/* This file is part of the KDE games library Copyright (C) 2001-02 Nicolas Hadacek (hadacek@kde.org) This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License version 2 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __KGRID2D_H_ #define __KGRID2D_H_ #include <math.h> #include <tqpair.h> #include <tqvaluelist.h> #include <tqvaluevector.h> #include <kglobal.h> //----------------------------------------------------------------------------- namespace KGrid2D { /** * This type represents coordinates on a bidimensionnal grid. * @since 3.2 */ typedef QPair<int, int> Coord; /** * This type represents a list of @ref Coord. * @since 3.2 */ typedef TQValueList<Coord> CoordList; } inline KGrid2D::Coord operator +(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) { return KGrid2D::Coord(c1.first + c2.first, c1.second + c2.second); } inline KGrid2D::Coord operator -(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) { return KGrid2D::Coord(c1.first - c2.first, c1.second - c2.second); } /** * @return the maximum of both coordinates. * @since 3.2 */ inline KGrid2D::Coord maximum(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) { return KGrid2D::Coord(kMax(c1.first, c2.first), kMax(c1.second, c2.second)); } /** * @return the minimum of both coordinates. * @since 3.2 */ inline KGrid2D::Coord minimum(const KGrid2D::Coord &c1, const KGrid2D::Coord &c2) { return KGrid2D::Coord(kMin(c1.first, c2.first), kMin(c1.second, c2.second)); } inline TQTextStream &operator <<(TQTextStream &s, const KGrid2D::Coord &c) { return s << '(' << c.second << ", " << c.first << ')'; } inline TQTextStream &operator <<(TQTextStream &s, const KGrid2D::CoordList &list) { for(KGrid2D::CoordList::const_iterator i=list.begin(); i!=list.end(); ++i) s << *i; return s; } //----------------------------------------------------------------------------- namespace KGrid2D { /** * This template class represents a generic bidimensionnal grid. Each node * contains an element of the template type. * * @since 3.2 */ template <class Type> class Generic { public: /** * Constructor. */ Generic(uint width = 0, uint height = 0) { resize(width, height); } virtual ~Generic() {} /** * Resize the grid. */ void resize(uint width, uint height) { _width = width; _height = height; _vector.resize(width*height); } /** * Fill the nodes with the given value. */ void fill(const Type &value) { for (uint i=0; i<_vector.count(); i++) _vector[i] = value; } /** * @return the width. */ uint width() const { return _width; } /** * @return the height. */ uint height() const { return _height; } /** * @return the number of nodes (ie width*height). */ uint size() const { return _width*_height; } /** * @return the linear index for the given coordinate. */ uint index(const Coord &c) const { return c.first + c.second*_width; } /** * @return the coordinate corresponding to the linear index. */ Coord coord(uint index) const { return Coord(index % _width, index / _width); } /** * @return the value at the given coordinate. */ const Type &at(const Coord &c) const { return _vector[index(c)]; } /** * @return the value at the given coordinate. */ Type &at(const Coord &c) { return _vector[index(c)]; } /** * @return the value at the given coordinate. */ const Type &operator [](const Coord &c) const { return _vector[index(c)]; } /** * @return the value at the given coordinate. */ Type &operator [](const Coord &c) { return _vector[index(c)]; } /** * @return the value at the given linear index. */ const Type &at(uint index) const { return _vector[index]; } /** * @return the value at the given linear index. */ Type &at(uint index) { return _vector[index]; } /** * @return the value at the given linear index. */ const Type &operator [](uint index) const { return _vector[index]; } /** * @return the value at the given linear index. */ Type &operator [](uint index) { return _vector[index]; } /** * @return if the given coordinate is inside the grid. */ bool inside(const Coord &c) const { return ( c.first>=0 && c.first<(int)_width && c.second>=0 && c.second<(int)_height ); } /** * Bound the given coordinate with the grid dimensions. */ void bound(Coord &c) const { c.first = kMax(kMin(c.first, (int)_width-1), 0); c.second = kMax(kMin(c.second, (int)_height-1), 0); } protected: uint _width, _height; TQValueVector<Type> _vector; }; } template <class Type> TQDataStream &operator <<(TQDataStream &s, const KGrid2D::Generic<Type> &m) { s << (Q_UINT32)m.width() << (Q_UINT32)m.height(); for (uint i=0; i<m.size(); i++) s << m[i]; return s; } template <class Type> TQDataStream &operator >>(TQDataStream &s, KGrid2D::Generic<Type> &m) { Q_UINT32 w, h; s >> w >> h; m.resize(w, h); for (uint i=0; i<m.size(); i++) s >> m[i]; return s; } namespace KGrid2D { //----------------------------------------------------------------------------- /** * This class contains static methods to manipulate coordinates for a * square bidimensionnal grid. * * @since 3.2 */ class SquareBase { public: /** * Identify the eight neighbours. */ enum Neighbour { Left=0, Right, Up, Down, LeftUp, LeftDown, RightUp, RightDown, Nb_Neighbour }; /** * @return the trigonometric angle in radians for the given neighbour. */ static double angle(Neighbour n) { switch (n) { case Left: return M_PI; case Right: return 0; case Up: return M_PI_2; case Down: return -M_PI_2; case LeftUp: return 3.0*M_PI_4; case LeftDown: return -3.0*M_PI_4; case RightUp: return M_PI_4; case RightDown: return -M_PI_4; case Nb_Neighbour: Q_ASSERT(false); } return 0; } /** * @return the opposed neighbour. */ static Neighbour opposed(Neighbour n) { switch (n) { case Left: return Right; case Right: return Left; case Up: return Down; case Down: return Up; case LeftUp: return RightDown; case LeftDown: return RightUp; case RightUp: return LeftDown; case RightDown: return LeftUp; case Nb_Neighbour: Q_ASSERT(false); } return Nb_Neighbour; } /** * @return true if the neighbour is a direct one (ie is one of the four * nearest). */ static bool isDirect(Neighbour n) { return n<LeftUp; } /** * @return the neighbour for the given coordinate. */ static Coord neighbour(const Coord &c, Neighbour n) { switch (n) { case Left: return c + Coord(-1, 0); case Right: return c + Coord( 1, 0); case Up: return c + Coord( 0, -1); case Down: return c + Coord( 0, 1); case LeftUp: return c + Coord(-1, -1); case LeftDown: return c + Coord(-1, 1); case RightUp: return c + Coord( 1, -1); case RightDown: return c + Coord( 1, 1); case Nb_Neighbour: Q_ASSERT(false); } return c; } }; /** * This template is a @ref Generic implementation for a square bidimensionnal * grid (@ref SquareBase). * * @since 3.2 */ template <class T> class Square : public Generic<T>, public SquareBase { public: /** * Constructor. */ Square(uint width = 0, uint height = 0) : Generic<T>(width, height) {} /** * @return the neighbours of coordinate @param c * to the given set of coordinates * @param c the coordinate to use as the reference point * @param insideOnly only add coordinates that are inside the grid. * @param directOnly only add the four nearest neighbours. */ CoordList neighbours(const Coord &c, bool insideOnly = true, bool directOnly = false) const { CoordList neighbours; for (uint i=0; i<(directOnly ? LeftUp : Nb_Neighbour); i++) { Coord n = neighbour(c, (Neighbour)i); if ( insideOnly && !Generic<T>::inside(n) ) continue; neighbours.append(n); } return neighbours; } /** * @return the "projection" of the given coordinate on the grid edges. * * @param c the coordinate to use as the reference point * @param n the direction of projection. */ Coord toEdge(const Coord &c, Neighbour n) const { switch (n) { case Left: return Coord(0, c.second); case Right: return Coord(Generic<T>::width()-1, c.second); case Up: return Coord(c.first, 0); case Down: return Coord(c.first, Generic<T>::height()-1); case LeftUp: return Coord(0, 0); case LeftDown: return Coord(0, Generic<T>::height()-1); case RightUp: return Coord(Generic<T>::width()-1, 0); case RightDown: return Coord(Generic<T>::width()-1, Generic<T>::height()-1); case Nb_Neighbour: Q_ASSERT(false); } return c; } }; //----------------------------------------------------------------------------- /** * This class contains static methods to manipulate coordinates on an * hexagonal grid where hexagons form horizontal lines: * <pre> * (0,0) (0,1) (0,2) * (1,0) (1,1) (1,2) * (2,0) (2,1) (2,2) * </pre> * * @since 3.2 */ class HexagonalBase { public: /** * Identify the six neighbours. */ enum Neighbour { Left = 0, Right, LeftUp, LeftDown, RightUp, RightDown, Nb_Neighbour }; /** * @return the trigonometric angle in radians for the given neighbour. */ static double angle(Neighbour n) { switch (n) { case Left: return M_PI; case Right: return 0; case LeftUp: return 2.0*M_PI/3; case LeftDown: return -2.0*M_PI/3; case RightUp: return M_PI/3; case RightDown: return -M_PI/3; case Nb_Neighbour: Q_ASSERT(false); } return 0; } /** * @return the opposed neighbour. */ static Neighbour opposed(Neighbour n) { switch (n) { case Left: return Right; case Right: return Left; case LeftUp: return RightDown; case LeftDown: return RightUp; case RightUp: return LeftDown; case RightDown: return LeftUp; case Nb_Neighbour: Q_ASSERT(false); } return Nb_Neighbour; } /** * @return the neighbour of the given coordinate. */ static Coord neighbour(const Coord &c, Neighbour n) { bool oddRow = c.second%2; switch (n) { case Left: return c + Coord(-1, 0); case Right: return c + Coord( 1, 0); case LeftUp: return c + (oddRow ? Coord( 0, -1) : Coord(-1, -1)); case LeftDown: return c + (oddRow ? Coord( 0, 1) : Coord(-1, 1)); case RightUp: return c + (oddRow ? Coord( 1, -1) : Coord( 0, -1)); case RightDown: return c + (oddRow ? Coord( 1, 1) : Coord( 0, 1)); case Nb_Neighbour: Q_ASSERT(false); } return c; } /** * @return the distance between the two coordinates in term of hexagons. */ static uint distance(const Coord &c1, const Coord &c2) { return kAbs(c1.first - c2.first) + kAbs(c1.second - c2.second) + (c1.first==c2.first || c1.second==c2.second ? 0 : -1); } }; /** * This template implements a hexagonal grid * where hexagons form horizontal lines: * <pre> * (0,0) (0,1) (0,2) * (1,0) (1,1) (1,2) * (2,0) (2,1) (2,2) * </pre> * * @ since 3.2 */ template <class Type> class Hexagonal : public Generic<Type>, public HexagonalBase { public: /** * Constructor. */ Hexagonal(uint width = 0, uint height = 0) : Generic<Type>(width, height) {} /** * @return the neighbours of coordinate @param c * to the given set of coordinates * @param c the coordiante to use as the reference point * @param insideOnly only add coordinates that are inside the grid. */ CoordList neighbours(const Coord &c, bool insideOnly = true) const { CoordList neighbours; for (uint i=0; i<Nb_Neighbour; i++) { Coord n = neighbour(c, (Neighbour)i); if ( insideOnly && !Generic<Type>::inside(n) ) continue; neighbours.append(n); } return neighbours; } /** * @return the neighbours at distance @param distance of coordinate * @param c the coordinate to use as the reference point * @param distance distance to the neighbour (1 means at contact). * @param insideOnly only add coordinates that are inside the grid. * @param all returns all neighbours at distance equal and less than * @param distance (the original coordinate is not included). */ CoordList neighbours(const Coord &c, uint distance, bool all, bool insideOnly = true) const { // brute force algorithm -- you're welcome to make it more efficient :) CoordList ring; if ( distance==0 ) return ring; ring = neighbours(c, insideOnly); if ( distance==1 ) return ring; CoordList center; center.append(c); for (uint i=1; i<distance; i++) { CoordList newRing; CoordList::const_iterator it; for (it=ring.begin(); it!=ring.end(); ++it) { CoordList n = neighbours(*it, insideOnly); CoordList::const_iterator it2; for (it2=n.begin(); it2!=n.end(); ++it2) if ( center.find(*it2)==center.end() && ring.find(*it2)==ring.end() && newRing.find(*it2)==newRing.end() ) newRing.append(*it2); center.append(*it); } ring = newRing; } if ( !all ) return ring; CoordList::const_iterator it; for (it=ring.begin(); it!=ring.end(); ++it) center.append(*it); center.remove(c); return center; } }; } // namespace #endif