diff options
Diffstat (limited to 'src/3rdparty/sqlite/where.c')
-rw-r--r-- | src/3rdparty/sqlite/where.c | 1204 |
1 files changed, 1204 insertions, 0 deletions
diff --git a/src/3rdparty/sqlite/where.c b/src/3rdparty/sqlite/where.c new file mode 100644 index 000000000..7eb7db7f5 --- /dev/null +++ b/src/3rdparty/sqlite/where.c @@ -0,0 +1,1204 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This module contains C code that generates VDBE code used to process +** the WHERE clause of SQL statements. +** +** $Id: where.c,v 1.89 2004/02/22 20:05:02 drh Exp $ +*/ +#include "sqliteInt.h" + +/* +** The query generator uses an array of instances of this structure to +** help it analyze the subexpressions of the WHERE clause. Each WHERE +** clause subexpression is separated from the others by an AND operator. +*/ +typedef struct ExprInfo ExprInfo; +struct ExprInfo { + Expr *p; /* Pointer to the subexpression */ + u8 indexable; /* True if this subexprssion is usable by an index */ + short int idxLeft; /* p->pLeft is a column in this table number. -1 if + ** p->pLeft is not the column of any table */ + short int idxRight; /* p->pRight is a column in this table number. -1 if + ** p->pRight is not the column of any table */ + unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */ + unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */ + unsigned prereqAll; /* Bitmask of tables referenced by p */ +}; + +/* +** An instance of the following structure keeps track of a mapping +** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers +** are small integers contained in SrcList_item.iCursor and Expr.iTable +** fields. For any given WHERE clause, we want to track which cursors +** are being used, so we assign a single bit in a 32-bit word to track +** that cursor. Then a 32-bit integer is able to show the set of all +** cursors being used. +*/ +typedef struct ExprMaskSet ExprMaskSet; +struct ExprMaskSet { + int n; /* Number of assigned cursor values */ + int ix[32]; /* Cursor assigned to each bit */ +}; + +/* +** Determine the number of elements in an array. +*/ +#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) + +/* +** This routine is used to divide the WHERE expression into subexpressions +** separated by the AND operator. +** +** aSlot[] is an array of subexpressions structures. +** There are nSlot spaces left in this array. This routine attempts to +** split pExpr into subexpressions and fills aSlot[] with those subexpressions. +** The return value is the number of slots filled. +*/ +static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ + int cnt = 0; + if( pExpr==0 || nSlot<1 ) return 0; + if( nSlot==1 || pExpr->op!=TK_AND ){ + aSlot[0].p = pExpr; + return 1; + } + if( pExpr->pLeft->op!=TK_AND ){ + aSlot[0].p = pExpr->pLeft; + cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); + }else{ + cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); + cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); + } + return cnt; +} + +/* +** Initialize an expression mask set +*/ +#define initMaskSet(P) memset(P, 0, sizeof(*P)) + +/* +** Return the bitmask for the given cursor. Assign a new bitmask +** if this is the first time the cursor has been seen. +*/ +static int getMask(ExprMaskSet *pMaskSet, int iCursor){ + int i; + for(i=0; i<pMaskSet->n; i++){ + if( pMaskSet->ix[i]==iCursor ) return 1<<i; + } + if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){ + pMaskSet->n++; + pMaskSet->ix[i] = iCursor; + return 1<<i; + } + return 0; +} + +/* +** Destroy an expression mask set +*/ +#define freeMaskSet(P) /* NO-OP */ + +/* +** This routine walks (recursively) an expression tree and generates +** a bitmask indicating which tables are used in that expression +** tree. +** +** In order for this routine to work, the calling function must have +** previously invoked sqliteExprResolveIds() on the expression. See +** the header comment on that routine for additional information. +** The sqliteExprResolveIds() routines looks for column names and +** sets their opcodes to TK_COLUMN and their Expr.iTable fields to +** the VDBE cursor number of the table. +*/ +static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ + unsigned int mask = 0; + if( p==0 ) return 0; + if( p->op==TK_COLUMN ){ + return getMask(pMaskSet, p->iTable); + } + if( p->pRight ){ + mask = exprTableUsage(pMaskSet, p->pRight); + } + if( p->pLeft ){ + mask |= exprTableUsage(pMaskSet, p->pLeft); + } + if( p->pList ){ + int i; + for(i=0; i<p->pList->nExpr; i++){ + mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); + } + } + return mask; +} + +/* +** Return TRUE if the given operator is one of the operators that is +** allowed for an indexable WHERE clause. The allowed operators are +** "=", "<", ">", "<=", ">=", and "IN". +*/ +static int allowedOp(int op){ + switch( op ){ + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_EQ: + case TK_IN: + return 1; + default: + return 0; + } +} + +/* +** The input to this routine is an ExprInfo structure with only the +** "p" field filled in. The job of this routine is to analyze the +** subexpression and populate all the other fields of the ExprInfo +** structure. +*/ +static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){ + Expr *pExpr = pInfo->p; + pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); + pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); + pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); + pInfo->indexable = 0; + pInfo->idxLeft = -1; + pInfo->idxRight = -1; + if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ + if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ + pInfo->idxRight = pExpr->pRight->iTable; + pInfo->indexable = 1; + } + if( pExpr->pLeft->op==TK_COLUMN ){ + pInfo->idxLeft = pExpr->pLeft->iTable; + pInfo->indexable = 1; + } + } +} + +/* +** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the +** left-most table in the FROM clause of that same SELECT statement and +** the table has a cursor number of "base". +** +** This routine attempts to find an index for pTab that generates the +** correct record sequence for the given ORDER BY clause. The return value +** is a pointer to an index that does the job. NULL is returned if the +** table has no index that will generate the correct sort order. +** +** If there are two or more indices that generate the correct sort order +** and pPreferredIdx is one of those indices, then return pPreferredIdx. +** +** nEqCol is the number of columns of pPreferredIdx that are used as +** equality constraints. Any index returned must have exactly this same +** set of columns. The ORDER BY clause only matches index columns beyond the +** the first nEqCol columns. +** +** All terms of the ORDER BY clause must be either ASC or DESC. The +** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is +** set to 0 if the ORDER BY clause is all ASC. +*/ +static Index *findSortingIndex( + Table *pTab, /* The table to be sorted */ + int base, /* Cursor number for pTab */ + ExprList *pOrderBy, /* The ORDER BY clause */ + Index *pPreferredIdx, /* Use this index, if possible and not NULL */ + int nEqCol, /* Number of index columns used with == constraints */ + int *pbRev /* Set to 1 if ORDER BY is DESC */ +){ + int i, j; + Index *pMatch; + Index *pIdx; + int sortOrder; + + assert( pOrderBy!=0 ); + assert( pOrderBy->nExpr>0 ); + sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK; + for(i=0; i<pOrderBy->nExpr; i++){ + Expr *p; + if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){ + /* Indices can only be used if all ORDER BY terms are either + ** DESC or ASC. Indices cannot be used on a mixture. */ + return 0; + } + if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){ + /* Do not sort by index if there is a COLLATE clause */ + return 0; + } + p = pOrderBy->a[i].pExpr; + if( p->op!=TK_COLUMN || p->iTable!=base ){ + /* Can not use an index sort on anything that is not a column in the + ** left-most table of the FROM clause */ + return 0; + } + } + + /* If we get this far, it means the ORDER BY clause consists only of + ** ascending columns in the left-most table of the FROM clause. Now + ** check for a matching index. + */ + pMatch = 0; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int nExpr = pOrderBy->nExpr; + if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; + for(i=j=0; i<nEqCol; i++){ + if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; + if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; } + } + if( i<nEqCol ) continue; + for(i=0; i+j<nExpr; i++){ + if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break; + } + if( i+j>=nExpr ){ + pMatch = pIdx; + if( pIdx==pPreferredIdx ) break; + } + } + if( pMatch && pbRev ){ + *pbRev = sortOrder==SQLITE_SO_DESC; + } + return pMatch; +} + +/* +** Generate the beginning of the loop used for WHERE clause processing. +** The return value is a pointer to an (opaque) structure that contains +** information needed to terminate the loop. Later, the calling routine +** should invoke sqliteWhereEnd() with the return value of this function +** in order to complete the WHERE clause processing. +** +** If an error occurs, this routine returns NULL. +** +** The basic idea is to do a nested loop, one loop for each table in +** the FROM clause of a select. (INSERT and UPDATE statements are the +** same as a SELECT with only a single table in the FROM clause.) For +** example, if the SQL is this: +** +** SELECT * FROM t1, t2, t3 WHERE ...; +** +** Then the code generated is conceptually like the following: +** +** foreach row1 in t1 do \ Code generated +** foreach row2 in t2 do |-- by sqliteWhereBegin() +** foreach row3 in t3 do / +** ... +** end \ Code generated +** end |-- by sqliteWhereEnd() +** end / +** +** There are Btree cursors associated with each table. t1 uses cursor +** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. +** And so forth. This routine generates code to open those VDBE cursors +** and sqliteWhereEnd() generates the code to close them. +** +** If the WHERE clause is empty, the foreach loops must each scan their +** entire tables. Thus a three-way join is an O(N^3) operation. But if +** the tables have indices and there are terms in the WHERE clause that +** refer to those indices, a complete table scan can be avoided and the +** code will run much faster. Most of the work of this routine is checking +** to see if there are indices that can be used to speed up the loop. +** +** Terms of the WHERE clause are also used to limit which rows actually +** make it to the "..." in the middle of the loop. After each "foreach", +** terms of the WHERE clause that use only terms in that loop and outer +** loops are evaluated and if false a jump is made around all subsequent +** inner loops (or around the "..." if the test occurs within the inner- +** most loop) +** +** OUTER JOINS +** +** An outer join of tables t1 and t2 is conceptally coded as follows: +** +** foreach row1 in t1 do +** flag = 0 +** foreach row2 in t2 do +** start: +** ... +** flag = 1 +** end +** if flag==0 then +** move the row2 cursor to a null row +** goto start +** fi +** end +** +** ORDER BY CLAUSE PROCESSING +** +** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, +** if there is one. If there is no ORDER BY clause or if this routine +** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. +** +** If an index can be used so that the natural output order of the table +** scan is correct for the ORDER BY clause, then that index is used and +** *ppOrderBy is set to NULL. This is an optimization that prevents an +** unnecessary sort of the result set if an index appropriate for the +** ORDER BY clause already exists. +** +** If the where clause loops cannot be arranged to provide the correct +** output order, then the *ppOrderBy is unchanged. +*/ +WhereInfo *sqliteWhereBegin( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* A list of all tables to be scanned */ + Expr *pWhere, /* The WHERE clause */ + int pushKey, /* If TRUE, leave the table key on the stack */ + ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ +){ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Will become the return value of this function */ + Vdbe *v = pParse->pVdbe; /* The virtual database engine */ + int brk, cont = 0; /* Addresses used during code generation */ + int nExpr; /* Number of subexpressions in the WHERE clause */ + int loopMask; /* One bit set for each outer loop */ + int haveKey; /* True if KEY is on the stack */ + ExprMaskSet maskSet; /* The expression mask set */ + int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */ + int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */ + int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */ + ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */ + + /* pushKey is only allowed if there is a single table (as in an INSERT or + ** UPDATE statement) + */ + assert( pushKey==0 || pTabList->nSrc==1 ); + + /* Split the WHERE clause into separate subexpressions where each + ** subexpression is separated by an AND operator. If the aExpr[] + ** array fills up, the last entry might point to an expression which + ** contains additional unfactored AND operators. + */ + initMaskSet(&maskSet); + memset(aExpr, 0, sizeof(aExpr)); + nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); + if( nExpr==ARRAYSIZE(aExpr) ){ + sqliteErrorMsg(pParse, "WHERE clause too complex - no more " + "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); + return 0; + } + + /* Allocate and initialize the WhereInfo structure that will become the + ** return value. + */ + pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); + if( sqlite_malloc_failed ){ + sqliteFree(pWInfo); + return 0; + } + pWInfo->pParse = pParse; + pWInfo->pTabList = pTabList; + pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab; + pWInfo->iBreak = sqliteVdbeMakeLabel(v); + + /* Special case: a WHERE clause that is constant. Evaluate the + ** expression and either jump over all of the code or fall thru. + */ + if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){ + sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); + pWhere = 0; + } + + /* Analyze all of the subexpressions. + */ + for(i=0; i<nExpr; i++){ + exprAnalyze(&maskSet, &aExpr[i]); + + /* If we are executing a trigger body, remove all references to + ** new.* and old.* tables from the preretquisite masks. + */ + if( pParse->trigStack ){ + int x; + if( (x = pParse->trigStack->newIdx) >= 0 ){ + int mask = ~getMask(&maskSet, x); + aExpr[i].prereqRight &= mask; + aExpr[i].prereqLeft &= mask; + aExpr[i].prereqAll &= mask; + } + if( (x = pParse->trigStack->oldIdx) >= 0 ){ + int mask = ~getMask(&maskSet, x); + aExpr[i].prereqRight &= mask; + aExpr[i].prereqLeft &= mask; + aExpr[i].prereqAll &= mask; + } + } + } + + /* Figure out what index to use (if any) for each nested loop. + ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested + ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner + ** loop. + ** + ** If terms exist that use the ROWID of any table, then set the + ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table + ** to the index of the term containing the ROWID. We always prefer + ** to use a ROWID which can directly access a table rather than an + ** index which retquires reading an index first to get the rowid then + ** doing a second read of the actual database table. + ** + ** Actually, if there are more than 32 tables in the join, only the + ** first 32 tables are candidates for indices. This is (again) due + ** to the limit of 32 bits in an integer bitmask. + */ + loopMask = 0; + for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){ + int j; + int iCur = pTabList->a[i].iCursor; /* The cursor for this table */ + int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ + Table *pTab = pTabList->a[i].pTab; + Index *pIdx; + Index *pBestIdx = 0; + int bestScore = 0; + + /* Check to see if there is an expression that uses only the + ** ROWID field of this table. For terms of the form ROWID==expr + ** set iDirectEq[i] to the index of the term. For terms of the + ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index. + ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. + ** + ** (Added:) Treat ROWID IN expr like ROWID=expr. + */ + pWInfo->a[i].iCur = -1; + iDirectEq[i] = -1; + iDirectLt[i] = -1; + iDirectGt[i] = -1; + for(j=0; j<nExpr; j++){ + if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0 + && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ + switch( aExpr[j].p->op ){ + case TK_IN: + case TK_EQ: iDirectEq[i] = j; break; + case TK_LE: + case TK_LT: iDirectLt[i] = j; break; + case TK_GE: + case TK_GT: iDirectGt[i] = j; break; + } + } + if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0 + && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ + switch( aExpr[j].p->op ){ + case TK_EQ: iDirectEq[i] = j; break; + case TK_LE: + case TK_LT: iDirectGt[i] = j; break; + case TK_GE: + case TK_GT: iDirectLt[i] = j; break; + } + } + } + if( iDirectEq[i]>=0 ){ + loopMask |= mask; + pWInfo->a[i].pIdx = 0; + continue; + } + + /* Do a search for usable indices. Leave pBestIdx pointing to + ** the "best" index. pBestIdx is left set to NULL if no indices + ** are usable. + ** + ** The best index is determined as follows. For each of the + ** left-most terms that is fixed by an equality operator, add + ** 8 to the score. The right-most term of the index may be + ** constrained by an inequality. Add 1 if for an "x<..." constraint + ** and add 2 for an "x>..." constraint. Chose the index that + ** gives the best score. + ** + ** This scoring system is designed so that the score can later be + ** used to determine how the index is used. If the score&7 is 0 + ** then all constraints are equalities. If score&1 is not 0 then + ** there is an inequality used as a termination key. (ex: "x<...") + ** If score&2 is not 0 then there is an inequality used as the + ** start key. (ex: "x>..."). A score or 4 is the special case + ** of an IN operator constraint. (ex: "x IN ..."). + ** + ** The IN operator (as in "<expr> IN (...)") is treated the same as + ** an equality comparison except that it can only be used on the + ** left-most column of an index and other terms of the WHERE clause + ** cannot be used in conjunction with the IN operator to help satisfy + ** other columns of the index. + */ + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int eqMask = 0; /* Index columns covered by an x=... term */ + int ltMask = 0; /* Index columns covered by an x<... term */ + int gtMask = 0; /* Index columns covered by an x>... term */ + int inMask = 0; /* Index columns covered by an x IN .. term */ + int nEq, m, score; + + if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ + for(j=0; j<nExpr; j++){ + if( aExpr[j].idxLeft==iCur + && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ + int iColumn = aExpr[j].p->pLeft->iColumn; + int k; + for(k=0; k<pIdx->nColumn; k++){ + if( pIdx->aiColumn[k]==iColumn ){ + switch( aExpr[j].p->op ){ + case TK_IN: { + if( k==0 ) inMask |= 1; + break; + } + case TK_EQ: { + eqMask |= 1<<k; + break; + } + case TK_LE: + case TK_LT: { + ltMask |= 1<<k; + break; + } + case TK_GE: + case TK_GT: { + gtMask |= 1<<k; + break; + } + default: { + /* CANT_HAPPEN */ + assert( 0 ); + break; + } + } + break; + } + } + } + if( aExpr[j].idxRight==iCur + && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ + int iColumn = aExpr[j].p->pRight->iColumn; + int k; + for(k=0; k<pIdx->nColumn; k++){ + if( pIdx->aiColumn[k]==iColumn ){ + switch( aExpr[j].p->op ){ + case TK_EQ: { + eqMask |= 1<<k; + break; + } + case TK_LE: + case TK_LT: { + gtMask |= 1<<k; + break; + } + case TK_GE: + case TK_GT: { + ltMask |= 1<<k; + break; + } + default: { + /* CANT_HAPPEN */ + assert( 0 ); + break; + } + } + break; + } + } + } + } + + /* The following loop ends with nEq set to the number of columns + ** on the left of the index with == constraints. + */ + for(nEq=0; nEq<pIdx->nColumn; nEq++){ + m = (1<<(nEq+1))-1; + if( (m & eqMask)!=m ) break; + } + score = nEq*8; /* Base score is 8 times number of == constraints */ + m = 1<<nEq; + if( m & ltMask ) score++; /* Increase score for a < constraint */ + if( m & gtMask ) score+=2; /* Increase score for a > constraint */ + if( score==0 && inMask ) score = 4; /* Default score for IN constraint */ + if( score>bestScore ){ + pBestIdx = pIdx; + bestScore = score; + } + } + pWInfo->a[i].pIdx = pBestIdx; + pWInfo->a[i].score = bestScore; + pWInfo->a[i].bRev = 0; + loopMask |= mask; + if( pBestIdx ){ + pWInfo->a[i].iCur = pParse->nTab++; + pWInfo->peakNTab = pParse->nTab; + } + } + + /* Check to see if the ORDER BY clause is or can be satisfied by the + ** use of an index on the first table. + */ + if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ + Index *pSortIdx; + Index *pIdx; + Table *pTab; + int bRev = 0; + + pTab = pTabList->a[0].pTab; + pIdx = pWInfo->a[0].pIdx; + if( pIdx && pWInfo->a[0].score==4 ){ + /* If there is already an IN index on the left-most table, + ** it will not give the correct sort order. + ** So, pretend that no suitable index is found. + */ + pSortIdx = 0; + }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ + /* If the left-most column is accessed using its ROWID, then do + ** not try to sort by index. + */ + pSortIdx = 0; + }else{ + int nEqCol = (pWInfo->a[0].score+4)/8; + pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, + *ppOrderBy, pIdx, nEqCol, &bRev); + } + if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ + if( pIdx==0 ){ + pWInfo->a[0].pIdx = pSortIdx; + pWInfo->a[0].iCur = pParse->nTab++; + pWInfo->peakNTab = pParse->nTab; + } + pWInfo->a[0].bRev = bRev; + *ppOrderBy = 0; + } + } + + /* Open all tables in the pTabList and all indices used by those tables. + */ + for(i=0; i<pTabList->nSrc; i++){ + Table *pTab; + Index *pIx; + + pTab = pTabList->a[i].pTab; + if( pTab->isTransient || pTab->pSelect ) continue; + sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); + sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum, + pTab->zName, P3_STATIC); + sqliteCodeVerifySchema(pParse, pTab->iDb); + if( (pIx = pWInfo->a[i].pIdx)!=0 ){ + sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0); + sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0); + } + } + + /* Generate the code to do the search + */ + loopMask = 0; + for(i=0; i<pTabList->nSrc; i++){ + int j, k; + int iCur = pTabList->a[i].iCursor; + Index *pIdx; + WhereLevel *pLevel = &pWInfo->a[i]; + + /* If this is the right table of a LEFT OUTER JOIN, allocate and + ** initialize a memory cell that records if this table matches any + ** row of the left table of the join. + */ + if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ + if( !pParse->nMem ) pParse->nMem++; + pLevel->iLeftJoin = pParse->nMem++; + sqliteVdbeAddOp(v, OP_String, 0, 0); + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); + } + + pIdx = pLevel->pIdx; + pLevel->inOp = OP_Noop; + if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){ + /* Case 1: We can directly reference a single row using an + ** equality comparison against the ROWID field. Or + ** we reference multiple rows using a "rowid IN (...)" + ** construct. + */ + k = iDirectEq[i]; + assert( k<nExpr ); + assert( aExpr[k].p!=0 ); + assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); + brk = pLevel->brk = sqliteVdbeMakeLabel(v); + if( aExpr[k].idxLeft==iCur ){ + Expr *pX = aExpr[k].p; + if( pX->op!=TK_IN ){ + sqliteExprCode(pParse, aExpr[k].p->pRight); + }else if( pX->pList ){ + sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); + pLevel->inOp = OP_SetNext; + pLevel->inP1 = pX->iTable; + pLevel->inP2 = sqliteVdbeCurrentAddr(v); + }else{ + assert( pX->pSelect ); + sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); + sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); + pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); + pLevel->inOp = OP_Next; + pLevel->inP1 = pX->iTable; + } + }else{ + sqliteExprCode(pParse, aExpr[k].p->pLeft); + } + aExpr[k].p = 0; + cont = pLevel->cont = sqliteVdbeMakeLabel(v); + sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk); + haveKey = 0; + sqliteVdbeAddOp(v, OP_NotExists, iCur, brk); + pLevel->op = OP_Noop; + }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ + /* Case 2: There is an index and all terms of the WHERE clause that + ** refer to the index use the "==" or "IN" operators. + */ + int start; + int testOp; + int nColumn = (pLevel->score+4)/8; + brk = pLevel->brk = sqliteVdbeMakeLabel(v); + for(j=0; j<nColumn; j++){ + for(k=0; k<nExpr; k++){ + Expr *pX = aExpr[k].p; + if( pX==0 ) continue; + if( aExpr[k].idxLeft==iCur + && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight + && pX->pLeft->iColumn==pIdx->aiColumn[j] + ){ + if( pX->op==TK_EQ ){ + sqliteExprCode(pParse, pX->pRight); + aExpr[k].p = 0; + break; + } + if( pX->op==TK_IN && nColumn==1 ){ + if( pX->pList ){ + sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); + pLevel->inOp = OP_SetNext; + pLevel->inP1 = pX->iTable; + pLevel->inP2 = sqliteVdbeCurrentAddr(v); + }else{ + assert( pX->pSelect ); + sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); + sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); + pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); + pLevel->inOp = OP_Next; + pLevel->inP1 = pX->iTable; + } + aExpr[k].p = 0; + break; + } + } + if( aExpr[k].idxRight==iCur + && aExpr[k].p->op==TK_EQ + && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft + && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, aExpr[k].p->pLeft); + aExpr[k].p = 0; + break; + } + } + } + pLevel->iMem = pParse->nMem++; + cont = pLevel->cont = sqliteVdbeMakeLabel(v); + sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3); + sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); + sqliteVdbeAddOp(v, OP_Goto, 0, brk); + sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0); + sqliteAddIdxKeyType(v, pIdx); + if( nColumn==pIdx->nColumn || pLevel->bRev ){ + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); + testOp = OP_IdxGT; + }else{ + sqliteVdbeAddOp(v, OP_Dup, 0, 0); + sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + testOp = OP_IdxGE; + } + if( pLevel->bRev ){ + /* Scan in reverse order */ + sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); + sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); + start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); + pLevel->op = OP_Prev; + }else{ + /* Scan in the forward order */ + sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); + start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); + pLevel->op = OP_Next; + } + sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); + sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont); + sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); + if( i==pTabList->nSrc-1 && pushKey ){ + haveKey = 1; + }else{ + sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); + haveKey = 0; + } + pLevel->p1 = pLevel->iCur; + pLevel->p2 = start; + }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){ + /* Case 3: We have an inequality comparison against the ROWID field. + */ + int testOp = OP_Noop; + int start; + + brk = pLevel->brk = sqliteVdbeMakeLabel(v); + cont = pLevel->cont = sqliteVdbeMakeLabel(v); + if( iDirectGt[i]>=0 ){ + k = iDirectGt[i]; + assert( k<nExpr ); + assert( aExpr[k].p!=0 ); + assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); + if( aExpr[k].idxLeft==iCur ){ + sqliteExprCode(pParse, aExpr[k].p->pRight); + }else{ + sqliteExprCode(pParse, aExpr[k].p->pLeft); + } + sqliteVdbeAddOp(v, OP_ForceInt, + aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk); + sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk); + aExpr[k].p = 0; + }else{ + sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); + } + if( iDirectLt[i]>=0 ){ + k = iDirectLt[i]; + assert( k<nExpr ); + assert( aExpr[k].p!=0 ); + assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); + if( aExpr[k].idxLeft==iCur ){ + sqliteExprCode(pParse, aExpr[k].p->pRight); + }else{ + sqliteExprCode(pParse, aExpr[k].p->pLeft); + } + /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */ + pLevel->iMem = pParse->nMem++; + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){ + testOp = OP_Ge; + }else{ + testOp = OP_Gt; + } + aExpr[k].p = 0; + } + start = sqliteVdbeCurrentAddr(v); + pLevel->op = OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = start; + if( testOp!=OP_Noop ){ + sqliteVdbeAddOp(v, OP_Recno, iCur, 0); + sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqliteVdbeAddOp(v, testOp, 0, brk); + } + haveKey = 0; + }else if( pIdx==0 ){ + /* Case 4: There is no usable index. We must do a complete + ** scan of the entire database table. + */ + int start; + + brk = pLevel->brk = sqliteVdbeMakeLabel(v); + cont = pLevel->cont = sqliteVdbeMakeLabel(v); + sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); + start = sqliteVdbeCurrentAddr(v); + pLevel->op = OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = start; + haveKey = 0; + }else{ + /* Case 5: The WHERE clause term that refers to the right-most + ** column of the index is an inequality. For example, if + ** the index is on (x,y,z) and the WHERE clause is of the + ** form "x=5 AND y<10" then this case is used. Only the + ** right-most column can be an inequality - the rest must + ** use the "==" operator. + ** + ** This case is also used when there are no WHERE clause + ** constraints but an index is selected anyway, in order + ** to force the output order to conform to an ORDER BY. + */ + int score = pLevel->score; + int nEqColumn = score/8; + int start; + int leFlag, geFlag; + int testOp; + + /* Evaluate the equality constraints + */ + for(j=0; j<nEqColumn; j++){ + for(k=0; k<nExpr; k++){ + if( aExpr[k].p==0 ) continue; + if( aExpr[k].idxLeft==iCur + && aExpr[k].p->op==TK_EQ + && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight + && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, aExpr[k].p->pRight); + aExpr[k].p = 0; + break; + } + if( aExpr[k].idxRight==iCur + && aExpr[k].p->op==TK_EQ + && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft + && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, aExpr[k].p->pLeft); + aExpr[k].p = 0; + break; + } + } + } + + /* Duplicate the equality term values because they will all be + ** used twice: once to make the termination key and once to make the + ** start key. + */ + for(j=0; j<nEqColumn; j++){ + sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0); + } + + /* Labels for the beginning and end of the loop + */ + cont = pLevel->cont = sqliteVdbeMakeLabel(v); + brk = pLevel->brk = sqliteVdbeMakeLabel(v); + + /* Generate the termination key. This is the key value that + ** will end the search. There is no termination key if there + ** are no equality terms and no "X<..." term. + ** + ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" + ** key computed here really ends up being the start key. + */ + if( (score & 1)!=0 ){ + for(k=0; k<nExpr; k++){ + Expr *pExpr = aExpr[k].p; + if( pExpr==0 ) continue; + if( aExpr[k].idxLeft==iCur + && (pExpr->op==TK_LT || pExpr->op==TK_LE) + && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight + && pExpr->pLeft->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, pExpr->pRight); + leFlag = pExpr->op==TK_LE; + aExpr[k].p = 0; + break; + } + if( aExpr[k].idxRight==iCur + && (pExpr->op==TK_GT || pExpr->op==TK_GE) + && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft + && pExpr->pRight->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, pExpr->pLeft); + leFlag = pExpr->op==TK_GE; + aExpr[k].p = 0; + break; + } + } + testOp = OP_IdxGE; + }else{ + testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; + leFlag = 1; + } + if( testOp!=OP_Noop ){ + int nCol = nEqColumn + (score & 1); + pLevel->iMem = pParse->nMem++; + sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); + sqliteVdbeAddOp(v, OP_Pop, nCol, 0); + sqliteVdbeAddOp(v, OP_Goto, 0, brk); + sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); + sqliteAddIdxKeyType(v, pIdx); + if( leFlag ){ + sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); + } + if( pLevel->bRev ){ + sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); + }else{ + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + } + }else if( pLevel->bRev ){ + sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk); + } + + /* Generate the start key. This is the key that defines the lower + ** bound on the search. There is no start key if there are no + ** equality terms and if there is no "X>..." term. In + ** that case, generate a "Rewind" instruction in place of the + ** start key search. + ** + ** 2002-Dec-04: In the case of a reverse-order search, the so-called + ** "start" key really ends up being used as the termination key. + */ + if( (score & 2)!=0 ){ + for(k=0; k<nExpr; k++){ + Expr *pExpr = aExpr[k].p; + if( pExpr==0 ) continue; + if( aExpr[k].idxLeft==iCur + && (pExpr->op==TK_GT || pExpr->op==TK_GE) + && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight + && pExpr->pLeft->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, pExpr->pRight); + geFlag = pExpr->op==TK_GE; + aExpr[k].p = 0; + break; + } + if( aExpr[k].idxRight==iCur + && (pExpr->op==TK_LT || pExpr->op==TK_LE) + && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft + && pExpr->pRight->iColumn==pIdx->aiColumn[j] + ){ + sqliteExprCode(pParse, pExpr->pLeft); + geFlag = pExpr->op==TK_LE; + aExpr[k].p = 0; + break; + } + } + }else{ + geFlag = 1; + } + if( nEqColumn>0 || (score&2)!=0 ){ + int nCol = nEqColumn + ((score&2)!=0); + sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); + sqliteVdbeAddOp(v, OP_Pop, nCol, 0); + sqliteVdbeAddOp(v, OP_Goto, 0, brk); + sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); + sqliteAddIdxKeyType(v, pIdx); + if( !geFlag ){ + sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); + } + if( pLevel->bRev ){ + pLevel->iMem = pParse->nMem++; + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); + testOp = OP_IdxLT; + }else{ + sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); + } + }else if( pLevel->bRev ){ + testOp = OP_Noop; + }else{ + sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); + } + + /* Generate the the top of the loop. If there is a termination + ** key we have to test for that key and abort at the top of the + ** loop. + */ + start = sqliteVdbeCurrentAddr(v); + if( testOp!=OP_Noop ){ + sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); + sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); + } + sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); + sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); + sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); + if( i==pTabList->nSrc-1 && pushKey ){ + haveKey = 1; + }else{ + sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); + haveKey = 0; + } + + /* Record the instruction used to terminate the loop. + */ + pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; + pLevel->p1 = pLevel->iCur; + pLevel->p2 = start; + } + loopMask |= getMask(&maskSet, iCur); + + /* Insert code to test every subexpression that can be completely + ** computed using the current set of tables. + */ + for(j=0; j<nExpr; j++){ + if( aExpr[j].p==0 ) continue; + if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; + if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){ + continue; + } + if( haveKey ){ + haveKey = 0; + sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); + } + sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); + aExpr[j].p = 0; + } + brk = cont; + + /* For a LEFT OUTER JOIN, generate code that will record the fact that + ** at least one row of the right table has matched the left table. + */ + if( pLevel->iLeftJoin ){ + pLevel->top = sqliteVdbeCurrentAddr(v); + sqliteVdbeAddOp(v, OP_Integer, 1, 0); + sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); + for(j=0; j<nExpr; j++){ + if( aExpr[j].p==0 ) continue; + if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; + if( haveKey ){ + /* Cannot happen. "haveKey" can only be true if pushKey is true + ** an pushKey can only be true for DELETE and UPDATE and there are + ** no outer joins with DELETE and UPDATE. + */ + haveKey = 0; + sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); + } + sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); + aExpr[j].p = 0; + } + } + } + pWInfo->iContinue = cont; + if( pushKey && !haveKey ){ + sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); + } + freeMaskSet(&maskSet); + return pWInfo; +} + +/* +** Generate the end of the WHERE loop. See comments on +** sqliteWhereBegin() for additional information. +*/ +void sqliteWhereEnd(WhereInfo *pWInfo){ + Vdbe *v = pWInfo->pParse->pVdbe; + int i; + WhereLevel *pLevel; + SrcList *pTabList = pWInfo->pTabList; + + for(i=pTabList->nSrc-1; i>=0; i--){ + pLevel = &pWInfo->a[i]; + sqliteVdbeResolveLabel(v, pLevel->cont); + if( pLevel->op!=OP_Noop ){ + sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); + } + sqliteVdbeResolveLabel(v, pLevel->brk); + if( pLevel->inOp!=OP_Noop ){ + sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); + } + if( pLevel->iLeftJoin ){ + int addr; + addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); + sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); + sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); + if( pLevel->iCur>=0 ){ + sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); + } + sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top); + } + } + sqliteVdbeResolveLabel(v, pWInfo->iBreak); + for(i=0; i<pTabList->nSrc; i++){ + Table *pTab = pTabList->a[i].pTab; + assert( pTab!=0 ); + if( pTab->isTransient || pTab->pSelect ) continue; + pLevel = &pWInfo->a[i]; + sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); + if( pLevel->pIdx!=0 ){ + sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); + } + } +#if 0 /* Never reuse a cursor */ + if( pWInfo->pParse->nTab==pWInfo->peakNTab ){ + pWInfo->pParse->nTab = pWInfo->savedNTab; + } +#endif + sqliteFree(pWInfo); + return; +} |