1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
Copyright (C) 2002 Stefan Westerfeld
stefan@space.twc.de
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "artsmodulessynth.h"
#include "debug.h"
#include "stdsynthmodule.h"
#include <gsl/gsloscillator.h>
#include <gsl/gslsignal.h>
#include <string.h>
#include <math.h>
using namespace Arts;
namespace Arts {
static double arts_gsl_window_osc(double x)
{
const double FILTER_H = 22000.0;
const double FILTER_L = 19000.0;
double f = 22050.0 * fabs(x), fact;
if(f > FILTER_H)
fact = 0.0;
else if (f < FILTER_L)
fact = 1.0;
else
fact = cos(M_PI/2.0*((FILTER_L-f)/(FILTER_H-FILTER_L)));
return fact;
}
class Synth_OSC_impl :public Synth_OSC_skel, public StdSynthModule
{
private:
GslOscConfig cfg;
GslOscData osc;
SynthOscWaveForm _waveForm;
bool infrequency_connected;
bool modulation_connected;
bool insync_connected;
bool outvalue_connected;
bool outsync_connected;
void updateConnected()
{
infrequency_connected = inputConnectionCount("infrequency");
modulation_connected = inputConnectionCount("modulation");
insync_connected = inputConnectionCount("insync");
outvalue_connected = outputConnectionCount("outvalue");
outsync_connected = outputConnectionCount("outsync");
}
public:
Synth_OSC_impl() {
_waveForm = soWaveTriangle;
memset(&cfg, 0, sizeof(GslOscConfig));
memset(&osc, 0, sizeof(GslOscData));
cfg.table = 0;
cfg.exponential_fm = 0;
cfg.fm_strength = 0;
cfg.self_fm_strength = 0;
cfg.cfreq = 440;
cfg.fine_tune = 0;
cfg.pulse_width = 0.5;
cfg.pulse_mod_strength = 0;
waveForm(soWaveSine);
};
void apply()
{
gsl_osc_config(&osc, &cfg);
}
void streamInit()
{
updateConnected();
}
void calculateBlock(unsigned long samples)
{
if(connectionCountChanged())
updateConnected();
arts_debug("gop tab%p samples%ld f%p m%p is%p ov%p os%p\n",
cfg.table, samples, infrequency_connected?infrequency:0,
modulation_connected?modulation:0,
insync_connected?insync:0,
outvalue_connected?outvalue:0,
outsync_connected?outsync:0);
gsl_osc_process(&osc, samples, infrequency_connected?infrequency:0,
modulation_connected?modulation:0,
insync_connected?insync:0,
outvalue_connected?outvalue:0,
outsync_connected?outsync:0);
}
SynthOscWaveForm waveForm()
{
return _waveForm;
}
void waveForm(SynthOscWaveForm wf)
{
if(wf != _waveForm)
{
if(cfg.table)
gsl_osc_table_free(cfg.table);
float freqs[100];
int n_freqs = 0;
freqs[n_freqs] = 20;
while (freqs[n_freqs] < 22000)
{
freqs[n_freqs + 1] = freqs[n_freqs] * M_SQRT2;
n_freqs++;
}
arts_debug("Synth_OSC::waveForm: n_freqs = %d", n_freqs);
cfg.table = gsl_osc_table_create(samplingRateFloat, GslOscWaveForm(wf + 1), arts_gsl_window_osc, n_freqs, freqs);
_waveForm = wf;
apply();
waveForm_changed(wf);
}
}
bool fmExponential()
{
return cfg.exponential_fm;
}
void fmExponential(bool newFm)
{
bool oldFm = fmExponential();
if(newFm != oldFm)
{
cfg.exponential_fm = newFm;
apply();
fmExponential_changed(newFm);
}
}
float fmStrength()
{
return cfg.fm_strength;
}
void fmStrength(float f)
{
if(cfg.fm_strength != f)
{
cfg.fm_strength = f;
apply();
fmStrength_changed(f);
}
}
float fmSelfStrength()
{
return cfg.self_fm_strength;
}
void fmSelfStrength(float f)
{
if(cfg.self_fm_strength != f)
{
cfg.self_fm_strength = f;
apply();
fmSelfStrength_changed(f);
}
}
float phase()
{
return cfg.phase;
}
void phase(float p)
{
if(cfg.phase != p)
{
cfg.phase = p;
apply();
phase_changed(p);
}
}
float frequency()
{
return cfg.cfreq;
}
void frequency(float f)
{
if(cfg.cfreq != f)
{
cfg.cfreq = f;
apply();
frequency_changed(f);
}
}
long fineTune()
{
return cfg.fine_tune;
}
void fineTune(long f)
{
if(cfg.fine_tune != f)
{
cfg.fine_tune = f;
apply();
fineTune_changed(f);
}
}
float pulseWidth()
{
return cfg.pulse_width;
}
void pulseWidth(float pw)
{
if(cfg.pulse_width != pw)
{
cfg.pulse_width = pw;
apply();
pulseWidth_changed(pw);
}
}
float pulseModStrength()
{
return cfg.pulse_mod_strength;
}
void pulseModStrength(float pms)
{
if(cfg.pulse_mod_strength != pms)
{
cfg.pulse_mod_strength = pms;
apply();
pulseModStrength_changed(pms);
}
}
};
REGISTER_IMPLEMENTATION(Synth_OSC_impl);
}
|