summaryrefslogtreecommitdiffstats
path: root/kopete/protocols/jabber/jingle/libjingle/talk/base/physicalsocketserver.cpp
blob: 37836302d8272c7c20c1d09b537fa59455df6fb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/*
 * libjingle
 * Copyright 2004--2005, Google Inc.
 *
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice, 
 *     this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright notice,
 *     this list of conditions and the following disclaimer in the documentation
 *     and/or other materials provided with the distribution.
 *  3. The name of the author may not be used to endorse or promote products 
 *     derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#if defined(_MSC_VER) && _MSC_VER < 1300
#pragma warning(disable:4786)
#endif

#include <cassert>
#include <algorithm>

#ifdef POSIX
extern "C" {
#include <errno.h>
#include <fcntl.h>
#include <sys/time.h>
#include <unistd.h>
#include <string.h>
}
#endif

#include "talk/base/basictypes.h"
#include "talk/base/byteorder.h"
#include "talk/base/common.h"
#include "talk/base/logging.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/jtime.h"
#include "talk/base/winping.h"

#ifdef __linux 
#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
#endif  // __linux

#ifdef WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#define _WINSOCKAPI_
#include <windows.h>
#undef SetPort

class WinsockInitializer {
public:
  WinsockInitializer() {
    WSADATA wsaData;
    WORD wVersionRequested = MAKEWORD(1, 0);
    err_ = WSAStartup(wVersionRequested, &wsaData);
  }
  ~WinsockInitializer() {
    WSACleanup();
  }
  int error() {
    return err_;
  }
private:
  int err_;
};
WinsockInitializer g_winsockinit;
#endif

namespace cricket {

const int kfRead  = 0x0001;
const int kfWrite = 0x0002;
const int kfConnect = 0x0004;
const int kfClose = 0x0008;


// Standard MTUs
const uint16 PACKET_MAXIMUMS[] = {
  65535,    // Theoretical maximum, Hyperchannel
  32000,    // Nothing
  17914,    // 16Mb IBM Token Ring
  8166,     // IEEE 802.4
  //4464,   // IEEE 802.5 (4Mb max)
  4352,     // FDDI
  //2048,   // Wideband Network
  2002,     // IEEE 802.5 (4Mb recommended)
  //1536,   // Expermental Ethernet Networks
  //1500,   // Ethernet, Point-to-Point (default)
  1492,     // IEEE 802.3
  1006,     // SLIP, ARPANET
  //576,    // X.25 Networks
  //544,    // DEC IP Portal
  //512,    // NETBIOS
  508,      // IEEE 802/Source-Rt Bridge, ARCNET
  296,      // Point-to-Point (low delay)
  68,       // Official minimum
  0,        // End of list marker
};

const uint32 IP_HEADER_SIZE = 20;
const uint32 ICMP_HEADER_SIZE = 8;

class PhysicalSocket : public AsyncSocket {
public:
  PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
    : ss_(ss), s_(s), enabled_events_(0), error_(0),
      state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED) {
    if (s != INVALID_SOCKET)
      enabled_events_ = kfRead | kfWrite;
  }

  virtual ~PhysicalSocket() {
    Close();
  }

  // Creates the underlying OS socket (same as the "socket" function).
  virtual bool Create(int type) {
    Close();
    s_ = ::socket(AF_INET, type, 0);
    UpdateLastError();
    enabled_events_ = kfRead | kfWrite;
    return s_ != INVALID_SOCKET;
  }

  SocketAddress GetLocalAddress() const {
    struct sockaddr_in addr;
    socklen_t addrlen = sizeof(addr);
    int result = ::getsockname(s_, (struct sockaddr*)&addr, &addrlen);
    assert(addrlen == sizeof(addr));
    if (result >= 0) {
      return SocketAddress(NetworkToHost32(addr.sin_addr.s_addr),
                           NetworkToHost16(addr.sin_port));
    } else {
      return SocketAddress();
    }
  }

  SocketAddress GetRemoteAddress() const {
    struct sockaddr_in addr;
    socklen_t addrlen = sizeof(addr);
    int result = ::getpeername(s_, (struct sockaddr*)&addr, &addrlen);
    assert(addrlen == sizeof(addr));
    if (result >= 0) {
      return SocketAddress(
          NetworkToHost32(addr.sin_addr.s_addr),
          NetworkToHost16(addr.sin_port));
    } else {
      assert(errno == ENOTCONN);
      return SocketAddress();
    }
  }

  int Bind(const SocketAddress& addr) {
    struct sockaddr_in saddr;
    IP2SA(&addr, &saddr);
    int err = ::bind(s_, (struct sockaddr*)&saddr, sizeof(saddr));
    UpdateLastError();
    return err;
  }

  int Connect(const SocketAddress& addr) {
    // TODO: Implicit creation is required to reconnect...
    // ...but should we make it more explicit?
    if ((s_ == INVALID_SOCKET) && !Create(SOCK_STREAM))
      return SOCKET_ERROR;
    SocketAddress addr2(addr);
    if (addr2.IsUnresolved()) {
      LOG(INFO) << "Resolving addr in PhysicalSocket::Connect";
      addr2.Resolve(); // TODO: Do this async later?
    }
    struct sockaddr_in saddr;
    IP2SA(&addr2, &saddr);
    int err = ::connect(s_, (struct sockaddr*)&saddr, sizeof(saddr));
    UpdateLastError();
    //LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Connect(" << addr2.ToString() << ") Ret: " << err << " Error: " << error_;
    if (err == 0) {
      state_ = CS_CONNECTED;
    } else if (IsBlockingError(error_)) {
      state_ = CS_CONNECTING;
      enabled_events_ |= kfConnect;
    }
    return err;
  }

  int GetError() const {
    return error_;
  }

  void SetError(int error) {
    error_ = error;
  }

  ConnState GetState() const {
    return state_;
  }

  int SetOption(Option opt, int value) {
    assert(opt == OPT_DONTFRAGMENT);
#ifdef WIN32
    value = (value == 0) ? 0 : 1;
    return ::setsockopt(
        s_, IPPROTO_IP, IP_DONTFRAGMENT, reinterpret_cast<char*>(&value),
        sizeof(value));
#endif
#ifdef __linux 
    value = (value == 0) ? IP_PMTUDISC_DONT : IP_PMTUDISC_DO;
    return ::setsockopt(
        s_, IPPROTO_IP, IP_MTU_DISCOVER, &value, sizeof(value));
#endif
#ifdef OSX
    // This is not possible on OSX.
    return -1;
#endif
  }

  int Send(const void *pv, size_t cb) {
    int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb, 0);
    UpdateLastError();
    //LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Send(" << cb << ") Ret: " << sent << " Error: " << error_;
    ASSERT(sent <= static_cast<int>(cb));  // We have seen minidumps where this may be false
    if ((sent < 0) && IsBlockingError(error_)) {
      enabled_events_ |= kfWrite;
    }
    return sent;
  }

  int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
    struct sockaddr_in saddr;
    IP2SA(&addr, &saddr);
    int sent = ::sendto(
        s_, (const char *)pv, (int)cb, 0, (struct sockaddr*)&saddr,
        sizeof(saddr));
    UpdateLastError();
    ASSERT(sent <= static_cast<int>(cb));  // We have seen minidumps where this may be false
    if ((sent < 0) && IsBlockingError(error_)) {
      enabled_events_ |= kfWrite;
    }
    return sent;
  }

  int Recv(void *pv, size_t cb) {
    int received = ::recv(s_, (char *)pv, (int)cb, 0);
    UpdateLastError();
    if ((received >= 0) || IsBlockingError(error_)) {
      enabled_events_ |= kfRead;
    }
    return received;
  }

  int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) {
    struct sockaddr saddr;
    socklen_t cbAddr = sizeof(saddr);
    int received = ::recvfrom(s_, (char *)pv, (int)cb, 0, &saddr, &cbAddr);
    UpdateLastError();
    if ((received >= 0) && (paddr != NULL))
      SA2IP(&saddr, paddr);
    if ((received >= 0) || IsBlockingError(error_)) {
      enabled_events_ |= kfRead;
    }
    return received;
  }

  int Listen(int backlog) {
    int err = ::listen(s_, backlog);
    UpdateLastError();
    if (err == 0)
      state_ = CS_CONNECTING;
    return err;
  }

  Socket* Accept(SocketAddress *paddr) {
    struct sockaddr saddr;
    socklen_t cbAddr = sizeof(saddr);
    SOCKET s = ::accept(s_, &saddr, &cbAddr);
    UpdateLastError();
    if (s == INVALID_SOCKET)
      return NULL;
    if (paddr != NULL)
      SA2IP(&saddr, paddr);
    return ss_->WrapSocket(s);
  }

  int Close() {
    if (s_ == INVALID_SOCKET)
      return 0;
    int err = ::closesocket(s_);
    UpdateLastError();
    //LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Close() Ret: " << err << " Error: " << error_;
    s_ = INVALID_SOCKET;
    state_ = CS_CLOSED;
    enabled_events_ = 0;
    return err;
  }

  int EstimateMTU(uint16* mtu) {
    SocketAddress addr = GetRemoteAddress();
    if (addr.IsAny()) {
      error_ = ENOTCONN;
      return -1;
    }

#ifdef WIN32

    WinPing ping;
    if (!ping.IsValid()) {
      error_ = EINVAL; // can't think of a better error ID
      return -1;
    }

    for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
      int32 size = PACKET_MAXIMUMS[level] - IP_HEADER_SIZE - ICMP_HEADER_SIZE;
      if (ping.Ping(addr.ip(), size, 0, 1, false) != WinPing::PING_TOO_LARGE) {
        *mtu = PACKET_MAXIMUMS[level];
        return 0;
      }
    }

    assert(false);
    return 0;

#endif // WIN32

#ifdef __linux 

    int value;
    socklen_t vlen = sizeof(value);
    int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
    if (err < 0) {
      UpdateLastError();
      return err;
    }

    assert((0 <= value) && (value <= 65536));
    *mtu = uint16(value);
    return 0;

#endif   // __linux

    // TODO: OSX support
  }

  SocketServer* socketserver() { return ss_; }
 
protected:
  PhysicalSocketServer* ss_;
  SOCKET s_;
  uint32 enabled_events_;
  int error_;
  ConnState state_;

  void UpdateLastError() {
#ifdef WIN32
    error_ = WSAGetLastError();
#endif
#ifdef POSIX
    error_ = errno;
#endif
  }

  void IP2SA(const SocketAddress *paddr, struct sockaddr_in *psaddr) {
    memset(psaddr, 0, sizeof(*psaddr));
    psaddr->sin_family = AF_INET;
    psaddr->sin_port = HostToNetwork16(paddr->port());
    if (paddr->ip() == 0)
      psaddr->sin_addr.s_addr = INADDR_ANY;
    else
      psaddr->sin_addr.s_addr = HostToNetwork32(paddr->ip());
  }

  void SA2IP(const struct sockaddr *psaddr, SocketAddress *paddr) {
    const struct sockaddr_in *psaddr_in =
        reinterpret_cast<const struct sockaddr_in*>(psaddr);
    paddr->SetIP(NetworkToHost32(psaddr_in->sin_addr.s_addr));
    paddr->SetPort(NetworkToHost16(psaddr_in->sin_port));
  }
};

#ifdef POSIX
class Dispatcher {
public:
  virtual uint32 GetRequestedEvents() = 0;
  virtual void OnPreEvent(uint32 ff) = 0;    
  virtual void OnEvent(uint32 ff, int err) = 0;
  virtual int GetDescriptor() = 0;
};

class EventDispatcher : public Dispatcher {
public:
  EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
    if (pipe(afd_) < 0)
      LOG(LERROR) << "pipe failed";
    ss_->Add(this);
  }

  virtual ~EventDispatcher() {
    ss_->Remove(this);
    close(afd_[0]);
    close(afd_[1]);
  }
  
  virtual void Signal() {
    CritScope cs(&crit_);
    if (!fSignaled_) {
      uint8 b = 0;
      if (write(afd_[1], &b, sizeof(b)) < 0)
        LOG(LERROR) << "write failed";
      fSignaled_ = true;
    }
  }
  
  virtual uint32 GetRequestedEvents() {
    return kfRead;
  }

  virtual void OnPreEvent(uint32 ff) {
    // It is not possible to perfectly emulate an auto-resetting event with
    // pipes.  This simulates it by resetting before the event is handled.
  
    CritScope cs(&crit_);
    if (fSignaled_) {
      uint8 b;
      read(afd_[0], &b, sizeof(b));
      fSignaled_ = false;
    }
  }

  virtual void OnEvent(uint32 ff, int err) {
    assert(false);
  }

  virtual int GetDescriptor() {
    return afd_[0];
  }

private:
  PhysicalSocketServer *ss_;
  int afd_[2];
  bool fSignaled_;
  CriticalSection crit_;
};

class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
  SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
    ss_->Add(this);
  }
  SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
    ss_->Add(this);
  }

  virtual ~SocketDispatcher() {
    ss_->Remove(this);
  }

  bool Initialize() {
    fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
    return true;
  }

  virtual bool Create(int type) {
    // Change the socket to be non-blocking.
    if (!PhysicalSocket::Create(type))
      return false;

    return Initialize();
  }
  
  virtual int GetDescriptor() {
    return s_;
  }

  virtual uint32 GetRequestedEvents() {
    return enabled_events_;
  }

  virtual void OnPreEvent(uint32 ff) {
  }

  virtual void OnEvent(uint32 ff, int err) {
    if ((ff & kfRead) != 0) {
      enabled_events_ &= ~kfRead;
      SignalReadEvent(this);
    }
    if ((ff & kfWrite) != 0) {
      enabled_events_ &= ~kfWrite;
      SignalWriteEvent(this);
    }
    if ((ff & kfConnect) != 0) {
      enabled_events_ &= ~kfConnect;
      SignalConnectEvent(this);
    }
    if ((ff & kfClose) != 0)
      SignalCloseEvent(this, err);
  }
};

class FileDispatcher: public Dispatcher, public AsyncFile {
public:
  FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
    set_readable(true);

    ss_->Add(this);

    fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
  }

  virtual ~FileDispatcher() {
    ss_->Remove(this);
  }

  SocketServer* socketserver() { return ss_; }

  virtual int GetDescriptor() {
    return fd_;
  }

  virtual uint32 GetRequestedEvents() {
    return flags_;
  }

  virtual void OnPreEvent(uint32 ff) {
  }

  virtual void OnEvent(uint32 ff, int err) {
    if ((ff & kfRead) != 0)
      SignalReadEvent(this);
    if ((ff & kfWrite) != 0)
      SignalWriteEvent(this);
    if ((ff & kfClose) != 0)
      SignalCloseEvent(this, err);
  }

  virtual bool readable() {
    return (flags_ & kfRead) != 0;
  }

  virtual void set_readable(bool value) {
    flags_ = value ? (flags_ | kfRead) : (flags_ & ~kfRead);
  }

  virtual bool writable() {
    return (flags_ & kfWrite) != 0;
  }

  virtual void set_writable(bool value) {
    flags_ = value ? (flags_ | kfWrite) : (flags_ & ~kfWrite);
  }

private:
  PhysicalSocketServer* ss_;
  int fd_;
  int flags_;
};

AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
  return new FileDispatcher(fd, this);
}

#endif // POSIX

#ifdef WIN32
class Dispatcher {
public:
  virtual uint32 GetRequestedEvents() = 0;
  virtual void OnPreEvent(uint32 ff) = 0;  
  virtual void OnEvent(uint32 ff, int err) = 0;
  virtual WSAEVENT GetWSAEvent() = 0;
  virtual SOCKET GetSocket() = 0;
  virtual bool CheckSignalClose() = 0;
};

uint32 FlagsToEvents(uint32 events) {
  uint32 ffFD = FD_CLOSE | FD_ACCEPT;
  if (events & kfRead)
    ffFD |= FD_READ;
  if (events & kfWrite)
    ffFD |= FD_WRITE;
  if (events & kfConnect)
    ffFD |= FD_CONNECT;
  return ffFD;
}

class EventDispatcher : public Dispatcher {
public:
  EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
    if (hev_ = WSACreateEvent()) {
      ss_->Add(this);
    }
  }

  ~EventDispatcher() {
    if (hev_ != NULL) {
      ss_->Remove(this);
      WSACloseEvent(hev_);
      hev_ = NULL;
    }
  }
  
  virtual void Signal() {
    if (hev_ != NULL)
      WSASetEvent(hev_);
  }
  
  virtual uint32 GetRequestedEvents() {
    return 0;
  }

  virtual void OnPreEvent(uint32 ff) {
    WSAResetEvent(hev_);
  }

  virtual void OnEvent(uint32 ff, int err) {
  }

  virtual WSAEVENT GetWSAEvent() {
    return hev_;
  }

  virtual SOCKET GetSocket() {
    return INVALID_SOCKET;
  }

  virtual bool CheckSignalClose() { return false; }

private:
  PhysicalSocketServer* ss_;
  WSAEVENT hev_;
};

class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
  static int next_id_;
  int id_;
  bool signal_close_;
  int signal_err_;

  SocketDispatcher(PhysicalSocketServer* ss) : PhysicalSocket(ss), id_(0), signal_close_(false) {
  }
  SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) : PhysicalSocket(ss, s), id_(0), signal_close_(false) {
  }

  virtual ~SocketDispatcher() {
    Close();
  }

  bool Initialize() {
    assert(s_ != INVALID_SOCKET);
    // Must be a non-blocking
    u_long argp = 1;
    ioctlsocket(s_, FIONBIO, &argp);
    ss_->Add(this);
    return true;
  }
 
  virtual bool Create(int type) {
    // Create socket
    if (!PhysicalSocket::Create(type))
      return false;

    if (!Initialize())
      return false;

    do { id_ = ++next_id_; } while (id_ == 0);
    return true;
  }

  virtual int Close() {
    if (s_ == INVALID_SOCKET)
      return 0;

    id_ = 0;
    signal_close_ = false;
    ss_->Remove(this);
    return PhysicalSocket::Close();
  }

  virtual uint32 GetRequestedEvents() {
    return enabled_events_;
  }

  virtual void OnPreEvent(uint32 ff) {
    if ((ff & kfConnect) != 0)
      state_ = CS_CONNECTED;
  }

  virtual void OnEvent(uint32 ff, int err) {
    int cache_id = id_;
    if ((ff & kfRead) != 0) {
      enabled_events_ &= ~kfRead;
      SignalReadEvent(this);
    }
    if (((ff & kfWrite) != 0) && (id_ == cache_id)) {
      enabled_events_ &= ~kfWrite;
      SignalWriteEvent(this);
    }
    if (((ff & kfConnect) != 0) && (id_ == cache_id)) {
      enabled_events_ &= ~kfConnect;
      SignalConnectEvent(this);
    }
    if (((ff & kfClose) != 0) && (id_ == cache_id)) {
      //LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] OnClose() Error: " << err;
      signal_close_ = true;
      signal_err_ = err;
    }
  }

  virtual WSAEVENT GetWSAEvent() {
    return WSA_INVALID_EVENT;
  }

  virtual SOCKET GetSocket() {
    return s_;
  }

  virtual bool CheckSignalClose() {
    if (!signal_close_)
      return false;

    char ch;
    if (recv(s_, &ch, 1, MSG_PEEK) > 0)
      return false;

    signal_close_ = false;
    SignalCloseEvent(this, signal_err_);
    return true;
  }
};

int SocketDispatcher::next_id_ = 0;

#endif // WIN32

// Sets the value of a boolean value to false when signaled.
class Signaler : public EventDispatcher {
public:
  Signaler(PhysicalSocketServer* ss, bool* pf)
      : EventDispatcher(ss), pf_(pf) {
  }
  virtual ~Signaler() { }

  void OnEvent(uint32 ff, int err) {
    if (pf_)
      *pf_ = false;
  }

private:
  bool *pf_;
};

PhysicalSocketServer::PhysicalSocketServer() : fWait_(false),
  last_tick_tracked_(0), last_tick_dispatch_count_(0) {
  signal_wakeup_ = new Signaler(this, &fWait_);
}

PhysicalSocketServer::~PhysicalSocketServer() {
  delete signal_wakeup_;
}

void PhysicalSocketServer::WakeUp() {
  signal_wakeup_->Signal();
}

Socket* PhysicalSocketServer::CreateSocket(int type) {
  PhysicalSocket* socket = new PhysicalSocket(this);
  if (socket->Create(type)) {
    return socket;
  } else {
    delete socket;
    return 0;
  }
}

AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
  SocketDispatcher* dispatcher = new SocketDispatcher(this);
  if (dispatcher->Create(type)) {
    return dispatcher;
  } else {
    delete dispatcher;
    return 0;
  }
}

AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
  SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
  if (dispatcher->Initialize()) {
    return dispatcher;
  } else {
    delete dispatcher;
    return 0;
  }
}

void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
  CritScope cs(&crit_);
  dispatchers_.push_back(pdispatcher);
}

void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
  CritScope cs(&crit_);
  dispatchers_.erase(std::remove(dispatchers_.begin(), dispatchers_.end(), pdispatcher), dispatchers_.end());
}

#ifdef POSIX
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
  // Calculate timing information

  struct timeval *ptvWait = NULL;
  struct timeval tvWait;
  struct timeval tvStop;
  if (cmsWait != -1) {
    // Calculate wait timeval
    tvWait.tv_sec = cmsWait / 1000;
    tvWait.tv_usec = (cmsWait % 1000) * 1000;
    ptvWait = &tvWait;

    // Calculate when to return in a timeval
    gettimeofday(&tvStop, NULL);
    tvStop.tv_sec += tvWait.tv_sec;
    tvStop.tv_usec += tvWait.tv_usec;
    if (tvStop.tv_usec >= 1000000) {
      tvStop.tv_usec -= 1000000;
      tvStop.tv_sec += 1;
    }
  }

  // Zero all fd_sets. Don't need to do this inside the loop since
  // select() zeros the descriptors not signaled
  
  fd_set fdsRead;
  FD_ZERO(&fdsRead);
  fd_set fdsWrite;
  FD_ZERO(&fdsWrite);
 
  fWait_ = true;

  while (fWait_) {
    int fdmax = -1;
    {
      CritScope cr(&crit_);
      for (unsigned i = 0; i < dispatchers_.size(); i++) {
        // Query dispatchers for read and write wait state
      
        Dispatcher *pdispatcher = dispatchers_[i];
        assert(pdispatcher);
        if (!process_io && (pdispatcher != signal_wakeup_))
          continue;
        int fd = pdispatcher->GetDescriptor();
        if (fd > fdmax)
          fdmax = fd;
        uint32 ff = pdispatcher->GetRequestedEvents();
        if (ff & kfRead)
          FD_SET(fd, &fdsRead);
        if (ff & (kfWrite | kfConnect))
          FD_SET(fd, &fdsWrite);
      }
    }
      
    // Wait then call handlers as appropriate
    // < 0 means error
    // 0 means timeout
    // > 0 means count of descriptors ready
    int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
    
    // If error, return error
    // todo: do something intelligent
    
    if (n < 0)
      return false;
    
    // If timeout, return success
    
    if (n == 0)
      return true;
    
    // We have signaled descriptors
   
    {
      CritScope cr(&crit_);
      for (unsigned i = 0; i < dispatchers_.size(); i++) {
        Dispatcher *pdispatcher = dispatchers_[i];
        int fd = pdispatcher->GetDescriptor();
        uint32 ff = 0;
        if (FD_ISSET(fd, &fdsRead)) {
          FD_CLR(fd, &fdsRead);
          ff |= kfRead;
        }
        if (FD_ISSET(fd, &fdsWrite)) {
          FD_CLR(fd, &fdsWrite);
          if (pdispatcher->GetRequestedEvents() & kfConnect) {
            ff |= kfConnect;
          } else {
            ff |= kfWrite;
          }
        }
        if (ff != 0) {
          pdispatcher->OnPreEvent(ff);
          pdispatcher->OnEvent(ff, 0);
        }
      }
    }

    // Recalc the time remaining to wait. Doing it here means it doesn't get
    // calced twice the first time through the loop

    if (cmsWait != -1) {
      ptvWait->tv_sec = 0;
      ptvWait->tv_usec = 0;
      struct timeval tvT;
      gettimeofday(&tvT, NULL);
      if (tvStop.tv_sec >= tvT.tv_sec) {
        ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
        ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
        if (ptvWait->tv_usec < 0) {
          ptvWait->tv_usec += 1000000;
          ptvWait->tv_sec -= 1;
        }
      }
    }
  }
        
  return true;
}
#endif // POSIX

#ifdef WIN32
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io)
{
  int cmsTotal = cmsWait;
  int cmsElapsed = 0;
  uint32 msStart = GetMillisecondCount();

#if LOGGING
  if (last_tick_dispatch_count_ == 0) {
    last_tick_tracked_ = msStart;
  }
#endif

  WSAEVENT socket_ev = WSACreateEvent();
  
  fWait_ = true;
  while (fWait_) {
    std::vector<WSAEVENT> events;
    std::vector<Dispatcher *> event_owners;

    events.push_back(socket_ev);

    {
      CritScope cr(&crit_);
      for (size_t i = 0; i < dispatchers_.size(); ++i) {
        Dispatcher * disp = dispatchers_[i];
        if (!process_io && (disp != signal_wakeup_))
          continue;
        SOCKET s = disp->GetSocket();
        if (disp->CheckSignalClose()) {
          // We just signalled close, don't poll this socket
        } else if (s != INVALID_SOCKET) {
          WSAEventSelect(s, events[0], FlagsToEvents(disp->GetRequestedEvents()));
        } else {
          events.push_back(disp->GetWSAEvent());
          event_owners.push_back(disp);
        }
      }
    }

    // Which is shorter, the delay wait or the asked wait?

    int cmsNext;
    if (cmsWait == -1) {
      cmsNext = cmsWait;
    } else {
      cmsNext = cmsTotal - cmsElapsed;
      if (cmsNext < 0)
        cmsNext = 0;
    }

    // Wait for one of the events to signal
    DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0], false, cmsNext, false);

#if 0  // LOGGING
    // we track this information purely for logging purposes.
    last_tick_dispatch_count_++;
    if (last_tick_dispatch_count_ >= 1000) {
      uint32 now = GetMillisecondCount();
      LOG(INFO) << "PhysicalSocketServer took " << TimeDiff(now, last_tick_tracked_) << "ms for 1000 events";

      // If we get more than 1000 events in a second, we are spinning badly
      // (normally it should take about 8-20 seconds).
      assert(TimeDiff(now, last_tick_tracked_) > 1000);
      
      last_tick_tracked_ = now;
      last_tick_dispatch_count_ = 0;
    }
#endif

    // Failed?
    // todo: need a better strategy than this!

    if (dw == WSA_WAIT_FAILED) {
      int error = WSAGetLastError();
      assert(false);
      WSACloseEvent(socket_ev);
      return false;
    }

    // Timeout?

    if (dw == WSA_WAIT_TIMEOUT) {
      WSACloseEvent(socket_ev);
      return true;
    }

    // Figure out which one it is and call it

    {
      CritScope cr(&crit_);
      int index = dw - WSA_WAIT_EVENT_0;
      if (index > 0) {
        --index; // The first event is the socket event
        event_owners[index]->OnPreEvent(0);
        event_owners[index]->OnEvent(0, 0);
      } else if (process_io) {
        for (size_t i = 0; i < dispatchers_.size(); ++i) {
          Dispatcher * disp = dispatchers_[i];
          SOCKET s = disp->GetSocket();
          if (s == INVALID_SOCKET)
            continue;

          WSANETWORKEVENTS wsaEvents;
          int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
          if (err == 0) {
            
#if LOGGING
            {
              if ((wsaEvents.lNetworkEvents & FD_READ) && wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
                LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error " << wsaEvents.iErrorCode[FD_READ_BIT];
              }
              if ((wsaEvents.lNetworkEvents & FD_WRITE) && wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
                LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error " << wsaEvents.iErrorCode[FD_WRITE_BIT];
              }
              if ((wsaEvents.lNetworkEvents & FD_CONNECT) && wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
                LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error " << wsaEvents.iErrorCode[FD_CONNECT_BIT];
              }
              if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
                LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error " << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
              }
              if ((wsaEvents.lNetworkEvents & FD_CLOSE) && wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
                LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error " << wsaEvents.iErrorCode[FD_CLOSE_BIT];
              }
            }
#endif
            uint32 ff = 0;
            int errcode = 0;
            if (wsaEvents.lNetworkEvents & FD_READ)
              ff |= kfRead;
            if (wsaEvents.lNetworkEvents & FD_WRITE)
              ff |= kfWrite;
            if (wsaEvents.lNetworkEvents & FD_CONNECT) {
              if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
                ff |= kfConnect;
              } else {
                // TODO: Decide whether we want to signal connect, but with an error code
                ff |= kfClose; 
                errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
              }
            }
            if (wsaEvents.lNetworkEvents & FD_ACCEPT)
              ff |= kfRead;
            if (wsaEvents.lNetworkEvents & FD_CLOSE) {
              ff |= kfClose;
              errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
            }
            if (ff != 0) {
              disp->OnPreEvent(ff);
              disp->OnEvent(ff, errcode);
            }
          }
        }
      }

      // Reset the network event until new activity occurs
      WSAResetEvent(socket_ev);
    }

    // Break?

    if (!fWait_)
      break;
    cmsElapsed = GetMillisecondCount() - msStart;
    if (cmsWait != -1) {
      if (cmsElapsed >= cmsWait)
        break;
    }
  }
  
  // Done
  
  WSACloseEvent(socket_ev);
  return true;
}
#endif // WIN32

} // namespace cricket