1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 2003 Apple Computer, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "collector.h"
#include "value.h"
#include "internal.h"
#include <limits.h>
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif
namespace KJS {
// tunable parameters
const int MINIMUM_CELL_SIZE = 56;
const int BLOCK_SIZE = (8 * 4096);
const int SPARE_EMPTY_BLOCKS = 2;
const int MIN_ARRAY_SIZE = 14;
const int GROWTH_FACTOR = 2;
const int LOW_WATER_FACTOR = 4;
const int ALLOCATIONS_PER_COLLECTION = 1000;
// derived constants
const int CELL_ARRAY_LENGTH = (MINIMUM_CELL_SIZE / sizeof(double)) + (MINIMUM_CELL_SIZE % sizeof(double) != 0 ? sizeof(double) : 0);
const int CELL_SIZE = CELL_ARRAY_LENGTH * sizeof(double);
const int CELLS_PER_BLOCK = ((BLOCK_SIZE * 8 - sizeof(int) * 8 - sizeof(void *) * 8) / (CELL_SIZE * 8));
struct CollectorCell {
double memory[CELL_ARRAY_LENGTH];
};
struct CollectorBlock {
CollectorCell cells[CELLS_PER_BLOCK];
int usedCells;
CollectorCell *freeList;
};
struct CollectorHeap {
CollectorBlock **blocks;
int numBlocks;
int usedBlocks;
int firstBlockWithPossibleSpace;
CollectorCell **oversizeCells;
int numOversizeCells;
int usedOversizeCells;
int numLiveObjects;
int numAllocationsSinceLastCollect;
};
static CollectorHeap heap = {NULL, 0, 0, 0, NULL, 0, 0, 0, 0};
bool Collector::memoryFull = false;
void* Collector::allocate(size_t s)
{
if (s == 0)
return 0L;
// collect if needed
if (++heap.numAllocationsSinceLastCollect >= ALLOCATIONS_PER_COLLECTION) {
collect();
}
if (s > (unsigned)CELL_SIZE) {
// oversize allocator
if (heap.usedOversizeCells == heap.numOversizeCells) {
heap.numOversizeCells = MAX(MIN_ARRAY_SIZE, heap.numOversizeCells * GROWTH_FACTOR);
heap.oversizeCells = (CollectorCell **)realloc(heap.oversizeCells, heap.numOversizeCells * sizeof(CollectorCell *));
}
void *newCell = malloc(s);
heap.oversizeCells[heap.usedOversizeCells] = (CollectorCell *)newCell;
heap.usedOversizeCells++;
heap.numLiveObjects++;
((ValueImp *)(newCell))->_flags = 0;
return newCell;
}
// slab allocator
CollectorBlock *targetBlock = NULL;
int i;
for (i = heap.firstBlockWithPossibleSpace; i < heap.usedBlocks; i++) {
if (heap.blocks[i]->usedCells < CELLS_PER_BLOCK) {
targetBlock = heap.blocks[i];
break;
}
}
heap.firstBlockWithPossibleSpace = i;
if (targetBlock == NULL) {
// didn't find one, need to allocate a new block
if (heap.usedBlocks == heap.numBlocks) {
static const size_t maxNumBlocks = ULONG_MAX / sizeof(CollectorBlock*) / GROWTH_FACTOR;
if (heap.numBlocks > maxNumBlocks)
return 0L;
heap.numBlocks = MAX(MIN_ARRAY_SIZE, heap.numBlocks * GROWTH_FACTOR);
heap.blocks = (CollectorBlock **)realloc(heap.blocks, heap.numBlocks * sizeof(CollectorBlock *));
}
targetBlock = (CollectorBlock *)calloc(1, sizeof(CollectorBlock));
targetBlock->freeList = targetBlock->cells;
heap.blocks[heap.usedBlocks] = targetBlock;
heap.usedBlocks++;
}
// find a free spot in the block and detach it from the free list
CollectorCell *newCell = targetBlock->freeList;
ValueImp *imp = (ValueImp*)newCell;
if (imp->_vd != NULL) {
targetBlock->freeList = (CollectorCell*)(imp->_vd);
} else if (targetBlock->usedCells == (CELLS_PER_BLOCK - 1)) {
// last cell in this block
targetBlock->freeList = NULL;
} else {
// all next pointers are initially 0, meaning "next cell"
targetBlock->freeList = newCell + 1;
}
targetBlock->usedCells++;
heap.numLiveObjects++;
((ValueImp *)(newCell))->_flags = 0;
return (void *)(newCell);
}
bool Collector::collect()
{
bool deleted = false;
// MARK: first mark all referenced objects recursively
// starting out from the set of root objects
if (InterpreterImp::s_hook) {
InterpreterImp *scr = InterpreterImp::s_hook;
do {
//fprintf( stderr, "Collector marking interpreter %p\n",(void*)scr);
scr->mark();
scr = scr->next;
} while (scr != InterpreterImp::s_hook);
}
// mark any other objects that we wouldn't delete anyway
for (int block = 0; block < heap.usedBlocks; block++) {
int minimumCellsToProcess = heap.blocks[block]->usedCells;
CollectorBlock *curBlock = heap.blocks[block];
for (int cell = 0; cell < CELLS_PER_BLOCK; cell++) {
if (minimumCellsToProcess < cell) {
goto skip_block_mark;
}
ValueImp *imp = (ValueImp *)(curBlock->cells + cell);
if (!(imp->_flags & ValueImp::VI_DESTRUCTED)) {
if ((imp->_flags & (ValueImp::VI_CREATED|ValueImp::VI_MARKED)) == ValueImp::VI_CREATED &&
((imp->_flags & ValueImp::VI_GCALLOWED) == 0 || imp->refcount != 0)) {
imp->mark();
}
} else {
minimumCellsToProcess++;
}
}
skip_block_mark: ;
}
for (int cell = 0; cell < heap.usedOversizeCells; cell++) {
ValueImp *imp = (ValueImp *)heap.oversizeCells[cell];
if ((imp->_flags & (ValueImp::VI_CREATED|ValueImp::VI_MARKED)) == ValueImp::VI_CREATED &&
((imp->_flags & ValueImp::VI_GCALLOWED) == 0 || imp->refcount != 0)) {
imp->mark();
}
}
// SWEEP: delete everything with a zero refcount (garbage) and unmark everything else
int emptyBlocks = 0;
for (int block = 0; block < heap.usedBlocks; block++) {
CollectorBlock *curBlock = heap.blocks[block];
int minimumCellsToProcess = curBlock->usedCells;
for (int cell = 0; cell < CELLS_PER_BLOCK; cell++) {
if (minimumCellsToProcess < cell) {
goto skip_block_sweep;
}
ValueImp *imp = (ValueImp *)(curBlock->cells + cell);
if (!(imp->_flags & ValueImp::VI_DESTRUCTED)) {
if (!imp->refcount && imp->_flags == (ValueImp::VI_GCALLOWED | ValueImp::VI_CREATED)) {
//fprintf( stderr, "Collector::deleting ValueImp %p (%s)\n", (void*)imp, typeid(*imp).name());
// emulate destructing part of 'operator delete()'
imp->~ValueImp();
curBlock->usedCells--;
heap.numLiveObjects--;
deleted = true;
// put it on the free list
imp->_vd = (ValueImpPrivate*)curBlock->freeList;
curBlock->freeList = (CollectorCell *)imp;
} else {
imp->_flags &= ~ValueImp::VI_MARKED;
}
} else {
minimumCellsToProcess++;
}
}
skip_block_sweep:
if (heap.blocks[block]->usedCells == 0) {
emptyBlocks++;
if (emptyBlocks > SPARE_EMPTY_BLOCKS) {
#ifndef DEBUG_COLLECTOR
free(heap.blocks[block]);
#endif
// swap with the last block so we compact as we go
heap.blocks[block] = heap.blocks[heap.usedBlocks - 1];
heap.usedBlocks--;
block--; // Don't move forward a step in this case
if (heap.numBlocks > MIN_ARRAY_SIZE && heap.usedBlocks < heap.numBlocks / LOW_WATER_FACTOR) {
heap.numBlocks = heap.numBlocks / GROWTH_FACTOR;
heap.blocks = (CollectorBlock **)realloc(heap.blocks, heap.numBlocks * sizeof(CollectorBlock *));
}
}
}
}
if (deleted) {
heap.firstBlockWithPossibleSpace = 0;
}
int cell = 0;
while (cell < heap.usedOversizeCells) {
ValueImp *imp = (ValueImp *)heap.oversizeCells[cell];
if (!imp->refcount &&
imp->_flags == (ValueImp::VI_GCALLOWED | ValueImp::VI_CREATED)) {
imp->~ValueImp();
#ifndef DEBUG_COLLECTOR
free((void *)imp);
#endif
// swap with the last oversize cell so we compact as we go
heap.oversizeCells[cell] = heap.oversizeCells[heap.usedOversizeCells - 1];
heap.usedOversizeCells--;
deleted = true;
heap.numLiveObjects--;
if (heap.numOversizeCells > MIN_ARRAY_SIZE && heap.usedOversizeCells < heap.numOversizeCells / LOW_WATER_FACTOR) {
heap.numOversizeCells = heap.numOversizeCells / GROWTH_FACTOR;
heap.oversizeCells = (CollectorCell **)realloc(heap.oversizeCells, heap.numOversizeCells * sizeof(CollectorCell *));
}
} else {
imp->_flags &= ~ValueImp::VI_MARKED;
cell++;
}
}
heap.numAllocationsSinceLastCollect = 0;
memoryFull = (heap.numLiveObjects >= KJS_MEM_LIMIT);
return deleted;
}
int Collector::size()
{
return heap.numLiveObjects;
}
#ifdef KJS_DEBUG_MEM
void Collector::finalCheck()
{
}
#endif
} // namespace KJS
|