/* * Copyright (c) 1994 Paul Vojta. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * NOTE: * xdvi is based on prior work as noted in the modification history, below. */ /* * DVI previewer for X. * * Eric Cooper, CMU, September 1985. * * Code derived from dvi-imagen.c. * * Modification history: * 1/1986 Modified for X.10 --Bob Scheifler, MIT LCS. * 7/1988 Modified for X.11 --Mark Eichin, MIT * 12/1988 Added 'R' option, toolkit, magnifying glass * --Paul Vojta, UC Berkeley. * 2/1989 Added tpic support --Jeffrey Lee, U of Toronto * 4/1989 Modified for System V --Donald Richardson, Clarkson Univ. * 3/1990 Added VMS support --Scott Allendorf, U of Iowa * 7/1990 Added reflection mode --Michael Pak, Hebrew U of Jerusalem * 1/1992 Added greyscale code --Till Brychcy, Techn. Univ. Muenchen * and Lee Hetherington, MIT * 4/1994 Added DPS support, bounding box * --Ricardo Telichevesky * and Luis Miguel Silveira, MIT RLE. */ #include <config.h> #include <kdebug.h> #include <tdelocale.h> #include <math.h> #include <tqbitmap.h> #include <tqfile.h> #include <tqimage.h> #include <tqpainter.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "fontpool.h" #include "glyph.h" #include "xdvi.h" #include "TeXFontDefinition.h" #include "TeXFont_PK.h" //#define DEBUG_PK #define PK_PRE 247 #define PK_ID 89 #define PK_MAGIC (PK_PRE << 8) + PK_ID extern void oops(TQString message); TeXFont_PK::TeXFont_PK(TeXFontDefinition *parent) : TeXFont(parent) { #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::TeXFont_PK( parent=" << parent << ")" << endl; #endif for(unsigned int i=0; i<TeXFontDefinition::max_num_of_chars_in_font; i++) characterBitmaps[i] = 0; file = fopen(TQFile::encodeName(parent->filename), "r"); if (file == 0) kdError(4300) << i18n("Cannot open font file %1.").arg(parent->filename) << endl; #ifdef DEBUG_PK else kdDebug(4300) << "TeXFont_PK::TeXFont_PK(): file opened successfully" << endl; #endif read_PK_index(); #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::TeXFont_PK() ended" << endl; #endif } TeXFont_PK::~TeXFont_PK() { //@@@ Release bitmaps if (file != 0) { fclose(file); file = 0; } } glyph* TeXFont_PK::getGlyph(TQ_UINT16 ch, bool generateCharacterPixmap, const TQColor& color) { #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::getGlyph( ch=" << ch << ", generateCharacterPixmap=" << generateCharacterPixmap << " )" << endl; #endif // Paranoia checks if (ch >= TeXFontDefinition::max_num_of_chars_in_font) { kdError(4300) << "TeXFont_PK::getGlyph(): Argument is too big." << endl; return glyphtable; } // This is the address of the glyph that will be returned. struct glyph *g = glyphtable+ch; // Check if the glyph is loaded. If not, load it now. if (characterBitmaps[ch] == 0) { // If the character is not defined in the PK file, mark the // character as missing, and print an error message if (g->addr == 0) { kdError(4300) << i18n("TexFont_PK::operator[]: Character %1 not defined in font %2").arg(ch).arg(parent->filename) << endl; g->addr = -1; return g; } // If the character has already been marked as missing, just // return a pointer to the glyph (which will then be empty) if (g->addr == -1) return g; // Otherwise, try to load the character fseek(file, g->addr, 0); read_PK_char(ch); // Check if the character could be loaded. If not, mark the // character as 'missing', and return a pointer. if (characterBitmaps[ch]->bits == 0) { g->addr = -1; return g; } } // At this point, g points to a properly loaded character. Generate // a smoothly scaled TQPixmap if the user asks for it. if ((generateCharacterPixmap == true) && ((g->shrunkenCharacter.isNull()) || (color != g->color)) && (characterBitmaps[ch]->w != 0)) { g->color = color; double shrinkFactor = 1200 / parent->displayResolution_in_dpi; // All is fine? Then we rescale the bitmap in order to produce the // required pixmap. Rescaling a character, however, is an art // that requires some explanation... // // If we would just divide the size of the character and the // coordinates by the shrink factor, then the result would look // quite ugly: due to the ineviatable rounding errors in the // integer arithmetic, the characters would be displaced by up to // a pixel. That doesn't sound much, but on low-resolution // devices, such as a notebook screen, the effect would be a // "dancing line" of characters, which looks really bad. // Calculate the coordinates of the hot point in the shrunken // bitmap. For simplicity, let us consider the x-coordinate // first. In principle, the hot point should have an x-coordinate // of (g->x/shrinkFactor). That, however, will generally NOT be an // integral number. The cure is to translate the source image // somewhat, so that the x-coordinate of the hot point falls onto // the round-up of this number, i.e. g->x2 = (int)ceil(g->x/shrinkFactor); // Translating and scaling then means that the pixel in the scaled // image which covers the range [x,x+1) corresponds to the range // [x*shrinkFactor+srcXTrans, (x+1)*shrinkFactor+srcXTrans), where // srcXTrans is the following NEGATIVE number double srcXTrans = shrinkFactor * (g->x/shrinkFactor - ceil(g->x/shrinkFactor)); // How big will the shrunken bitmap then become? If shrunk_width // denotes that width of the scaled image, and // characterBitmaps[ch]->w the width of the orininal image, we // need to make sure that the following inequality holds: // // shrunk_width*shrinkFactor+srcXTrans >= characterBitmaps[ch]->w // // in other words, int shrunk_width = (int)ceil( (characterBitmaps[ch]->w - srcXTrans)/shrinkFactor ); // Now do the same for the y-coordinate g->y2 = (int)ceil(g->y/shrinkFactor); double srcYTrans = shrinkFactor * (g->y/shrinkFactor - ceil(g->y/shrinkFactor )); int shrunk_height = (int)ceil( (characterBitmaps[ch]->h - srcYTrans)/shrinkFactor ); // Turn the image into 8 bit TQByteArray translated(characterBitmaps[ch]->w * characterBitmaps[ch]->h); TQ_UINT8 *data = (TQ_UINT8 *)translated.data(); for(int x=0; x<characterBitmaps[ch]->w; x++) for(int y=0; y<characterBitmaps[ch]->h; y++) { TQ_UINT8 bit = *(characterBitmaps[ch]->bits + characterBitmaps[ch]->bytes_wide*y + (x >> 3)); bit = bit >> (x & 7); bit = bit & 1; data[characterBitmaps[ch]->w*y + x] = bit; } // Now shrink the image. We shrink the X-direction first TQByteArray xshrunk(shrunk_width*characterBitmaps[ch]->h); TQ_UINT8 *xdata = (TQ_UINT8 *)xshrunk.data(); // Do the shrinking. The pixel (x,y) that we want to calculate // corresponds to the line segment from // // [shrinkFactor*x+srcXTrans, shrinkFactor*(x+1)+srcXTrans) // // The trouble is, these numbers are in general no integers. for(int y=0; y<characterBitmaps[ch]->h; y++) for(int x=0; x<shrunk_width; x++) { TQ_UINT32 value = 0; double destStartX = shrinkFactor*x+srcXTrans; double destEndX = shrinkFactor*(x+1)+srcXTrans; for(int srcX=(int)ceil(destStartX); srcX<floor(destEndX); srcX++) if ((srcX >= 0) && (srcX < characterBitmaps[ch]->w)) value += data[characterBitmaps[ch]->w*y + srcX] * 255; if (destStartX >= 0.0) value += (TQ_UINT32) (255.0*(ceil(destStartX)-destStartX) * data[characterBitmaps[ch]->w*y + (int)floor(destStartX)]); if (floor(destEndX) < characterBitmaps[ch]->w) value += (TQ_UINT32) (255.0*(destEndX-floor(destEndX)) * data[characterBitmaps[ch]->w*y + (int)floor(destEndX)]); xdata[shrunk_width*y + x] = (int)(value/shrinkFactor + 0.5); } // Now shrink the Y-direction TQByteArray xyshrunk(shrunk_width*shrunk_height); TQ_UINT8 *xydata = (TQ_UINT8 *)xyshrunk.data(); for(int x=0; x<shrunk_width; x++) for(int y=0; y<shrunk_height; y++) { TQ_UINT32 value = 0; double destStartY = shrinkFactor*y+srcYTrans; double destEndY = shrinkFactor*(y+1)+srcYTrans; for(int srcY=(int)ceil(destStartY); srcY<floor(destEndY); srcY++) if ((srcY >= 0) && (srcY < characterBitmaps[ch]->h)) value += xdata[shrunk_width*srcY + x]; if (destStartY >= 0.0) value += (TQ_UINT32) ((ceil(destStartY)-destStartY) * xdata[shrunk_width*(int)floor(destStartY) + x]); if (floor(destEndY) < characterBitmaps[ch]->h) value += (TQ_UINT32) ((destEndY-floor(destEndY)) * xdata[shrunk_width*(int)floor(destEndY) + x]); xydata[shrunk_width*y + x] = (int)(value/shrinkFactor); } TQImage im32(shrunk_width, shrunk_height, 32); im32.setAlphaBuffer(true); // Do TQPixmaps fully support the alpha channel? If yes, we use // that. Otherwise, use other routines as a fallback if (parent->font_pool->TQPixmapSupportsAlpha) { // If the alpha channel is properly supported, we set the // character glyph to a colored rectangle, and define the // character outline only using the alpha channel. That ensures // good quality rendering for overlapping characters. im32.fill(tqRgb(color.red(), color.green(), color.blue())); for(TQ_UINT16 y=0; y<shrunk_height; y++) { TQ_UINT8 *destScanLine = (TQ_UINT8 *)im32.scanLine(y); for(TQ_UINT16 col=0; col<shrunk_width; col++) destScanLine[4*col+3] = xydata[shrunk_width*y + col]; } } else { // If the alpha channel is not supported... QT seems to turn the // alpha channel into a crude bitmap which is used to mask the // resulting TQPixmap. In this case, we define the character // outline using the image data, and use the alpha channel only // to store "maximally opaque" or "completely transparent" // values. When characters are rendered, overlapping characters // are no longer correctly drawn, but quality is still // sufficient for most purposes. One notable exception is output // from the gftodvi program, which will be partially unreadable. TQ_UINT16 rInv = 0xFF - color.red(); TQ_UINT16 gInv = 0xFF - color.green(); TQ_UINT16 bInv = 0xFF - color.blue(); TQ_UINT8 *srcScanLine = xydata; for(TQ_UINT16 y=0; y<shrunk_height; y++) { unsigned int *destScanLine = (unsigned int *)im32.scanLine(y); for(TQ_UINT16 col=0; col<shrunk_width; col++) { TQ_UINT16 data = *srcScanLine; // The value stored in "data" now has the following meaning: // data = 0 -> white; data = 0xff -> use "color" *destScanLine = tqRgba(0xFF - (rInv*data + 0x7F) / 0xFF, 0xFF - (gInv*data + 0x7F) / 0xFF, 0xFF - (bInv*data + 0x7F) / 0xFF, (data > 0x03) ? 0xff : 0x00); destScanLine++; srcScanLine++; } } } g->shrunkenCharacter.convertFromImage(im32,0); g->shrunkenCharacter.setOptimization(TQPixmap::BestOptim); } return g; } #define ADD(a, b) ((TQ_UINT32 *) (((char *) a) + b)) #define SUB(a, b) ((TQ_UINT32 *) (((char *) a) - b)) // This table is used for changing the bit order in a byte. The // expression bitflp[byte] takes a byte in big endian and gives the // little endian equivalent of that. static const uchar bitflip[256] = { 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 }; static TQ_UINT32 bit_masks[33] = { 0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff, 0x7fffff, 0xffffff, 0x1ffffff, 0x3ffffff, 0x7ffffff, 0xfffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff }; #define PK_ID 89 #define PK_CMD_START 240 #define PK_X1 240 #define PK_X2 241 #define PK_X3 242 #define PK_X4 243 #define PK_Y 244 #define PK_POST 245 #define PK_NOOP 246 #define PK_PRE 247 int TeXFont_PK::PK_get_nyb(FILE *fp) { #ifdef DEBUG_PK kdDebug(4300) << "PK_get_nyb" << endl; #endif unsigned temp; if (PK_bitpos < 0) { PK_input_byte = one(fp); PK_bitpos = 4; } temp = PK_input_byte >> PK_bitpos; PK_bitpos -= 4; return (temp & 0xf); } int TeXFont_PK::PK_packed_num(FILE *fp) { #ifdef DEBUG_PK kdDebug(4300) << "PK_packed_num" << endl; #endif int i,j; if ((i = PK_get_nyb(fp)) == 0) { do { j = PK_get_nyb(fp); ++i; } while (j == 0); while (i > 0) { j = (j << 4) | PK_get_nyb(fp); --i; } return (j - 15 + ((13 - PK_dyn_f) << 4) + PK_dyn_f); } else { if (i <= PK_dyn_f) return i; if (i < 14) return (((i - PK_dyn_f - 1) << 4) + PK_get_nyb(fp) + PK_dyn_f + 1); if (i == 14) PK_repeat_count = PK_packed_num(fp); else PK_repeat_count = 1; return PK_packed_num(fp); } } void TeXFont_PK::PK_skip_specials() { #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::PK_skip_specials() called" << endl; #endif int i,j; register FILE *fp = file; #ifdef DEBUG_PK if (fp == 0) kdDebug(4300) << "TeXFont_PK::PK_skip_specials(): file == 0" << endl; #endif do { PK_flag_byte = one(fp); if (PK_flag_byte >= PK_CMD_START) { switch (PK_flag_byte) { case PK_X1 : case PK_X2 : case PK_X3 : case PK_X4 : i = 0; for (j = PK_CMD_START; j <= PK_flag_byte; ++j) i = (i << 8) | one(fp); while (i--) (void) one(fp); break; case PK_Y : (void) four(fp); case PK_POST : case PK_NOOP : break; default : oops(i18n("Unexpected %1 in PK file %2").arg(PK_flag_byte).arg(parent->filename) ); break; } } } while (PK_flag_byte != PK_POST && PK_flag_byte >= PK_CMD_START); #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::PK_skip_specials() ended" << endl; #endif } void TeXFont_PK::read_PK_char(unsigned int ch) { #ifdef DEBUG_PK kdDebug(4300) << "read_PK_char" << endl; #endif int i, j; int n; int row_bit_pos; bool paint_switch; TQ_UINT32 *cp; register struct glyph *g; register FILE *fp = file; long fpwidth; TQ_UINT32 word = 0; int word_weight, bytes_wide; int rows_left, h_bit, count; g = glyphtable + ch; PK_flag_byte = g->x2; PK_dyn_f = PK_flag_byte >> 4; paint_switch = ((PK_flag_byte & 8) != 0); PK_flag_byte &= 0x7; if (PK_flag_byte == 7) n = 4; else if (PK_flag_byte > 3) n = 2; else n = 1; #ifdef DEBUG_PK kdDebug(4300) << "loading pk char " << ch << ", char type " << n << endl; #endif if (characterBitmaps[ch] == 0) characterBitmaps[ch] = new bitmap(); /* * now read rest of character preamble */ if (n != 4) fpwidth = num(fp, 3); else { fpwidth = sfour(fp); (void) four(fp); /* horizontal escapement */ } (void) num(fp, n); /* vertical escapement */ { unsigned long w, h; w = num(fp, n); h = num(fp, n); if (w > 0x7fff || h > 0x7fff) oops(i18n("The character %1 is too large in file %2").arg(ch).arg(parent->filename)); characterBitmaps[ch]->w = w; characterBitmaps[ch]->h = h; } g->x = snum(fp, n); g->y = snum(fp, n); g->dvi_advance_in_units_of_design_size_by_2e20 = fpwidth; { /* width must be multiple of 16 bits for raster_op */ characterBitmaps[ch]->bytes_wide = ROUNDUP((int) characterBitmaps[ch]->w, 32) * 4; register unsigned int size = characterBitmaps[ch]->bytes_wide * characterBitmaps[ch]->h; characterBitmaps[ch]->bits = new char[size != 0 ? size : 1]; } cp = (TQ_UINT32 *) characterBitmaps[ch]->bits; /* * read character data into *cp */ bytes_wide = ROUNDUP((int) characterBitmaps[ch]->w, 32) * 4; PK_bitpos = -1; // The routines which read the character depend on the bit // ordering. In principle, the bit order should be detected at // compile time and the proper routing chosen. For the moment, as // autoconf is somewhat complicated for the author, we prefer a // simpler -even if somewhat slower approach and detect the ordering // at runtime. That should of course be changed in the future. int wordSize; bool bigEndian; tqSysInfo (&wordSize, &bigEndian); if (bigEndian) { // Routine for big Endian machines. Applies e.g. to Motorola and // (Ultra-)Sparc processors. #ifdef DEBUG_PK kdDebug(4300) << "big Endian byte ordering" << endl; #endif if (PK_dyn_f == 14) { /* get raster by bits */ memset(characterBitmaps[ch]->bits, 0, (int) characterBitmaps[ch]->h * bytes_wide); for (i = 0; i < (int) characterBitmaps[ch]->h; i++) { /* get all rows */ cp = ADD(characterBitmaps[ch]->bits, i * bytes_wide); row_bit_pos = 32; for (j = 0; j < (int) characterBitmaps[ch]->w; j++) { /* get one row */ if (--PK_bitpos < 0) { word = one(fp); PK_bitpos = 7; } if (--row_bit_pos < 0) { cp++; row_bit_pos = 32 - 1; } if (word & (1 << PK_bitpos)) *cp |= 1 << row_bit_pos; } } } else { /* get packed raster */ rows_left = characterBitmaps[ch]->h; h_bit = characterBitmaps[ch]->w; PK_repeat_count = 0; word_weight = 32; word = 0; while (rows_left > 0) { count = PK_packed_num(fp); while (count > 0) { if (count < word_weight && count < h_bit) { h_bit -= count; word_weight -= count; if (paint_switch) word |= bit_masks[count] << word_weight; count = 0; } else if (count >= h_bit && h_bit <= word_weight) { if (paint_switch) word |= bit_masks[h_bit] << (word_weight - h_bit); *cp++ = word; /* "output" row(s) */ for (i = PK_repeat_count * bytes_wide / 4; i > 0; --i) { *cp = *SUB(cp, bytes_wide); ++cp; } rows_left -= PK_repeat_count + 1; PK_repeat_count = 0; word = 0; word_weight = 32; count -= h_bit; h_bit = characterBitmaps[ch]->w; } else { if (paint_switch) word |= bit_masks[word_weight]; *cp++ = word; word = 0; count -= word_weight; h_bit -= word_weight; word_weight = 32; } } paint_switch = 1 - paint_switch; } if (cp != ((TQ_UINT32 *) (characterBitmaps[ch]->bits + bytes_wide * characterBitmaps[ch]->h))) oops(i18n("Wrong number of bits stored: char. %1, font %2").arg(ch).arg(parent->filename)); if (rows_left != 0 || h_bit != characterBitmaps[ch]->w) oops(i18n("Bad pk file (%1), too many bits").arg(parent->filename)); } // The data in the bitmap is now in the processor's bit order, // that is, big endian. Since XWindows needs little endian, we // need to change the bit order now. register unsigned char* bitmapData = (unsigned char*) characterBitmaps[ch]->bits; register unsigned char* endOfData = bitmapData + characterBitmaps[ch]->bytes_wide*characterBitmaps[ch]->h; while(bitmapData < endOfData) { *bitmapData = bitflip[*bitmapData]; bitmapData++; } } else { // Routines for small Endian start here. This applies e.g. to // Intel and Alpha processors. #ifdef DEBUG_PK kdDebug(4300) << "small Endian byte ordering" << endl; #endif if (PK_dyn_f == 14) { /* get raster by bits */ memset(characterBitmaps[ch]->bits, 0, (int) characterBitmaps[ch]->h * bytes_wide); for (i = 0; i < (int) characterBitmaps[ch]->h; i++) { /* get all rows */ cp = ADD(characterBitmaps[ch]->bits, i * bytes_wide); row_bit_pos = -1; for (j = 0; j < (int) characterBitmaps[ch]->w; j++) { /* get one row */ if (--PK_bitpos < 0) { word = one(fp); PK_bitpos = 7; } if (++row_bit_pos >= 32) { cp++; row_bit_pos = 0; } if (word & (1 << PK_bitpos)) *cp |= 1 << row_bit_pos; } } } else { /* get packed raster */ rows_left = characterBitmaps[ch]->h; h_bit = characterBitmaps[ch]->w; PK_repeat_count = 0; word_weight = 32; word = 0; while (rows_left > 0) { count = PK_packed_num(fp); while (count > 0) { if (count < word_weight && count < h_bit) { if (paint_switch) word |= bit_masks[count] << (32 - word_weight); h_bit -= count; word_weight -= count; count = 0; } else if (count >= h_bit && h_bit <= word_weight) { if (paint_switch) word |= bit_masks[h_bit] << (32 - word_weight); *cp++ = word; /* "output" row(s) */ for (i = PK_repeat_count * bytes_wide / 4; i > 0; --i) { *cp = *SUB(cp, bytes_wide); ++cp; } rows_left -= PK_repeat_count + 1; PK_repeat_count = 0; word = 0; word_weight = 32; count -= h_bit; h_bit = characterBitmaps[ch]->w; } else { if (paint_switch) word |= bit_masks[word_weight] << (32 - word_weight); *cp++ = word; word = 0; count -= word_weight; h_bit -= word_weight; word_weight = 32; } } paint_switch = 1 - paint_switch; } if (cp != ((TQ_UINT32 *) (characterBitmaps[ch]->bits + bytes_wide * characterBitmaps[ch]->h))) oops(i18n("Wrong number of bits stored: char. %1, font %2").arg(ch).arg(parent->filename)); if (rows_left != 0 || h_bit != characterBitmaps[ch]->w) oops(i18n("Bad pk file (%1), too many bits").arg(parent->filename)); } } // endif: big or small Endian? } void TeXFont_PK::read_PK_index() { #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::read_PK_index() called" << endl; #endif if (file == 0) { kdError(4300) << "TeXFont_PK::read_PK_index(): file == 0" << endl; return; } int magic = two(file); if (magic != PK_MAGIC) { kdError(4300) << "TeXFont_PK::read_PK_index(): file is not a PK file" << endl; return; } fseek(file, (long) one(file), SEEK_CUR); /* skip comment */ (void) four(file); /* skip design size */ checksum = four(file); int hppp = sfour(file); int vppp = sfour(file); if (hppp != vppp) kdWarning(4300) << i18n("Font has non-square aspect ratio ") << vppp << ":" << hppp << endl; // Read glyph directory (really a whole pass over the file). for (;;) { int bytes_left, flag_low_bits; unsigned int ch; PK_skip_specials(); if (PK_flag_byte == PK_POST) break; flag_low_bits = PK_flag_byte & 0x7; if (flag_low_bits == 7) { bytes_left = four(file); ch = four(file); } else if (flag_low_bits > 3) { bytes_left = ((flag_low_bits - 4) << 16) + two(file); ch = one(file); } else { bytes_left = (flag_low_bits << 8) + one(file); ch = one(file); } glyphtable[ch].addr = ftell(file); glyphtable[ch].x2 = PK_flag_byte; fseek(file, (long) bytes_left, SEEK_CUR); #ifdef DEBUG_PK kdDebug(4300) << "Scanning pk char " << ch << "at " << glyphtable[ch].addr << endl; #endif } #ifdef DEBUG_PK kdDebug(4300) << "TeXFont_PK::read_PK_index() called" << endl; #endif }