1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
/* ****************************************************************************
Copyright (C) 2003-2004 Eva Brucherseifer <eva.brucherseifer@basyskom.com>
2005 Stanislav visnovsky <visnovsky@kde.org>
This file is part of the KDE project
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
In addition, as a special exception, the copyright holders give
permission to link the code of this program with any edition of
the TQt library by Trolltech AS, Norway (or with modified versions
of TQt that use the same license as TQt), and distribute linked
combinations including the two. You must obey the GNU General
Public License in all respects for all of the code used other than
TQt. If you modify this file, you may extend this exception to
your version of the file, but you are not obligated to do so. If
you do not wish to do so, delete this exception statement from
your version.
**************************************************************************** */
#include "stringdistance.h"
using namespace std;
//! Debug-Messages 0 : off 1 : a few 10 : more
int Distance::debug = 0;
const int Distance::editCost_replace_base = 1;
const int HammingDistance::editCost = 1;
const int LevenshteinDistance::editCost_replace = 1;
const int LevenshteinDistance::editCost_insert = 1;
const int LevenshteinDistance::editCost_delete = 1;
double relativeDistance(double distance, const TQString& left_string, const TQString& right_string)
{
double maxsize=0;
double compsize=0;
maxsize = left_string.length();
compsize=right_string.length();
if (compsize>maxsize)
maxsize=compsize;
return distance/(double)maxsize;
}
/** This function walk trough the treeS(left & right) at the same time.
* There are in both entities the same number of trees!
* This function sums all the distances between all trees.
* For the calculation of the distance between two trees, it calls the function calculate.
*/
double Distance::operator()(const TQString& left_string, const TQString& right_string)
{
m_distance = 0.00;
if (left_string == right_string)
return 0.00; // saves calculation time, both entities are the same
// swap strings, our matrix requires that
if (left_string.length () < right_string.length() )
{
m_distance = calculate(right_string, left_string);
}
else
{
m_distance = calculate(left_string, right_string);
}
// if (debug > 0) cout << " --> total distance: " << m_distance << endl;
return m_distance;
}
/** This function calculates the distance between two nodes.
* For the calculation you can specify two variables gap & distance.
*/
int Distance::nodeDistance(const TQString& left_letter, const TQString& right_letter)
{
if ( left_letter == right_letter )
{
// if (debug > 0) cout << ".";
return 0;
}
else
{
// if (debug > 0) cout << "!";
return editCostReplace();
}
}
/** This function walks along the treeS(left & right) at the same time.
* There are in both entities the same number of nodes, hopefully! But it doesn't care.
* This function sums all the distances between all nodes.
* For the calculation you can specify the distance between two nodes in variable distance
*/
double HammingDistance::calculate(const TQString& left_string, const TQString& right_string)
{
double hammingDistance = 0.00;
// if (debug > 0)
// cout << left_string.length() << " " << right_string.length() << "\t";
unsigned int i=0;
unsigned int j=0;
for ( ; i != left_string.length() && j != right_string.length() ;
++i,++j)
hammingDistance += double(nodeDistance(left_string[i], right_string[i]));
for ( ; i != left_string.length() ; ++i )
{
++hammingDistance;
// if (debug > 9) cout << "!";
}
for ( ; j != right_string.length() ; ++j)
{
++hammingDistance;
// if (debug > 9) cout << "!";
}
return hammingDistance;
}
/** This function walk along the treeS(left & right) at the same time.
* It uses the Levenshtein-algorithm for the calculation of the distance between two trees.
* A matrice D is generated which represent the distribution of distances between two trees.
* The last element represent the Levenshtein-distance.
*/
double LevenshteinDistance::calculate(const TQString& left_string, const TQString& right_string)
{
// if (debug > 0)
// cout << left_string.length() << " " << right_string.length() << "\t";
unsigned int left_size = left_string.length()+1;
unsigned int right_size = right_string.length()+1;
int *_D = new int[left_size * right_size];
for (unsigned int i = 0 ; i < left_size * right_size; i++ )
_D[i] = 0;
#define D(a,b) (_D[(a)+(b)*left_size])
// boost::numeric::ublas::matrix<int> D(left_size, right_size);
// D = zero_boost::numeric::ublas::matrix<int>(left_size, right_size);
unsigned int l,r;
D(0,0) = 0;
for(l = 1; l < left_size; l++)
D(l,0) = D(l-1,0) + editCost_delete;
for(r = 1; r < right_size; r++)
D(0,r) = D(0,r-1) + editCost_insert;
int tmp_value;
for(l = 1; l < left_size; l++)
{
for(r = 1; r < right_size; r++)
{
tmp_value = TQMIN( ( D(l-1,r) + editCost_delete ),
( D(l-1,r-1) + nodeDistance(left_string[l-1], right_string[r-1]) ) ) ;
D(l,r) = TQMIN( tmp_value,
( D(l,r-1) + editCost_insert ) );
}
}
double res (D(left_size-1,right_size-1));
delete[] _D;
return res;
}
|