summaryrefslogtreecommitdiffstats
path: root/kopete/plugins/statistics/sqlite/encode.c
diff options
context:
space:
mode:
Diffstat (limited to 'kopete/plugins/statistics/sqlite/encode.c')
-rw-r--r--kopete/plugins/statistics/sqlite/encode.c257
1 files changed, 257 insertions, 0 deletions
diff --git a/kopete/plugins/statistics/sqlite/encode.c b/kopete/plugins/statistics/sqlite/encode.c
new file mode 100644
index 00000000..b10c96b3
--- /dev/null
+++ b/kopete/plugins/statistics/sqlite/encode.c
@@ -0,0 +1,257 @@
+/*
+** 2002 April 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains helper routines used to translate binary data into
+** a null-terminated string (suitable for use in SQLite) and back again.
+** These are convenience routines for use by people who want to store binary
+** data in an SQLite database. The code in this file is not used by any other
+** part of the SQLite library.
+**
+** $Id$
+*/
+#include <string.h>
+#include <assert.h>
+
+/*
+** How This Encoder Works
+**
+** The output is allowed to contain any character except 0x27 (') and
+** 0x00. This is accomplished by using an escape character to encode
+** 0x27 and 0x00 as a two-byte sequence. The escape character is always
+** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
+** 0x27 character is encoded as the two byte sequence 0x01 0x28. Finally,
+** the escape character itself is encoded as the two-character sequence
+** 0x01 0x02.
+**
+** To summarize, the encoder works by using an escape sequences as follows:
+**
+** 0x00 -> 0x01 0x01
+** 0x01 -> 0x01 0x02
+** 0x27 -> 0x01 0x28
+**
+** If that were all the encoder did, it would work, but in certain cases
+** it could double the size of the encoded string. For example, to
+** encode a string of 100 0x27 characters would require 100 instances of
+** the 0x01 0x03 escape sequence resulting in a 200-character output.
+** We would prefer to keep the size of the encoded string smaller than
+** this.
+**
+** To minimize the encoding size, we first add a fixed offset value to each
+** byte in the sequence. The addition is modulo 256. (That is to say, if
+** the sum of the original character value and the offset exceeds 256, then
+** the higher order bits are truncated.) The offset is chosen to minimize
+** the number of characters in the string that need to be escaped. For
+** example, in the case above where the string was composed of 100 0x27
+** characters, the offset might be 0x01. Each of the 0x27 characters would
+** then be converted into an 0x28 character which would not need to be
+** escaped at all and so the 100 character input string would be converted
+** into just 100 characters of output. Actually 101 characters of output -
+** we have to record the offset used as the first byte in the sequence so
+** that the string can be decoded. Since the offset value is stored as
+** part of the output string and the output string is not allowed to contain
+** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
+**
+** Here, then, are the encoding steps:
+**
+** (1) Choose an offset value and make it the first character of
+** output.
+**
+** (2) Copy each input character into the output buffer, one by
+** one, adding the offset value as you copy.
+**
+** (3) If the value of an input character plus offset is 0x00, replace
+** that one character by the two-character sequence 0x01 0x01.
+** If the sum is 0x01, replace it with 0x01 0x02. If the sum
+** is 0x27, replace it with 0x01 0x03.
+**
+** (4) Put a 0x00 terminator at the end of the output.
+**
+** Decoding is obvious:
+**
+** (5) Copy encoded characters except the first into the decode
+** buffer. Set the first encoded character aside for use as
+** the offset in step 7 below.
+**
+** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
+** Convert 0x01 0x02 into 0x01. Convert 0x01 0x28 into 0x27.
+**
+** (7) Subtract the offset value that was the first character of
+** the encoded buffer from all characters in the output buffer.
+**
+** The only tricky part is step (1) - how to compute an offset value to
+** minimize the size of the output buffer. This is accomplished by testing
+** all offset values and picking the one that results in the fewest number
+** of escapes. To do that, we first scan the entire input and count the
+** number of occurances of each character value in the input. Suppose
+** the number of 0x00 characters is N(0), the number of occurances of 0x01
+** is N(1), and so forth up to the number of occurances of 0xff is N(255).
+** An offset of 0 is not allowed so we don't have to test it. The number
+** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
+** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
+** In this way we find the offset that gives the minimum number of escapes,
+** and thus minimizes the length of the output string.
+*/
+
+/*
+** Encode a binary buffer "in" of size n bytes so that it contains
+** no instances of characters '\'' or '\000'. The output is
+** null-terminated and can be used as a string value in an INSERT
+** or UPDATE statement. Use sqlite_decode_binary() to convert the
+** string back into its original binary.
+**
+** The result is written into a preallocated output buffer "out".
+** "out" must be able to hold at least 2 +(257*n)/254 bytes.
+** In other words, the output will be expanded by as much as 3
+** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
+** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
+**
+** The return value is the number of characters in the encoded
+** string, excluding the "\000" terminator.
+**
+** If out==NULL then no output is generated but the routine still returns
+** the number of characters that would have been generated if out had
+** not been NULL.
+*/
+int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
+ int i, j, e, m;
+ unsigned char x;
+ int cnt[256];
+ if( n<=0 ){
+ if( out ){
+ out[0] = 'x';
+ out[1] = 0;
+ }
+ return 1;
+ }
+ memset(cnt, 0, sizeof(cnt));
+ for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
+ m = n;
+ for(i=1; i<256; i++){
+ int sum;
+ if( i=='\'' ) continue;
+ sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
+ if( sum<m ){
+ m = sum;
+ e = i;
+ if( m==0 ) break;
+ }
+ }
+ if( out==0 ){
+ return n+m+1;
+ }
+ out[0] = e;
+ j = 1;
+ for(i=0; i<n; i++){
+ x = in[i] - e;
+ if( x==0 || x==1 || x=='\''){
+ out[j++] = 1;
+ x++;
+ }
+ out[j++] = x;
+ }
+ out[j] = 0;
+ assert( j==n+m+1 );
+ return j;
+}
+
+/*
+** Decode the string "in" into binary data and write it into "out".
+** This routine reverses the encoding created by sqlite_encode_binary().
+** The output will always be a few bytes less than the input. The number
+** of bytes of output is returned. If the input is not a well-formed
+** encoding, -1 is returned.
+**
+** The "in" and "out" parameters may point to the same buffer in order
+** to decode a string in place.
+*/
+int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
+ int i, e;
+ unsigned char c;
+ e = *(in++);
+ i = 0;
+ while( (c = *(in++))!=0 ){
+ if( c==1 ){
+ c = *(in++) - 1;
+ }
+ out[i++] = c + e;
+ }
+ return i;
+}
+
+#ifdef ENCODER_TEST
+#include <stdio.h>
+/*
+** The subroutines above are not tested by the usual test suite. To test
+** these routines, compile just this one file with a -DENCODER_TEST=1 option
+** and run the result.
+*/
+int main(int argc, char **argv){
+ int i, j, n, m, nOut, nByteIn, nByteOut;
+ unsigned char in[30000];
+ unsigned char out[33000];
+
+ nByteIn = nByteOut = 0;
+ for(i=0; i<sizeof(in); i++){
+ printf("Test %d: ", i+1);
+ n = rand() % (i+1);
+ if( i%100==0 ){
+ int k;
+ for(j=k=0; j<n; j++){
+ /* if( k==0 || k=='\'' ) k++; */
+ in[j] = k;
+ k = (k+1)&0xff;
+ }
+ }else{
+ for(j=0; j<n; j++) in[j] = rand() & 0xff;
+ }
+ nByteIn += n;
+ nOut = sqlite_encode_binary(in, n, out);
+ nByteOut += nOut;
+ if( nOut!=strlen(out) ){
+ printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
+ exit(1);
+ }
+ if( nOut!=sqlite_encode_binary(in, n, 0) ){
+ printf(" ERROR actual output size disagrees with predicted size\n");
+ exit(1);
+ }
+ m = (256*n + 1262)/253;
+ printf("size %d->%d (max %d)", n, strlen(out)+1, m);
+ if( strlen(out)+1>m ){
+ printf(" ERROR output too big\n");
+ exit(1);
+ }
+ for(j=0; out[j]; j++){
+ if( out[j]=='\'' ){
+ printf(" ERROR contains (')\n");
+ exit(1);
+ }
+ }
+ j = sqlite_decode_binary(out, out);
+ if( j!=n ){
+ printf(" ERROR decode size %d\n", j);
+ exit(1);
+ }
+ if( memcmp(in, out, n)!=0 ){
+ printf(" ERROR decode mismatch\n");
+ exit(1);
+ }
+ printf(" OK\n");
+ }
+ fprintf(stderr,"Finished. Total encoding: %d->%d bytes\n",
+ nByteIn, nByteOut);
+ fprintf(stderr,"Avg size increase: %.3f%%\n",
+ (nByteOut-nByteIn)*100.0/(double)nByteIn);
+}
+#endif /* ENCODER_TEST */
+
+
+