summaryrefslogtreecommitdiffstats
path: root/kopete/plugins/statistics/sqlite/utf.c
diff options
context:
space:
mode:
Diffstat (limited to 'kopete/plugins/statistics/sqlite/utf.c')
-rw-r--r--kopete/plugins/statistics/sqlite/utf.c566
1 files changed, 566 insertions, 0 deletions
diff --git a/kopete/plugins/statistics/sqlite/utf.c b/kopete/plugins/statistics/sqlite/utf.c
new file mode 100644
index 00000000..58b1a972
--- /dev/null
+++ b/kopete/plugins/statistics/sqlite/utf.c
@@ -0,0 +1,566 @@
+/*
+** 2004 April 13
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains routines used to translate between UTF-8,
+** UTF-16, UTF-16BE, and UTF-16LE.
+**
+** $Id$
+**
+** Notes on UTF-8:
+**
+** Byte-0 Byte-1 Byte-2 Byte-3 Value
+** 0xxxxxxx 00000000 00000000 0xxxxxxx
+** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
+** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
+** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+**
+**
+** Notes on UTF-16: (with wwww+1==uuuuu)
+**
+** Word-0 Word-1 Value
+** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
+** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
+**
+**
+** BOM or Byte Order Mark:
+** 0xff 0xfe little-endian utf-16 follows
+** 0xfe 0xff big-endian utf-16 follows
+**
+**
+** Handling of malformed strings:
+**
+** SQLite accepts and processes malformed strings without an error wherever
+** possible. However this is not possible when converting between UTF-8 and
+** UTF-16.
+**
+** When converting malformed UTF-8 strings to UTF-16, one instance of the
+** replacement character U+FFFD for each byte that cannot be interpeted as
+** part of a valid unicode character.
+**
+** When converting malformed UTF-16 strings to UTF-8, one instance of the
+** replacement character U+FFFD for each pair of bytes that cannot be
+** interpeted as part of a valid unicode character.
+**
+** This file contains the following public routines:
+**
+** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
+** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
+** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string.
+** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string.
+** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings.
+**
+*/
+#include <assert.h>
+#include "sqliteInt.h"
+#include "vdbeInt.h"
+
+/*
+** This table maps from the first byte of a UTF-8 character to the number
+** of trailing bytes expected. A value '255' indicates that the table key
+** is not a legal first byte for a UTF-8 character.
+*/
+static const u8 xtra_utf8_bytes[256] = {
+/* 0xxxxxxx */
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+
+/* 10wwwwww */
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+
+/* 110yyyyy */
+1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+
+/* 1110zzzz */
+2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+
+/* 11110yyy */
+3, 3, 3, 3, 3, 3, 3, 3, 255, 255, 255, 255, 255, 255, 255, 255,
+};
+
+/*
+** This table maps from the number of trailing bytes in a UTF-8 character
+** to an integer constant that is effectively calculated for each character
+** read by a naive implementation of a UTF-8 character reader. The code
+** in the READ_UTF8 macro explains things best.
+*/
+static const int xtra_utf8_bits[4] = {
+0,
+12416, /* (0xC0 << 6) + (0x80) */
+925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
+63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
+};
+
+#define READ_UTF8(zIn, c) { \
+ int xtra; \
+ c = *(zIn)++; \
+ xtra = xtra_utf8_bytes[c]; \
+ switch( xtra ){ \
+ case 255: c = (int)0xFFFD; break; \
+ case 3: c = (c<<6) + *(zIn)++; \
+ case 2: c = (c<<6) + *(zIn)++; \
+ case 1: c = (c<<6) + *(zIn)++; \
+ c -= xtra_utf8_bits[xtra]; \
+ } \
+}
+int sqlite3ReadUtf8(const unsigned char *z){
+ int c;
+ READ_UTF8(z, c);
+ return c;
+}
+
+#define SKIP_UTF8(zIn) { \
+ zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \
+}
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + ((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + ((c>>12)&0x0F); \
+ *zOut++ = 0x80 + ((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + ((c>>18) & 0x07); \
+ *zOut++ = 0x80 + ((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + ((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (c & 0x3F); \
+ } \
+}
+
+#define WRITE_UTF16LE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = (c&0x00FF); \
+ *zOut++ = ((c>>8)&0x00FF); \
+ }else{ \
+ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (c&0x00FF); \
+ *zOut++ = (0x00DC + ((c>>8)&0x03)); \
+ } \
+}
+
+#define WRITE_UTF16BE(zOut, c) { \
+ if( c<=0xFFFF ){ \
+ *zOut++ = ((c>>8)&0x00FF); \
+ *zOut++ = (c&0x00FF); \
+ }else{ \
+ *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
+ *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
+ *zOut++ = (0x00DC + ((c>>8)&0x03)); \
+ *zOut++ = (c&0x00FF); \
+ } \
+}
+
+#define READ_UTF16LE(zIn, c){ \
+ c = (*zIn++); \
+ c += ((*zIn++)<<8); \
+ if( c>=0xD800 && c<=0xE000 ){ \
+ int c2 = (*zIn++); \
+ c2 += ((*zIn++)<<8); \
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
+ } \
+}
+
+#define READ_UTF16BE(zIn, c){ \
+ c = ((*zIn++)<<8); \
+ c += (*zIn++); \
+ if( c>=0xD800 && c<=0xE000 ){ \
+ int c2 = ((*zIn++)<<8); \
+ c2 += (*zIn++); \
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
+ } \
+}
+
+#define SKIP_UTF16BE(zIn){ \
+ if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
+ zIn += 4; \
+ }else{ \
+ zIn += 2; \
+ } \
+}
+#define SKIP_UTF16LE(zIn){ \
+ zIn++; \
+ if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
+ zIn += 3; \
+ }else{ \
+ zIn += 1; \
+ } \
+}
+
+#define RSKIP_UTF16LE(zIn){ \
+ if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
+ zIn -= 4; \
+ }else{ \
+ zIn -= 2; \
+ } \
+}
+#define RSKIP_UTF16BE(zIn){ \
+ zIn--; \
+ if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
+ zIn -= 3; \
+ }else{ \
+ zIn -= 1; \
+ } \
+}
+
+/*
+** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
+** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
+*/
+/* #define TRANSLATE_TRACE 1 */
+
+/*
+** This routine transforms the internal text encoding used by pMem to
+** desiredEnc. It is an error if the string is already of the desired
+** encoding, or if *pMem does not contain a string value.
+*/
+int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
+ unsigned char zShort[NBFS]; /* Temporary short output buffer */
+ int len; /* Maximum length of output string in bytes */
+ unsigned char *zOut; /* Output buffer */
+ unsigned char *zIn; /* Input iterator */
+ unsigned char *zTerm; /* End of input */
+ unsigned char *z; /* Output iterator */
+ int c;
+
+ assert( pMem->flags&MEM_Str );
+ assert( pMem->enc!=desiredEnc );
+ assert( pMem->enc!=0 );
+ assert( pMem->n>=0 );
+
+#ifdef TRANSLATE_TRACE
+ {
+ char zBuf[100];
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
+ fprintf(stderr, "INPUT: %s\n", zBuf);
+ }
+#endif
+
+ /* If the translation is between UTF-16 little and big endian, then
+ ** all that is required is to swap the byte order. This case is handled
+ ** differently from the others.
+ */
+ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
+ u8 temp;
+ int rc;
+ rc = sqlite3VdbeMemMakeWriteable(pMem);
+ if( rc!=SQLITE_OK ){
+ assert( rc==SQLITE_NOMEM );
+ return SQLITE_NOMEM;
+ }
+ zIn = pMem->z;
+ zTerm = &zIn[pMem->n];
+ while( zIn<zTerm ){
+ temp = *zIn;
+ *zIn = *(zIn+1);
+ zIn++;
+ *zIn++ = temp;
+ }
+ pMem->enc = desiredEnc;
+ goto translate_out;
+ }
+
+ /* Set len to the maximum number of bytes required in the output buffer. */
+ if( desiredEnc==SQLITE_UTF8 ){
+ /* When converting from UTF-16, the maximum growth results from
+ ** translating a 2-byte character to a 3-byte UTF-8 character (i.e.
+ ** code-point 0xFFFC). A single byte is required for the output string
+ ** nul-terminator.
+ */
+ len = (pMem->n/2) * 3 + 1;
+ }else{
+ /* When converting from UTF-8 to UTF-16 the maximum growth is caused
+ ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
+ ** character. Two bytes are required in the output buffer for the
+ ** nul-terminator.
+ */
+ len = pMem->n * 2 + 2;
+ }
+
+ /* Set zIn to point at the start of the input buffer and zTerm to point 1
+ ** byte past the end.
+ **
+ ** Variable zOut is set to point at the output buffer. This may be space
+ ** obtained from malloc(), or Mem.zShort, if it large enough and not in
+ ** use, or the zShort array on the stack (see above).
+ */
+ zIn = pMem->z;
+ zTerm = &zIn[pMem->n];
+ if( len>NBFS ){
+ zOut = sqliteMallocRaw(len);
+ if( !zOut ) return SQLITE_NOMEM;
+ }else{
+ zOut = zShort;
+ }
+ z = zOut;
+
+ if( pMem->enc==SQLITE_UTF8 ){
+ if( desiredEnc==SQLITE_UTF16LE ){
+ /* UTF-8 -> UTF-16 Little-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, c);
+ WRITE_UTF16LE(z, c);
+ }
+ }else{
+ assert( desiredEnc==SQLITE_UTF16BE );
+ /* UTF-8 -> UTF-16 Big-endian */
+ while( zIn<zTerm ){
+ READ_UTF8(zIn, c);
+ WRITE_UTF16BE(z, c);
+ }
+ }
+ pMem->n = z - zOut;
+ *z++ = 0;
+ }else{
+ assert( desiredEnc==SQLITE_UTF8 );
+ if( pMem->enc==SQLITE_UTF16LE ){
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ READ_UTF16LE(zIn, c);
+ WRITE_UTF8(z, c);
+ }
+ }else{
+ /* UTF-16 Little-endian -> UTF-8 */
+ while( zIn<zTerm ){
+ READ_UTF16BE(zIn, c);
+ WRITE_UTF8(z, c);
+ }
+ }
+ pMem->n = z - zOut;
+ }
+ *z = 0;
+ assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
+
+ sqlite3VdbeMemRelease(pMem);
+ pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
+ pMem->enc = desiredEnc;
+ if( zOut==zShort ){
+ memcpy(pMem->zShort, zOut, len);
+ zOut = pMem->zShort;
+ pMem->flags |= (MEM_Term|MEM_Short);
+ }else{
+ pMem->flags |= (MEM_Term|MEM_Dyn);
+ }
+ pMem->z = zOut;
+
+translate_out:
+#ifdef TRANSLATE_TRACE
+ {
+ char zBuf[100];
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf, 100);
+ fprintf(stderr, "OUTPUT: %s\n", zBuf);
+ }
+#endif
+ return SQLITE_OK;
+}
+
+/*
+** This routine checks for a byte-order mark at the beginning of the
+** UTF-16 string stored in *pMem. If one is present, it is removed and
+** the encoding of the Mem adjusted. This routine does not do any
+** byte-swapping, it just sets Mem.enc appropriately.
+**
+** The allocation (static, dynamic etc.) and encoding of the Mem may be
+** changed by this function.
+*/
+int sqlite3VdbeMemHandleBom(Mem *pMem){
+ int rc = SQLITE_OK;
+ u8 bom = 0;
+
+ if( pMem->n<0 || pMem->n>1 ){
+ u8 b1 = *(u8 *)pMem->z;
+ u8 b2 = *(((u8 *)pMem->z) + 1);
+ if( b1==0xFE && b2==0xFF ){
+ bom = SQLITE_UTF16BE;
+ }
+ if( b1==0xFF && b2==0xFE ){
+ bom = SQLITE_UTF16LE;
+ }
+ }
+
+ if( bom ){
+ /* This function is called as soon as a string is stored in a Mem*,
+ ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
+ ** for the string to be stored in Mem.zShort, or for it to be stored
+ ** in dynamic memory with no destructor.
+ */
+ assert( !(pMem->flags&MEM_Short) );
+ assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
+ if( pMem->flags & MEM_Dyn ){
+ void (*xDel)(void*) = pMem->xDel;
+ char *z = pMem->z;
+ pMem->z = 0;
+ pMem->xDel = 0;
+ rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
+ xDel(z);
+ }else{
+ rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
+ SQLITE_TRANSIENT);
+ }
+ }
+ return rc;
+}
+
+/*
+** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
+** return the number of unicode characters in pZ up to (but not including)
+** the first 0x00 byte. If nByte is not less than zero, return the
+** number of unicode characters in the first nByte of pZ (or up to
+** the first 0x00, whichever comes first).
+*/
+int sqlite3utf8CharLen(const char *z, int nByte){
+ int r = 0;
+ const char *zTerm;
+ if( nByte>=0 ){
+ zTerm = &z[nByte];
+ }else{
+ zTerm = (const char *)(-1);
+ }
+ assert( z<=zTerm );
+ while( *z!=0 && z<zTerm ){
+ SKIP_UTF8(z);
+ r++;
+ }
+ return r;
+}
+
+/*
+** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
+** return the number of bytes up to (but not including), the first pair
+** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
+** then return the number of bytes in the first nChar unicode characters
+** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
+*/
+int sqlite3utf16ByteLen(const void *zIn, int nChar){
+ int c = 1;
+ char const *z = zIn;
+ int n = 0;
+ if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
+ while( c && ((nChar<0) || n<nChar) ){
+ READ_UTF16BE(z, c);
+ n++;
+ }
+ }else{
+ while( c && ((nChar<0) || n<nChar) ){
+ READ_UTF16LE(z, c);
+ n++;
+ }
+ }
+ return (z-(char const *)zIn)-((c==0)?2:0);
+}
+
+/*
+** UTF-16 implementation of the substr()
+*/
+void sqlite3utf16Substr(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int y, z;
+ unsigned char const *zStr;
+ unsigned char const *zStrEnd;
+ unsigned char const *zStart;
+ unsigned char const *zEnd;
+ int i;
+
+ zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
+ zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
+ y = sqlite3_value_int(argv[1]);
+ z = sqlite3_value_int(argv[2]);
+
+ if( y>0 ){
+ y = y-1;
+ zStart = zStr;
+ if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
+ for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
+ }else{
+ for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
+ }
+ }else{
+ zStart = zStrEnd;
+ if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
+ for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
+ }else{
+ for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
+ }
+ for(; i<0; i++) z -= 1;
+ }
+
+ zEnd = zStart;
+ if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
+ for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
+ }else{
+ for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
+ }
+
+ sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
+}
+
+#if defined(SQLITE_TEST)
+/*
+** This routine is called from the TCL test function "translate_selftest".
+** It checks that the primitives for serializing and deserializing
+** characters in each encoding are inverses of each other.
+*/
+void sqlite3utfSelfTest(){
+ int i;
+ unsigned char zBuf[20];
+ unsigned char *z;
+ int n;
+ int c;
+
+ for(i=0; i<0x00110000; i++){
+ z = zBuf;
+ WRITE_UTF8(z, i);
+ n = z-zBuf;
+ z = zBuf;
+ READ_UTF8(z, c);
+ assert( c==i );
+ assert( (z-zBuf)==n );
+ }
+ for(i=0; i<0x00110000; i++){
+ if( i>=0xD800 && i<=0xE000 ) continue;
+ z = zBuf;
+ WRITE_UTF16LE(z, i);
+ n = z-zBuf;
+ z = zBuf;
+ READ_UTF16LE(z, c);
+ assert( c==i );
+ assert( (z-zBuf)==n );
+ }
+ for(i=0; i<0x00110000; i++){
+ if( i>=0xD800 && i<=0xE000 ) continue;
+ z = zBuf;
+ WRITE_UTF16BE(z, i);
+ n = z-zBuf;
+ z = zBuf;
+ READ_UTF16BE(z, c);
+ assert( c==i );
+ assert( (z-zBuf)==n );
+ }
+}
+#endif