * ( point.y + prevpoint.y );
prevpoint = point;
}
return new DoubleImp( fabs( surface2 / 2 ) );
}
else if ( which == Parent::numberOfProperties() + 3 )
{
return new PointImp( mcenterofmass );
}
else if ( which == Parent::numberOfProperties() + 4 )
{
// winding number
return new IntImp( windingNumber() );
}
else assert( false );
return new InvalidImp;
}
const std::vector<Coordinate> PolygonImp::points() const
{
std::vector<Coordinate> np;
np.reserve( mpoints.size() );
std::copy( mpoints.begin(), mpoints.end(), std::back_inserter( np ) );
return np;
}
const uint PolygonImp::npoints() const
{
return mnpoints;
}
PolygonImp* PolygonImp::copy() const
{
return new PolygonImp( mpoints );
}
void PolygonImp::visit( ObjectImpVisitor* vtor ) const
{
vtor->visit( this );
}
bool PolygonImp::equals( const ObjectImp& rhs ) const
{
return rhs.inherits( PolygonImp::stype() ) &&
static_cast<const PolygonImp&>( rhs ).points() == mpoints;
}
const ObjectImpType* PolygonImp::stype()
{
static const ObjectImpType t(
Parent::stype(), "polygon",
I18N_NOOP( "polygon" ),
I18N_NOOP( "Select this polygon" ),
I18N_NOOP( "Select polygon %1" ),
I18N_NOOP( "Remove a Polygon" ),
I18N_NOOP( "Add a Polygon" ),
I18N_NOOP( "Move a Polygon" ),
I18N_NOOP( "Attach to this polygon" ),
I18N_NOOP( "Show a Polygon" ),
I18N_NOOP( "Hide a Polygon" )
);
return &t;
}
const ObjectImpType* PolygonImp::stype3()
{
static const ObjectImpType t3(
PolygonImp::stype(), "triangle",
I18N_NOOP( "triangle" ),
I18N_NOOP( "Select this triangle" ),
I18N_NOOP( "Select triangle %1" ),
I18N_NOOP( "Remove a Triangle" ),
I18N_NOOP( "Add a Triangle" ),
I18N_NOOP( "Move a Triangle" ),
I18N_NOOP( "Attach to this triangle" ),
I18N_NOOP( "Show a Triangle" ),
I18N_NOOP( "Hide a Triangle" )
);
return &t3;
}
const ObjectImpType* PolygonImp::stype4()
{
static const ObjectImpType t4(
PolygonImp::stype(), "quadrilateral",
I18N_NOOP( "quadrilateral" ),
I18N_NOOP( "Select this quadrilateral" ),
I18N_NOOP( "Select quadrilateral %1" ),
I18N_NOOP( "Remove a Quadrilateral" ),
I18N_NOOP( "Add a Quadrilateral" ),
I18N_NOOP( "Move a Quadrilateral" ),
I18N_NOOP( "Attach to this quadrilateral" ),
I18N_NOOP( "Show a Quadrilateral" ),
I18N_NOOP( "Hide a Quadrilateral" )
);
return &t4;
}
const ObjectImpType* PolygonImp::type() const
{
uint n = mpoints.size();
if ( n == 3 ) return PolygonImp::stype3();
if ( n == 4 ) return PolygonImp::stype4();
return PolygonImp::stype();
}
bool PolygonImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
{
assert( which < PolygonImp::numberOfProperties() );
if ( which < Parent::numberOfProperties() )
return Parent::isPropertyDefinedOnOrThroughThisImp( which );
return false;
}
Rect PolygonImp::surroundingRect() const
{
Rect r( 0., 0., 0., 0. );
for ( uint i = 0; i < mpoints.size(); ++i )
{
r.setContains( mpoints[i] );
}
return r;
}
int PolygonImp::windingNumber() const
{
/*
* this is defined as the sum of the external angles while at
* all vertices, then normalized by 2pi. The external angle
* is the angle we steer at each vertex while we walk along the
* boundary of the polygon.
* In the end we only need to count how many time we cross the (1,0)
* direction (positive x-axis) with a positive sign if we cross while
* steering left and a negative sign viceversa
*/
int winding = 0;
uint npoints = mpoints.size();
Coordinate prevside = mpoints[0] - mpoints[npoints-1];
for ( uint i = 0; i < npoints; ++i )
{
uint nexti = i + 1;
if ( nexti >= npoints ) nexti = 0;
Coordinate side = mpoints[nexti] - mpoints[i];
double vecprod = side.x*prevside.y - side.y*prevside.x;
int steeringdir = ( vecprod > 0 ) ? 1 : -1;
if ( vecprod == 0.0 || side.y*prevside.y > 0 )
{
prevside = side;
continue; // cannot cross the (1,0) direction
}
if ( side.y*steeringdir < 0 && prevside.y*steeringdir >= 0 )
winding -= steeringdir;
prevside = side;
}
return winding;
}
bool PolygonImp::isMonotoneSteering() const
{
/*
* returns true if while walking along the boundary,
* steering is always in the same direction
*/
uint npoints = mpoints.size();
Coordinate prevside = mpoints[0] - mpoints[npoints-1];
int prevsteeringdir = 0;
for ( uint i = 0; i < npoints; ++i )
{
uint nexti = i + 1;
if ( nexti >= npoints ) nexti = 0;
Coordinate side = mpoints[nexti] - mpoints[i];
double vecprod = side.x*prevside.y - side.y*prevside.x;
int steeringdir = ( vecprod > 0 ) ? 1 : -1;
if ( vecprod == 0.0 )
{
prevside = side;
continue; // going straight
}
if ( prevsteeringdir*steeringdir < 0 ) return false;
prevside = side;
prevsteeringdir = steeringdir;
}
return true;
}
bool PolygonImp::isConvex() const
{
if ( ! isMonotoneSteering() ) return false;
int winding = windingNumber();
if ( winding < 0 ) winding = -winding;
assert ( winding > 0 );
return winding == 1;
}
std::vector<Coordinate> computeConvexHull( const std::vector<Coordinate>& points )
{
/*
* compute the convex hull of the set of points, the resulting list
* is the vertices of the resulting polygon listed in a counter clockwise
* order. This algorithm is on order n^2, probably suboptimal, but
* we don't expect to have large values for n.
*/
if ( points.size() < 3 ) return points;
std::vector<Coordinate> worklist = points;
std::vector<Coordinate> result;
double ymin = worklist[0].y;
uint imin = 0;
for ( uint i = 1; i < worklist.size(); ++i )
{
if ( worklist[i].y < ymin )
{
ymin = worklist[i].y;
imin = i;
}
}
// worklist[imin] is definitely on the convex hull, let's start from there
result.push_back( worklist[imin] );
Coordinate startpoint = worklist[imin];
Coordinate apoint = worklist[imin];
double aangle = 0.0;
while ( ! worklist.empty() )
{
int besti = -1;
double anglemin = 10000.0;
for ( uint i = 0; i < worklist.size(); ++i )
{
if ( worklist[i] == apoint ) continue;
Coordinate v = worklist[i] - apoint;
double angle = std::atan2( v.y, v.x );
while ( angle < aangle ) angle += 2*M_PI;
if ( angle < anglemin )
{ // found a better point
besti = i;
anglemin = angle;
}
}
if ( besti < 0 ) return result; // this happens, e.g. if all points coincide
apoint = worklist[besti];
aangle = anglemin;
if ( apoint == startpoint )
{
return result;
}
result.push_back( apoint );
worklist.erase( worklist.begin() + besti, worklist.begin() + besti + 1 );
}
assert( false );
return result;
}
|