diff options
Diffstat (limited to 'src/kernel/tqimage.cpp')
-rw-r--r-- | src/kernel/tqimage.cpp | 6531 |
1 files changed, 6531 insertions, 0 deletions
diff --git a/src/kernel/tqimage.cpp b/src/kernel/tqimage.cpp new file mode 100644 index 000000000..7a454818e --- /dev/null +++ b/src/kernel/tqimage.cpp @@ -0,0 +1,6531 @@ +/**************************************************************************** +** +** Implementation of TQImage and TQImageIO classes +** +** Created : 950207 +** +** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. +** +** This file is part of the kernel module of the TQt GUI Toolkit. +** +** This file may be used under the terms of the GNU General +** Public License versions 2.0 or 3.0 as published by the Free +** Software Foundation and appearing in the files LICENSE.GPL2 +** and LICENSE.GPL3 included in the packaging of this file. +** Alternatively you may (at your option) use any later version +** of the GNU General Public License if such license has been +** publicly approved by Trolltech ASA (or its successors, if any) +** and the KDE Free TQt Foundation. +** +** Please review the following information to ensure GNU General +** Public Licensing requirements will be met: +** http://trolltech.com/products/qt/licenses/licensing/opensource/. +** If you are unsure which license is appropriate for your use, please +** review the following information: +** http://trolltech.com/products/qt/licenses/licensing/licensingoverview +** or contact the sales department at sales@trolltech.com. +** +** This file may be used under the terms of the Q Public License as +** defined by Trolltech ASA and appearing in the file LICENSE.TQPL +** included in the packaging of this file. Licensees holding valid TQt +** Commercial licenses may use this file in accordance with the TQt +** Commercial License Agreement provided with the Software. +** +** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, +** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR +** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted +** herein. +** +**********************************************************************/ + +#include "tqimage.h" +#include "ntqregexp.h" +#include "ntqfile.h" +#include "ntqdatastream.h" +#include "ntqtextstream.h" +#include "ntqbuffer.h" +#include "tqptrlist.h" +#include "ntqasyncimageio.h" +#include "ntqpngio.h" +#include "ntqmngio.h" +#include "ntqjpegio.h" +#include "tqmap.h" +#include <private/qpluginmanager_p.h> +#include "tqimageformatinterface_p.h" +#include "ntqwmatrix.h" +#include "ntqapplication.h" +#include "ntqmime.h" +#include "ntqdragobject.h" +#include <ctype.h> +#include <stdlib.h> + +#ifdef TQ_WS_QWS +#include "qgfx_qws.h" +#endif + +// 16bpp images on supported on TQt/Embedded +#if !defined( TQ_WS_QWS ) && !defined(TQT_NO_IMAGE_16_BIT) +#define TQT_NO_IMAGE_16_BIT +#endif + + +/*! + \class TQImage + \brief The TQImage class provides a hardware-independent pixmap + representation with direct access to the pixel data. + + \ingroup images + \ingroup graphics + \ingroup shared + \mainclass + + It is one of the two classes TQt provides for dealing with images, + the other being TQPixmap. TQImage is designed and optimized for I/O + and for direct pixel access/manipulation. TQPixmap is designed and + optimized for drawing. There are (slow) functions to convert + between TQImage and TQPixmap: TQPixmap::convertToImage() and + TQPixmap::convertFromImage(). + + An image has the parameters \link width() width\endlink, \link + height() height\endlink and \link depth() depth\endlink (bits per + pixel, bpp), a color table and the actual \link bits() + pixels\endlink. TQImage supports 1-bpp, 8-bpp and 32-bpp image + data. 1-bpp and 8-bpp images use a color lookup table; the pixel + value is a color table index. + + 32-bpp images encode an RGB value in 24 bits and ignore the color + table. The most significant byte is used for the \link + setAlphaBuffer() alpha buffer\endlink. + + An entry in the color table is an RGB triplet encoded as a \c + uint. Use the \link ::tqRed() tqRed()\endlink, \link ::tqGreen() + tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink functions (\c + ntqcolor.h) to access the components, and \link ::tqRgb() + tqRgb\endlink to make an RGB triplet (see the TQColor class + documentation). + + 1-bpp (monochrome) images have a color table with a most two + colors. There are two different formats: big endian (MSB first) or + little endian (LSB first) bit order. To access a single bit you + will must do some bit shifts: + + \code + TQImage image; + // sets bit at (x,y) to 1 + if ( image.bitOrder() == TQImage::LittleEndian ) + *(image.scanLine(y) + (x >> 3)) |= 1 << (x & 7); + else + *(image.scanLine(y) + (x >> 3)) |= 1 << (7 - (x & 7)); + \endcode + + If this looks complicated, it might be a good idea to convert the + 1-bpp image to an 8-bpp image using convertDepth(). + + 8-bpp images are much easier to work with than 1-bpp images + because they have a single byte per pixel: + + \code + TQImage image; + // set entry 19 in the color table to yellow + image.setColor( 19, tqRgb(255,255,0) ); + // set 8 bit pixel at (x,y) to value yellow (in color table) + *(image.scanLine(y) + x) = 19; + \endcode + + 32-bpp images ignore the color table; instead, each pixel contains + the RGB triplet. 24 bits contain the RGB value; the most + significant byte is reserved for the alpha buffer. + + \code + TQImage image; + // sets 32 bit pixel at (x,y) to yellow. + uint *p = (uint *)image.scanLine(y) + x; + *p = tqRgb(255,255,0); + \endcode + + On TQt/Embedded, scanlines are aligned to the pixel depth and may + be padded to any degree, while on all other platforms, the + scanlines are 32-bit aligned for all depths. The constructor + taking a \c{uchar*} argument always expects 32-bit aligned data. + On TQt/Embedded, an additional constructor allows the number of + bytes-per-line to be specified. + + TQImage supports a variety of methods for getting information about + the image, for example, colorTable(), allGray(), isGrayscale(), + bitOrder(), bytesPerLine(), depth(), dotsPerMeterX() and + dotsPerMeterY(), hasAlphaBuffer(), numBytes(), numColors(), and + width() and height(). + + Pixel colors are retrieved with pixel() and set with setPixel(). + + TQImage also supports a number of functions for creating a new + image that is a transformed version of the original. For example, + copy(), convertBitOrder(), convertDepth(), createAlphaMask(), + createHeuristicMask(), mirror(), scale(), smoothScale(), swapRGB() + and xForm(). There are also functions for changing attributes of + an image in-place, for example, setAlphaBuffer(), setColor(), + setDotsPerMeterX() and setDotsPerMeterY() and setNumColors(). + + Images can be loaded and saved in the supported formats. Images + are saved to a file with save(). Images are loaded from a file + with load() (or in the constructor) or from an array of data with + loadFromData(). The lists of supported formats are available from + inputFormatList() and outputFormatList(). + + Strings of text may be added to images using setText(). + + The TQImage class uses explicit \link shclass.html sharing\endlink, + similar to that used by TQMemArray. + + New image formats can be added as \link plugins-howto.html + plugins\endlink. + + \sa TQImageIO TQPixmap \link shclass.html Shared Classes\endlink +*/ + + +/*! + \enum TQImage::Endian + + This enum type is used to describe the endianness of the CPU and + graphics hardware. + + \value IgnoreEndian Endianness does not matter. Useful for some + operations that are independent of endianness. + \value BigEndian Network byte order, as on SPARC and Motorola CPUs. + \value LittleEndian PC/Alpha byte order. +*/ + +/*! + \enum TQt::ImageConversionFlags + + The conversion flag is a bitwise-OR of the following values. The + options marked "(default)" are set if no other values from the + list are included (since the defaults are zero): + + Color/Mono preference (ignored for TQBitmap) + \value AutoColor (default) - If the image has \link + TQImage::depth() depth\endlink 1 and contains only + black and white pixels, the pixmap becomes monochrome. + \value ColorOnly The pixmap is dithered/converted to the + \link TQPixmap::defaultDepth() native display depth\endlink. + \value MonoOnly The pixmap becomes monochrome. If necessary, + it is dithered using the chosen dithering algorithm. + + Dithering mode preference for RGB channels + \value DiffuseDither (default) - A high-quality dither. + \value OrderedDither A faster, more ordered dither. + \value ThresholdDither No dithering; closest color is used. + + Dithering mode preference for alpha channel + \value ThresholdAlphaDither (default) - No dithering. + \value OrderedAlphaDither A faster, more ordered dither. + \value DiffuseAlphaDither A high-quality dither. + \value NoAlpha Not supported. + + Color matching versus dithering preference + \value PreferDither (default when converting to a pixmap) - Always dither + 32-bit images when the image is converted to 8 bits. + \value AvoidDither (default when converting for the purpose of saving to + file) - Dither 32-bit images only if the image has more than 256 + colors and it is being converted to 8 bits. + \value AutoDither Not supported. + + The following are not values that are used directly, but masks for + the above classes: + \value ColorMode_Mask Mask for the color mode. + \value Dither_Mask Mask for the dithering mode for RGB channels. + \value AlphaDither_Mask Mask for the dithering mode for the alpha channel. + \value DitherMode_Mask Mask for the mode that determines the preference of + color matching versus dithering. + + Using 0 as the conversion flag sets all the default options. +*/ + +#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) +#pragma message disable narrowptr +#endif + +#ifndef TQT_NO_IMAGE_TEXT +class TQImageDataMisc { +public: + TQImageDataMisc() { } + TQImageDataMisc( const TQImageDataMisc& o ) : + text_lang(o.text_lang) { } + + TQImageDataMisc& operator=(const TQImageDataMisc& o) + { + text_lang = o.text_lang; + return *this; + } + TQValueList<TQImageTextKeyLang> list() + { + return text_lang.keys(); + } + + TQStringList languages() + { + TQStringList r; + TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin(); + for ( ; it != text_lang.end(); ++it ) { + r.remove( it.key().lang ); + r.append( it.key().lang ); + } + return r; + } + TQStringList keys() + { + TQStringList r; + TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin(); + for ( ; it != text_lang.end(); ++it ) { + r.remove( it.key().key ); + r.append( it.key().key ); + } + return r; + } + + TQMap<TQImageTextKeyLang,TQString> text_lang; +}; +#endif // TQT_NO_IMAGE_TEXT + + + +/***************************************************************************** + TQImage member functions + *****************************************************************************/ + +// table to flip bits +static const uchar bitflip[256] = { + /* + open OUT, "| fmt"; + for $i (0..255) { + print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) | + (($i >> 3) & 0x04) | (($i >> 1) & 0x08) | + (($i << 7) & 0x80) | (($i << 5) & 0x40) | + (($i << 3) & 0x20) | (($i << 1) & 0x10), ", "; + } + close OUT; + */ + 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, + 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, + 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, + 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, + 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, + 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, + 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, + 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, + 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, + 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, + 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, + 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, + 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, + 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, + 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, + 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 +}; + +const uchar *qt_get_bitflip_array() // called from TQPixmap code +{ + return bitflip; +} + + +/*! + Constructs a null image. + + \sa isNull() +*/ + +TQImage::TQImage() +{ + init(); +} + +/*! + Constructs an image with \a w width, \a h height, \a depth bits + per pixel, \a numColors colors and bit order \a bitOrder. + + Using this constructor is the same as first constructing a null + image and then calling the create() function. + + \sa create() +*/ + +TQImage::TQImage( int w, int h, int depth, int numColors, Endian bitOrder ) +{ + init(); + create( w, h, depth, numColors, bitOrder ); +} + +/*! + Constructs an image with size \a size pixels, depth \a depth bits, + \a numColors and \a bitOrder endianness. + + Using this constructor is the same as first constructing a null + image and then calling the create() function. + + \sa create() +*/ +TQImage::TQImage( const TQSize& size, int depth, int numColors, Endian bitOrder ) +{ + init(); + create( size, depth, numColors, bitOrder ); +} + +#ifndef TQT_NO_IMAGEIO +/*! + Constructs an image and tries to load the image from the file \a + fileName. + + If \a format is specified, the loader attempts to read the image + using the specified format. If \a format is not specified (which + is the default), the loader reads a few bytes from the header to + guess the file format. + + If the loading of the image failed, this object is a \link + isNull() null\endlink image. + + The TQImageIO documentation lists the supported image formats and + explains how to add extra formats. + + \sa load() isNull() TQImageIO +*/ + +TQImage::TQImage( const TQString &fileName, const char* format ) +{ + init(); + load( fileName, format ); +} + +#ifndef TQT_NO_IMAGEIO_XPM +// helper +static void read_xpm_image_or_array( TQImageIO *, const char * const *, TQImage & ); +#endif +/*! + Constructs an image from \a xpm, which must be a valid XPM image. + + Errors are silently ignored. + + Note that it's possible to squeeze the XPM variable a little bit + by using an unusual declaration: + + \code + static const char * const start_xpm[]={ + "16 15 8 1", + "a c #cec6bd", + .... + \endcode + + The extra \c const makes the entire definition read-only, which is + slightly more efficient (e.g. when the code is in a shared + library) and ROMable when the application is to be stored in ROM. +*/ + +TQImage::TQImage( const char * const xpm[] ) +{ + init(); +#ifndef TQT_NO_IMAGEIO_XPM + read_xpm_image_or_array( 0, xpm, *this ); +#else + // We use a tqFatal rather than disabling the whole function, as this + // constructor may be ambiguous. + tqFatal("XPM not supported"); +#endif +} + +/*! + Constructs an image from the binary data \a array. It tries to + guess the file format. + + If the loading of the image failed, this object is a \link + isNull() null\endlink image. + + \sa loadFromData() isNull() imageFormat() +*/ +TQImage::TQImage( const TQByteArray &array ) +{ + init(); + loadFromData(array); +} +#endif //TQT_NO_IMAGEIO + + +/*! + Constructs a \link shclass.html shallow copy\endlink of \a image. +*/ + +TQImage::TQImage( const TQImage &image ) +{ + data = image.data; + data->ref(); +} + +/*! + Constructs an image \a w pixels wide, \a h pixels high with a + color depth of \a depth, that uses an existing memory buffer, \a + yourdata. The buffer must remain valid throughout the life of the + TQImage. The image does not delete the buffer at destruction. + + If \a colortable is 0, a color table sufficient for \a numColors + will be allocated (and destructed later). + + Note that \a yourdata must be 32-bit aligned. + + The endianness is given in \a bitOrder. +*/ +TQImage::TQImage( uchar* yourdata, int w, int h, int depth, + TQRgb* colortable, int numColors, + Endian bitOrder ) +{ + init(); + int bpl = ((w*depth+31)/32)*4; // bytes per scanline + if ( w <= 0 || h <= 0 || depth <= 0 || numColors < 0 + || INT_MAX / sizeof(uchar *) < uint(h) + || INT_MAX / uint(depth) < uint(w) + || bpl <= 0 + || INT_MAX / uint(bpl) < uint(h) ) + return; // invalid parameter(s) + data->w = w; + data->h = h; + data->d = depth; + data->ncols = depth != 32 ? numColors : 0; + if ( !yourdata ) + return; // Image header info can be saved without needing to allocate memory. + data->nbytes = bpl*h; + if ( colortable || !data->ncols ) { + data->ctbl = colortable; + data->ctbl_mine = FALSE; + } else { + // calloc since we realloc, etc. later (ick) + data->ctbl = (TQRgb*)calloc( data->ncols*sizeof(TQRgb), data->ncols ); + TQ_CHECK_PTR(data->ctbl); + data->ctbl_mine = TRUE; + } + uchar** jt = (uchar**)malloc(h*sizeof(uchar*)); + TQ_CHECK_PTR(jt); + for (int j=0; j<h; j++) { + jt[j] = yourdata+j*bpl; + } + data->bits = jt; + data->bitordr = bitOrder; +} + +#ifdef TQ_WS_QWS + +/*! + Constructs an image that uses an existing memory buffer. The + buffer must remain valid for the life of the TQImage. The image + does not delete the buffer at destruction. The buffer is passed as + \a yourdata. The image's width is \a w and its height is \a h. The + color depth is \a depth. \a bpl specifies the number of bytes per + line. + + If \a colortable is 0, a color table sufficient for \a numColors + will be allocated (and destructed later). + + The endianness is specified by \a bitOrder. + + \warning This constructor is only available on TQt/Embedded. +*/ +TQImage::TQImage( uchar* yourdata, int w, int h, int depth, + int bpl, TQRgb* colortable, int numColors, + Endian bitOrder ) +{ + init(); + if ( !yourdata || w <= 0 || h <= 0 || depth <= 0 || numColors < 0 + || INT_MAX / sizeof(uchar *) < uint(h) + || INT_MAX / uint(bpl) < uint(h) + ) + return; // invalid parameter(s) + data->w = w; + data->h = h; + data->d = depth; + data->ncols = numColors; + data->nbytes = bpl * h; + if ( colortable || !numColors ) { + data->ctbl = colortable; + data->ctbl_mine = FALSE; + } else { + // calloc since we realloc, etc. later (ick) + data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), numColors ); + TQ_CHECK_PTR(data->ctbl); + data->ctbl_mine = TRUE; + } + uchar** jt = (uchar**)malloc(h*sizeof(uchar*)); + TQ_CHECK_PTR(jt); + for (int j=0; j<h; j++) { + jt[j] = yourdata+j*bpl; + } + data->bits = jt; + data->bitordr = bitOrder; +} +#endif // TQ_WS_QWS + +/*! + Destroys the image and cleans up. +*/ + +TQImage::~TQImage() +{ + if ( data && data->deref() ) { + reset(); + delete data; + } +} + + + + +/*! Convenience function. Gets the data associated with the absolute + name \a abs_name from the default mime source factory and decodes it + to an image. + + \sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode() +*/ +#ifndef TQT_NO_MIME +TQImage TQImage::fromMimeSource( const TQString &abs_name ) +{ + const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name ); + if ( !m ) { +#if defined(QT_CHECK_STATE) + tqWarning("TQImage::fromMimeSource: Cannot find image \"%s\" in the mime source factory", abs_name.latin1() ); +#endif + return TQImage(); + } + TQImage img; + TQImageDrag::decode( m, img ); + return img; +} +#endif + + +/*! + Assigns a \link shclass.html shallow copy\endlink of \a image to + this image and returns a reference to this image. + + \sa copy() +*/ + +TQImage &TQImage::operator=( const TQImage &image ) +{ + image.data->ref(); // avoid 'x = x' + if ( data->deref() ) { + reset(); + delete data; + } + data = image.data; + return *this; +} + +/*! + \overload + + Sets the image bits to the \a pixmap contents and returns a + reference to the image. + + If the image shares data with other images, it will first + dereference the shared data. + + Makes a call to TQPixmap::convertToImage(). +*/ + +TQImage &TQImage::operator=( const TQPixmap &pixmap ) +{ + *this = pixmap.convertToImage(); + return *this; +} + +/*! + Detaches from shared image data and makes sure that this image is + the only one referring to the data. + + If multiple images share common data, this image makes a copy of + the data and detaches itself from the sharing mechanism. + Nothing is done if there is just a single reference. + + \sa copy() +*/ + +void TQImage::detach() +{ + if ( data->count != 1 ) + *this = copy(); +} + +/*! + Returns a \link shclass.html deep copy\endlink of the image. + + \sa detach() +*/ + +TQImage TQImage::copy() const +{ + if ( isNull() ) { + // maintain the fields of invalid TQImages when copied + return TQImage( 0, width(), height(), depth(), colorTable(), numColors(), bitOrder() ); + } else { + TQImage image; + image.create( width(), height(), depth(), numColors(), bitOrder() ); +#ifdef TQ_WS_QWS + // TQt/Embedded can create images with non-default bpl + // make sure we don't crash. + if ( image.numBytes() != numBytes() ) + for ( int i = 0; i < height(); i++ ) + memcpy( image.scanLine(i), scanLine(i), image.bytesPerLine() ); + else +#endif + memcpy( image.bits(), bits(), numBytes() ); + memcpy( image.colorTable(), colorTable(), numColors() * sizeof(TQRgb) ); + image.setAlphaBuffer( hasAlphaBuffer() ); + image.data->dpmx = dotsPerMeterX(); + image.data->dpmy = dotsPerMeterY(); + image.data->offset = offset(); +#ifndef TQT_NO_IMAGE_TEXT + if ( data->misc ) { + image.data->misc = new TQImageDataMisc; + *image.data->misc = misc(); + } +#endif + return image; + } +} + +/*! + \overload + + Returns a \link shclass.html deep copy\endlink of a sub-area of + the image. + + The returned image is always \a w by \a h pixels in size, and is + copied from position \a x, \a y in this image. In areas beyond + this image pixels are filled with pixel 0. + + If the image needs to be modified to fit in a lower-resolution + result (e.g. converting from 32-bit to 8-bit), use the \a + conversion_flags to specify how you'd prefer this to happen. + + \sa bitBlt() TQt::ImageConversionFlags +*/ + +TQImage TQImage::copy(int x, int y, int w, int h, int conversion_flags) const +{ + int dx = 0; + int dy = 0; + if ( w <= 0 || h <= 0 ) return TQImage(); // Nothing to copy + + TQImage image( w, h, depth(), numColors(), bitOrder() ); + + if ( x < 0 || y < 0 || x + w > width() || y + h > height() ) { + // bitBlt will not cover entire image - clear it. + // ### should deal with each side separately for efficiency + image.fill(0); + if ( x < 0 ) { + dx = -x; + x = 0; + } + if ( y < 0 ) { + dy = -y; + y = 0; + } + } + + bool has_alpha = hasAlphaBuffer(); + if ( has_alpha ) { + // alpha channel should be only copied, not used by bitBlt(), and + // this is mutable, we will restore the image state before returning + TQImage *that = (TQImage *) this; + that->setAlphaBuffer( FALSE ); + } + memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); + bitBlt( &image, dx, dy, this, x, y, -1, -1, conversion_flags ); + if ( has_alpha ) { + // restore image state + TQImage *that = (TQImage *) this; + that->setAlphaBuffer( TRUE ); + } + image.setAlphaBuffer(hasAlphaBuffer()); + image.data->dpmx = dotsPerMeterX(); + image.data->dpmy = dotsPerMeterY(); + image.data->offset = offset(); +#ifndef TQT_NO_IMAGE_TEXT + if ( data->misc ) { + image.data->misc = new TQImageDataMisc; + *image.data->misc = misc(); + } +#endif + return image; +} + +/*! + \overload TQImage TQImage::copy(const TQRect& r) const + + Returns a \link shclass.html deep copy\endlink of a sub-area of + the image. + + The returned image always has the size of the rectangle \a r. In + areas beyond this image pixels are filled with pixel 0. +*/ + +/*! + \fn bool TQImage::isNull() const + + Returns TRUE if it is a null image; otherwise returns FALSE. + + A null image has all parameters set to zero and no allocated data. +*/ + + +/*! + \fn int TQImage::width() const + + Returns the width of the image. + + \sa height() size() rect() +*/ + +/*! + \fn int TQImage::height() const + + Returns the height of the image. + + \sa width() size() rect() +*/ + +/*! + \fn TQSize TQImage::size() const + + Returns the size of the image, i.e. its width and height. + + \sa width() height() rect() +*/ + +/*! + \fn TQRect TQImage::rect() const + + Returns the enclosing rectangle (0, 0, width(), height()) of the + image. + + \sa width() height() size() +*/ + +/*! + \fn int TQImage::depth() const + + Returns the depth of the image. + + The image depth is the number of bits used to encode a single + pixel, also called bits per pixel (bpp) or bit planes of an image. + + The supported depths are 1, 8, 16 (TQt/Embedded only) and 32. + + \sa convertDepth() +*/ + +/*! + \fn int TQImage::numColors() const + + Returns the size of the color table for the image. + + Notice that numColors() returns 0 for 16-bpp (TQt/Embedded only) + and 32-bpp images because these images do not use color tables, + but instead encode pixel values as RGB triplets. + + \sa setNumColors() colorTable() +*/ + +/*! + \fn TQImage::Endian TQImage::bitOrder() const + + Returns the bit order for the image. + + If it is a 1-bpp image, this function returns either + TQImage::BigEndian or TQImage::LittleEndian. + + If it is not a 1-bpp image, this function returns + TQImage::IgnoreEndian. + + \sa depth() +*/ + +/*! + \fn uchar **TQImage::jumpTable() const + + Returns a pointer to the scanline pointer table. + + This is the beginning of the data block for the image. + + \sa bits() scanLine() +*/ + +/*! + \fn TQRgb *TQImage::colorTable() const + + Returns a pointer to the color table. + + \sa numColors() +*/ + +/*! + \fn int TQImage::numBytes() const + + Returns the number of bytes occupied by the image data. + + \sa bytesPerLine() bits() +*/ + +/*! + \fn int TQImage::bytesPerLine() const + + Returns the number of bytes per image scanline. This is equivalent + to numBytes()/height(). + + \sa numBytes() scanLine() +*/ + +/*! + \fn TQRgb TQImage::color( int i ) const + + Returns the color in the color table at index \a i. The first + color is at index 0. + + A color value is an RGB triplet. Use the \link ::tqRed() + tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link + ::tqBlue() tqBlue()\endlink functions (defined in \c ntqcolor.h) to + get the color value components. + + \sa setColor() numColors() TQColor +*/ + +/*! + \fn void TQImage::setColor( int i, TQRgb c ) + + Sets a color in the color table at index \a i to \a c. + + A color value is an RGB triplet. Use the \link ::tqRgb() + tqRgb()\endlink function (defined in \c ntqcolor.h) to make RGB + triplets. + + \sa color() setNumColors() numColors() +*/ + +/*! + \fn uchar *TQImage::scanLine( int i ) const + + Returns a pointer to the pixel data at the scanline with index \a + i. The first scanline is at index 0. + + The scanline data is aligned on a 32-bit boundary. + + \warning If you are accessing 32-bpp image data, cast the returned + pointer to \c{TQRgb*} (TQRgb has a 32-bit size) and use it to + read/write the pixel value. You cannot use the \c{uchar*} pointer + directly, because the pixel format depends on the byte order on + the underlying platform. Hint: use \link ::tqRed() tqRed()\endlink, + \link ::tqGreen() tqGreen()\endlink and \link ::tqBlue() + tqBlue()\endlink, etc. (ntqcolor.h) to access the pixels. + + \warning If you are accessing 16-bpp image data, you must handle + endianness yourself. (TQt/Embedded only) + + \sa bytesPerLine() bits() jumpTable() +*/ + +/*! + \fn uchar *TQImage::bits() const + + Returns a pointer to the first pixel data. This is equivalent to + scanLine(0). + + \sa numBytes() scanLine() jumpTable() +*/ + + + +void TQImage::warningIndexRange( const char *func, int i ) +{ +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::%s: Index %d out of range", func, i ); +#else + Q_UNUSED( func ) + Q_UNUSED( i ) +#endif +} + + +/*! + Resets all image parameters and deallocates the image data. +*/ + +void TQImage::reset() +{ + freeBits(); + setNumColors( 0 ); +#ifndef TQT_NO_IMAGE_TEXT + delete data->misc; +#endif + reinit(); +} + + +/*! + Fills the entire image with the pixel value \a pixel. + + If the \link depth() depth\endlink of this image is 1, only the + lowest bit is used. If you say fill(0), fill(2), etc., the image + is filled with 0s. If you say fill(1), fill(3), etc., the image is + filled with 1s. If the depth is 8, the lowest 8 bits are used. + + If the depth is 32 and the image has no alpha buffer, the \a pixel + value is written to each pixel in the image. If the image has an + alpha buffer, only the 24 RGB bits are set and the upper 8 bits + (alpha value) are left unchanged. + + Note: TQImage::pixel() returns the color of the pixel at the given + coordinates; TQColor::pixel() returns the pixel value of the + underlying window system (essentially an index value), so normally + you will want to use TQImage::pixel() to use a color from an + existing image or TQColor::rgb() to use a specific color. + + \sa invertPixels() depth() hasAlphaBuffer() create() +*/ + +void TQImage::fill( uint pixel ) +{ + if ( depth() == 1 || depth() == 8 ) { + if ( depth() == 1 ) { + if ( pixel & 1 ) + pixel = 0xffffffff; + else + pixel = 0; + } else { + uint c = pixel & 0xff; + pixel = c | ((c << 8) & 0xff00) | ((c << 16) & 0xff0000) | + ((c << 24) & 0xff000000); + } + int bpl = bytesPerLine(); + for ( int i=0; i<height(); i++ ) + memset( scanLine(i), pixel, bpl ); +#ifndef TQT_NO_IMAGE_16_BIT + } else if ( depth() == 16 ) { + for ( int i=0; i<height(); i++ ) { + //optimize with 32-bit writes, since image is always aligned + uint *p = (uint *)scanLine(i); + uint *end = (uint*)(((ushort*)p) + width()); + uint fill; + ushort *f = (ushort*)&fill; + f[0]=pixel; + f[1]=pixel; + while ( p < end ) + *p++ = fill; + } +#endif // TQT_NO_IMAGE_16_BIT +#ifndef TQT_NO_IMAGE_TRUECOLOR + } else if ( depth() == 32 ) { + if ( hasAlphaBuffer() ) { + pixel &= 0x00ffffff; + for ( int i=0; i<height(); i++ ) { + uint *p = (uint *)scanLine(i); + uint *end = p + width(); + while ( p < end ) { + *p = (*p & 0xff000000) | pixel; + p++; + } + } + } else { + for ( int i=0; i<height(); i++ ) { + uint *p = (uint *)scanLine(i); + uint *end = p + width(); + while ( p < end ) + *p++ = pixel; + } + } +#endif // TQT_NO_IMAGE_TRUECOLOR + } +} + + +/*! + Inverts all pixel values in the image. + + If the depth is 32: if \a invertAlpha is TRUE, the alpha bits are + also inverted, otherwise they are left unchanged. + + If the depth is not 32, the argument \a invertAlpha has no + meaning. + + Note that inverting an 8-bit image means to replace all pixels + using color index \e i with a pixel using color index 255 minus \e + i. Similarly for a 1-bit image. The color table is not changed. + + \sa fill() depth() hasAlphaBuffer() +*/ + +void TQImage::invertPixels( bool invertAlpha ) +{ + TQ_UINT32 n = numBytes(); + if ( n % 4 ) { + TQ_UINT8 *p = (TQ_UINT8*)bits(); + TQ_UINT8 *end = p + n; + while ( p < end ) + *p++ ^= 0xff; + } else { + TQ_UINT32 *p = (TQ_UINT32*)bits(); + TQ_UINT32 *end = p + n/4; + uint xorbits = invertAlpha && depth() == 32 ? 0x00ffffff : 0xffffffff; + while ( p < end ) + *p++ ^= xorbits; + } +} + + +/*! + Determines the host computer byte order. Returns + TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first). + + \sa systemBitOrder() +*/ + +TQImage::Endian TQImage::systemByteOrder() +{ + static Endian sbo = IgnoreEndian; + if ( sbo == IgnoreEndian ) { // initialize + int ws; + bool be; + tqSysInfo( &ws, &be ); + sbo = be ? BigEndian : LittleEndian; + } + return sbo; +} + + +#if defined(TQ_WS_X11) +#include <X11/Xlib.h> // needed for systemBitOrder +#include <X11/Xutil.h> +#include <X11/Xos.h> +#if defined(Q_OS_WIN32) +#undef open +#undef close +#undef read +#undef write +#endif +#endif + +// POSIX Large File Support redefines open -> open64 +#if defined(open) +# undef open +#endif + +// POSIX Large File Support redefines truncate -> truncate64 +#if defined(truncate) +# undef truncate +#endif + +/*! + Determines the bit order of the display hardware. Returns + TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first). + + \sa systemByteOrder() +*/ + +TQImage::Endian TQImage::systemBitOrder() +{ +#if defined(TQ_WS_X11) + return BitmapBitOrder(tqt_xdisplay()) == MSBFirst ? BigEndian :LittleEndian; +#else + return BigEndian; +#endif +} + + +/*! + Resizes the color table to \a numColors colors. + + If the color table is expanded all the extra colors will be set to + black (RGB 0,0,0). + + \sa numColors() color() setColor() colorTable() +*/ + +void TQImage::setNumColors( int numColors ) +{ + if ( numColors == data->ncols ) + return; + if ( numColors == 0 ) { // use no color table + if ( data->ctbl ) { + if ( data->ctbl_mine ) + free( data->ctbl ); + else + data->ctbl_mine = TRUE; + data->ctbl = 0; + } + data->ncols = 0; + return; + } + if ( data->ctbl && data->ctbl_mine ) { // already has color table + data->ctbl = (TQRgb*)realloc( data->ctbl, numColors*sizeof(TQRgb) ); + if ( data->ctbl && numColors > data->ncols ) + memset( (char *)&data->ctbl[data->ncols], 0, + (numColors-data->ncols)*sizeof(TQRgb) ); + } else { // create new color table + data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), 1 ); + TQ_CHECK_PTR(data->ctbl); + data->ctbl_mine = TRUE; + } + data->ncols = data->ctbl == 0 ? 0 : numColors; +} + + +/*! + \fn bool TQImage::hasAlphaBuffer() const + + Returns TRUE if alpha buffer mode is enabled; otherwise returns + FALSE. + + \sa setAlphaBuffer() +*/ + +/*! + Enables alpha buffer mode if \a enable is TRUE, otherwise disables + it. The default setting is disabled. + + An 8-bpp image has 8-bit pixels. A pixel is an index into the + \link color() color table\endlink, which contains 32-bit color + values. In a 32-bpp image, the 32-bit pixels are the color values. + + This 32-bit value is encoded as follows: The lower 24 bits are + used for the red, green, and blue components. The upper 8 bits + contain the alpha component. + + The alpha component specifies the transparency of a pixel. 0 means + completely transparent and 255 means opaque. The alpha component + is ignored if you do not enable alpha buffer mode. + + The alpha buffer is used to set a mask when a TQImage is translated + to a TQPixmap. + + \sa hasAlphaBuffer() createAlphaMask() +*/ + +void TQImage::setAlphaBuffer( bool enable ) +{ + data->alpha = enable; +} + + +/*! + Sets the image \a width, \a height, \a depth, its number of colors + (in \a numColors), and bit order. Returns TRUE if successful, or + FALSE if the parameters are incorrect or if memory cannot be + allocated. + + The \a width and \a height is limited to 32767. \a depth must be + 1, 8, or 32. If \a depth is 1, \a bitOrder must be set to + either TQImage::LittleEndian or TQImage::BigEndian. For other depths + \a bitOrder must be TQImage::IgnoreEndian. + + This function allocates a color table and a buffer for the image + data. The image data is not initialized. + + The image buffer is allocated as a single block that consists of a + table of \link scanLine() scanline\endlink pointers (jumpTable()) + and the image data (bits()). + + \sa fill() width() height() depth() numColors() bitOrder() + jumpTable() scanLine() bits() bytesPerLine() numBytes() +*/ + +bool TQImage::create( int width, int height, int depth, int numColors, + Endian bitOrder ) +{ + reset(); // reset old data + if ( width <= 0 || height <= 0 || depth <= 0 || numColors < 0 ) + return FALSE; // invalid parameter(s) + if ( depth == 1 && bitOrder == IgnoreEndian ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::create: Bit order is required for 1 bpp images" ); +#endif + return FALSE; + } + if ( depth != 1 ) + bitOrder = IgnoreEndian; + +#if defined(QT_CHECK_RANGE) + if ( depth == 24 ) + tqWarning( "TQImage::create: 24-bpp images no longer supported, " + "use 32-bpp instead" ); +#endif + switch ( depth ) { + case 1: + case 8: +#ifndef TQT_NO_IMAGE_16_BIT + case 16: +#endif +#ifndef TQT_NO_IMAGE_TRUECOLOR + case 32: +#endif + break; + default: // invalid depth + return FALSE; + } + + if ( depth == 32 ) + numColors = 0; + setNumColors( numColors ); + if ( data->ncols != numColors ) // could not alloc color table + return FALSE; + + if ( INT_MAX / uint(depth) < uint(width) ) { // sanity check for potential overflow + setNumColors( 0 ); + return FALSE; + } +// TQt/Embedded doesn't waste memory on unnecessary padding. +#ifdef TQ_WS_QWS + const int bpl = (width*depth+7)/8; // bytes per scanline + const int pad = 0; +#else + const int bpl = ((width*depth+31)/32)*4; // bytes per scanline + // #### WWA: shouldn't this be (width*depth+7)/8: + const int pad = bpl - (width*depth)/8; // pad with zeros +#endif + if ( INT_MAX / uint(bpl) < uint(height) + || bpl < 0 + || INT_MAX / sizeof(uchar *) < uint(height) ) { // sanity check for potential overflow + setNumColors( 0 ); + return FALSE; + } + int nbytes = bpl*height; // image size + int ptbl = height*sizeof(uchar*); // pointer table size + int size = nbytes + ptbl; // total size of data block + uchar **p = (uchar **)malloc( size ); // alloc image bits + TQ_CHECK_PTR(p); + if ( !p ) { // no memory + setNumColors( 0 ); + return FALSE; + } + data->w = width; + data->h = height; + data->d = depth; + data->nbytes = nbytes; + data->bitordr = bitOrder; + data->bits = p; // set image pointer + //uchar *d = (uchar*)p + ptbl; // setup scanline pointers + uchar *d = (uchar*)(p + height); // setup scanline pointers + while ( height-- ) { + *p++ = d; + if ( pad ) + memset( d+bpl-pad, 0, pad ); + d += bpl; + } + return TRUE; +} + +/*! + \overload bool TQImage::create( const TQSize&, int depth, int numColors, Endian bitOrder ) +*/ +bool TQImage::create( const TQSize& size, int depth, int numColors, + TQImage::Endian bitOrder ) +{ + return create(size.width(), size.height(), depth, numColors, bitOrder); +} + +/*! + \internal + Initializes the image data structure. +*/ + +void TQImage::init() +{ + data = new TQImageData; + TQ_CHECK_PTR( data ); + reinit(); +} + +void TQImage::reinit() +{ + data->w = data->h = data->d = data->ncols = 0; + data->nbytes = 0; + data->ctbl = 0; + data->bits = 0; + data->bitordr = TQImage::IgnoreEndian; + data->alpha = FALSE; +#ifndef TQT_NO_IMAGE_TEXT + data->misc = 0; +#endif + data->dpmx = 0; + data->dpmy = 0; + data->offset = TQPoint(0,0); +} + +/*! + \internal + Deallocates the image data and sets the bits pointer to 0. +*/ + +void TQImage::freeBits() +{ + if ( data->bits ) { // dealloc image bits + free( data->bits ); + data->bits = 0; + } +} + + +/***************************************************************************** + Internal routines for converting image depth. + *****************************************************************************/ + +// +// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit +// image with a colormap. If the 32 bit image has more than 256 colors, +// we convert the red,green and blue bytes into a single byte encoded +// as 6 shades of each of red, green and blue. +// +// if dithering is needed, only 1 color at most is available for alpha. +// +#ifndef TQT_NO_IMAGE_TRUECOLOR +struct TQRgbMap { + TQRgbMap() : rgb(0xffffffff) { } + bool used() const { return rgb!=0xffffffff; } + uchar pix; + TQRgb rgb; +}; + +static bool convert_32_to_8( const TQImage *src, TQImage *dst, int conversion_flags, TQRgb* palette=0, int palette_count=0 ) +{ + TQRgb *p; + uchar *b; + bool do_quant = FALSE; + int y, x; + + if ( !dst->create(src->width(), src->height(), 8, 256) ) + return FALSE; + + const int tablesize = 997; // prime + TQRgbMap table[tablesize]; + int pix=0; + TQRgb amask = src->hasAlphaBuffer() ? 0xffffffff : 0x00ffffff; + if ( src->hasAlphaBuffer() ) + dst->setAlphaBuffer(TRUE); + + if ( palette ) { + // Preload palette into table. + + p = palette; + // Almost same code as pixel insertion below + while ( palette_count-- > 0 ) { + // Find in table... + int hash = (*p & amask) % tablesize; + for (;;) { + if ( table[hash].used() ) { + if ( table[hash].rgb == (*p & amask) ) { + // Found previous insertion - use it + break; + } else { + // Keep searching... + if (++hash == tablesize) hash = 0; + } + } else { + // Cannot be in table + Q_ASSERT ( pix != 256 ); // too many colors + // Insert into table at this unused position + dst->setColor( pix, (*p & amask) ); + table[hash].pix = pix++; + table[hash].rgb = *p & amask; + break; + } + } + p++; + } + } + + if ( (conversion_flags & TQt::DitherMode_Mask) == TQt::PreferDither ) { + do_quant = TRUE; + } else { + for ( y=0; y<src->height(); y++ ) { // check if <= 256 colors + p = (TQRgb *)src->scanLine(y); + b = dst->scanLine(y); + x = src->width(); + while ( x-- ) { + // Find in table... + int hash = (*p & amask) % tablesize; + for (;;) { + if ( table[hash].used() ) { + if ( table[hash].rgb == (*p & amask) ) { + // Found previous insertion - use it + break; + } else { + // Keep searching... + if (++hash == tablesize) hash = 0; + } + } else { + // Cannot be in table + if ( pix == 256 ) { // too many colors + do_quant = TRUE; + // Break right out + x = 0; + y = src->height(); + } else { + // Insert into table at this unused position + dst->setColor( pix, (*p & amask) ); + table[hash].pix = pix++; + table[hash].rgb = (*p & amask); + } + break; + } + } + *b++ = table[hash].pix; // May occur once incorrectly + p++; + } + } + } + int ncols = do_quant ? 256 : pix; + + static uint bm[16][16]; + static int init=0; + if (!init) { + // Build a Bayer Matrix for dithering + + init = 1; + int n, i, j; + + bm[0][0]=0; + + for (n=1; n<16; n*=2) { + for (i=0; i<n; i++) { + for (j=0; j<n; j++) { + bm[i][j]*=4; + bm[i+n][j]=bm[i][j]+2; + bm[i][j+n]=bm[i][j]+3; + bm[i+n][j+n]=bm[i][j]+1; + } + } + } + + for (i=0; i<16; i++) + for (j=0; j<16; j++) + bm[i][j]<<=8; + } + + dst->setNumColors( ncols ); + + if ( do_quant ) { // quantization needed + +#define MAX_R 5 +#define MAX_G 5 +#define MAX_B 5 +#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b)) + + int rc, gc, bc; + + for ( rc=0; rc<=MAX_R; rc++ ) // build 6x6x6 color cube + for ( gc=0; gc<=MAX_G; gc++ ) + for ( bc=0; bc<=MAX_B; bc++ ) { + dst->setColor( INDEXOF(rc,gc,bc), + (amask&0xff000000) + | tqRgb( rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B ) ); + } + + int sw = src->width(); + + int* line1[3]; + int* line2[3]; + int* pv[3]; + if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) { + line1[0] = new int[sw]; + line2[0] = new int[sw]; + line1[1] = new int[sw]; + line2[1] = new int[sw]; + line1[2] = new int[sw]; + line2[2] = new int[sw]; + pv[0] = new int[sw]; + pv[1] = new int[sw]; + pv[2] = new int[sw]; + } + + for ( y=0; y < src->height(); y++ ) { + p = (TQRgb *)src->scanLine(y); + b = dst->scanLine(y); + TQRgb *end = p + sw; + + // perform quantization + if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) { +#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255)) + while ( p < end ) { + rc = tqRed( *p ); + gc = tqGreen( *p ); + bc = tqBlue( *p ); + + *b++ = + INDEXOF( + DITHER(rc, MAX_R), + DITHER(gc, MAX_G), + DITHER(bc, MAX_B) + ); + + p++; + } +#undef DITHER + } else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) { +#define DITHER(p,d,m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) / 65536 )) + + int x = 0; + while ( p < end ) { + uint d = bm[y&15][x&15]; + + rc = tqRed( *p ); + gc = tqGreen( *p ); + bc = tqBlue( *p ); + + *b++ = + INDEXOF( + DITHER(rc, d, MAX_R), + DITHER(gc, d, MAX_G), + DITHER(bc, d, MAX_B) + ); + + p++; + x++; + } +#undef DITHER + } else { // Diffuse + int endian = (TQImage::systemByteOrder() == TQImage::BigEndian); + int x; + uchar* q = src->scanLine(y); + uchar* q2 = src->scanLine(y+1 < src->height() ? y + 1 : 0); + for (int chan = 0; chan < 3; chan++) { + b = dst->scanLine(y); + int *l1 = (y&1) ? line2[chan] : line1[chan]; + int *l2 = (y&1) ? line1[chan] : line2[chan]; + if ( y == 0 ) { + for (int i=0; i<sw; i++) + l1[i] = q[i*4+chan+endian]; + } + if ( y+1 < src->height() ) { + for (int i=0; i<sw; i++) + l2[i] = q2[i*4+chan+endian]; + } + // Bi-directional error diffusion + if ( y&1 ) { + for (x=0; x<sw; x++) { + int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0); + int err = l1[x] - pix * 255 / 5; + pv[chan][x] = pix; + + // Spread the error around... + if ( x+1<sw ) { + l1[x+1] += (err*7)>>4; + l2[x+1] += err>>4; + } + l2[x]+=(err*5)>>4; + if (x>1) + l2[x-1]+=(err*3)>>4; + } + } else { + for (x=sw; x-->0; ) { + int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0); + int err = l1[x] - pix * 255 / 5; + pv[chan][x] = pix; + + // Spread the error around... + if ( x > 0 ) { + l1[x-1] += (err*7)>>4; + l2[x-1] += err>>4; + } + l2[x]+=(err*5)>>4; + if (x+1 < sw) + l2[x+1]+=(err*3)>>4; + } + } + } + if (endian) { + for (x=0; x<sw; x++) { + *b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]); + } + } else { + for (x=0; x<sw; x++) { + *b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]); + } + } + } + } + +#ifndef TQT_NO_IMAGE_DITHER_TO_1 + if ( src->hasAlphaBuffer() ) { + const int trans = 216; + dst->setColor(trans, 0x00000000); // transparent + TQImage mask = src->createAlphaMask(conversion_flags); + uchar* m; + for ( y=0; y < src->height(); y++ ) { + uchar bit = 0x80; + m = mask.scanLine(y); + b = dst->scanLine(y); + int w = src->width(); + for ( x = 0; x<w; x++ ) { + if ( !(*m&bit) ) + b[x] = trans; + if (!(bit >>= 1)) { + bit = 0x80; + while ( x<w-1 && *++m == 0xff ) // skip chunks + x+=8; + } + } + } + } +#endif + + if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) { + delete [] line1[0]; + delete [] line2[0]; + delete [] line1[1]; + delete [] line2[1]; + delete [] line1[2]; + delete [] line2[2]; + delete [] pv[0]; + delete [] pv[1]; + delete [] pv[2]; + } + +#undef MAX_R +#undef MAX_G +#undef MAX_B +#undef INDEXOF + + } + + return TRUE; +} + + +static bool convert_8_to_32( const TQImage *src, TQImage *dst ) +{ + if ( !dst->create(src->width(), src->height(), 32) ) + return FALSE; // create failed + dst->setAlphaBuffer( src->hasAlphaBuffer() ); + for ( int y=0; y<dst->height(); y++ ) { // for each scan line... + uint *p = (uint *)dst->scanLine(y); + uchar *b = src->scanLine(y); + uint *end = p + dst->width(); + while ( p < end ) + *p++ = src->color(*b++); + } + return TRUE; +} + + +static bool convert_1_to_32( const TQImage *src, TQImage *dst ) +{ + if ( !dst->create(src->width(), src->height(), 32) ) + return FALSE; // could not create + dst->setAlphaBuffer( src->hasAlphaBuffer() ); + for ( int y=0; y<dst->height(); y++ ) { // for each scan line... + uint *p = (uint *)dst->scanLine(y); + uchar *b = src->scanLine(y); + int x; + if ( src->bitOrder() == TQImage::BigEndian ) { + for ( x=0; x<dst->width(); x++ ) { + *p++ = src->color( (*b >> (7 - (x & 7))) & 1 ); + if ( (x & 7) == 7 ) + b++; + } + } else { + for ( x=0; x<dst->width(); x++ ) { + *p++ = src->color( (*b >> (x & 7)) & 1 ); + if ( (x & 7) == 7 ) + b++; + } + } + } + return TRUE; +} +#endif // TQT_NO_IMAGE_TRUECOLOR + +static bool convert_1_to_8( const TQImage *src, TQImage *dst ) +{ + if ( !dst->create(src->width(), src->height(), 8, 2) ) + return FALSE; // something failed + dst->setAlphaBuffer( src->hasAlphaBuffer() ); + if (src->numColors() >= 2) { + dst->setColor( 0, src->color(0) ); // copy color table + dst->setColor( 1, src->color(1) ); + } else { + // Unlikely, but they do exist + if (src->numColors() >= 1) + dst->setColor( 0, src->color(0) ); + else + dst->setColor( 0, 0xffffffff ); + dst->setColor( 1, 0xff000000 ); + } + for ( int y=0; y<dst->height(); y++ ) { // for each scan line... + uchar *p = dst->scanLine(y); + uchar *b = src->scanLine(y); + int x; + if ( src->bitOrder() == TQImage::BigEndian ) { + for ( x=0; x<dst->width(); x++ ) { + *p++ = (*b >> (7 - (x & 7))) & 1; + if ( (x & 7) == 7 ) + b++; + } + } else { + for ( x=0; x<dst->width(); x++ ) { + *p++ = (*b >> (x & 7)) & 1; + if ( (x & 7) == 7 ) + b++; + } + } + } + return TRUE; +} + +#ifndef TQT_NO_IMAGE_DITHER_TO_1 +// +// dither_to_1: Uses selected dithering algorithm. +// + +static bool dither_to_1( const TQImage *src, TQImage *dst, + int conversion_flags, bool fromalpha ) +{ + if ( !dst->create(src->width(), src->height(), 1, 2, TQImage::BigEndian) ) + return FALSE; // something failed + + enum { Threshold, Ordered, Diffuse } dithermode; + + if ( fromalpha ) { + if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::DiffuseAlphaDither ) + dithermode = Diffuse; + else if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::OrderedAlphaDither ) + dithermode = Ordered; + else + dithermode = Threshold; + } else { + if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) + dithermode = Threshold; + else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) + dithermode = Ordered; + else + dithermode = Diffuse; + } + + dst->setColor( 0, tqRgb(255, 255, 255) ); + dst->setColor( 1, tqRgb( 0, 0, 0) ); + int w = src->width(); + int h = src->height(); + int d = src->depth(); + uchar gray[256]; // gray map for 8 bit images + bool use_gray = d == 8; + if ( use_gray ) { // make gray map + if ( fromalpha ) { + // Alpha 0x00 -> 0 pixels (white) + // Alpha 0xFF -> 1 pixels (black) + for ( int i=0; i<src->numColors(); i++ ) + gray[i] = (255 - (src->color(i) >> 24)); + } else { + // Pixel 0x00 -> 1 pixels (black) + // Pixel 0xFF -> 0 pixels (white) + for ( int i=0; i<src->numColors(); i++ ) + gray[i] = tqGray( src->color(i) & 0x00ffffff ); + } + } + + switch ( dithermode ) { + case Diffuse: { + int *line1 = new int[w]; + int *line2 = new int[w]; + int bmwidth = (w+7)/8; + if ( !(line1 && line2) ) + return FALSE; + uchar *p; + uchar *end; + int *b1, *b2; + int wbytes = w * (d/8); + p = src->bits(); + end = p + wbytes; + b2 = line2; + if ( use_gray ) { // 8 bit image + while ( p < end ) + *b2++ = gray[*p++]; +#ifndef TQT_NO_IMAGE_TRUECOLOR + } else { // 32 bit image + if ( fromalpha ) { + while ( p < end ) { + *b2++ = 255 - (*(uint*)p >> 24); + p += 4; + } + } else { + while ( p < end ) { + *b2++ = tqGray(*(uint*)p); + p += 4; + } + } +#endif + } + int x, y; + for ( y=0; y<h; y++ ) { // for each scan line... + int *tmp = line1; line1 = line2; line2 = tmp; + bool not_last_line = y < h - 1; + if ( not_last_line ) { // calc. grayvals for next line + p = src->scanLine(y+1); + end = p + wbytes; + b2 = line2; + if ( use_gray ) { // 8 bit image + while ( p < end ) + *b2++ = gray[*p++]; +#ifndef TQT_NO_IMAGE_TRUECOLOR + } else { // 24 bit image + if ( fromalpha ) { + while ( p < end ) { + *b2++ = 255 - (*(uint*)p >> 24); + p += 4; + } + } else { + while ( p < end ) { + *b2++ = tqGray(*(uint*)p); + p += 4; + } + } +#endif + } + } + + int err; + p = dst->scanLine( y ); + memset( p, 0, bmwidth ); + b1 = line1; + b2 = line2; + int bit = 7; + for ( x=1; x<=w; x++ ) { + if ( *b1 < 128 ) { // black pixel + err = *b1++; + *p |= 1 << bit; + } else { // white pixel + err = *b1++ - 255; + } + if ( bit == 0 ) { + p++; + bit = 7; + } else { + bit--; + } + if ( x < w ) + *b1 += (err*7)>>4; // spread error to right pixel + if ( not_last_line ) { + b2[0] += (err*5)>>4; // pixel below + if ( x > 1 ) + b2[-1] += (err*3)>>4; // pixel below left + if ( x < w ) + b2[1] += err>>4; // pixel below right + } + b2++; + } + } + delete [] line1; + delete [] line2; + } break; + case Ordered: { + static uint bm[16][16]; + static int init=0; + if (!init) { + // Build a Bayer Matrix for dithering + + init = 1; + int n, i, j; + + bm[0][0]=0; + + for (n=1; n<16; n*=2) { + for (i=0; i<n; i++) { + for (j=0; j<n; j++) { + bm[i][j]*=4; + bm[i+n][j]=bm[i][j]+2; + bm[i][j+n]=bm[i][j]+3; + bm[i+n][j+n]=bm[i][j]+1; + } + } + } + + // Force black to black + bm[0][0]=1; + } + + dst->fill( 0 ); + uchar** mline = dst->jumpTable(); +#ifndef TQT_NO_IMAGE_TRUECOLOR + if ( d == 32 ) { + uint** line = (uint**)src->jumpTable(); + for ( int i=0; i<h; i++ ) { + uint *p = line[i]; + uint *end = p + w; + uchar *m = mline[i]; + int bit = 7; + int j = 0; + if ( fromalpha ) { + while ( p < end ) { + if ( (*p++ >> 24) >= bm[j++&15][i&15] ) + *m |= 1 << bit; + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } else { + while ( p < end ) { + if ( (uint)tqGray(*p++) < bm[j++&15][i&15] ) + *m |= 1 << bit; + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } + } + } else +#endif // TQT_NO_IMAGE_TRUECOLOR + /* ( d == 8 ) */ { + uchar** line = src->jumpTable(); + for ( int i=0; i<h; i++ ) { + uchar *p = line[i]; + uchar *end = p + w; + uchar *m = mline[i]; + int bit = 7; + int j = 0; + while ( p < end ) { + if ( (uint)gray[*p++] < bm[j++&15][i&15] ) + *m |= 1 << bit; + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } + } + } break; + default: { // Threshold: + dst->fill( 0 ); + uchar** mline = dst->jumpTable(); +#ifndef TQT_NO_IMAGE_TRUECOLOR + if ( d == 32 ) { + uint** line = (uint**)src->jumpTable(); + for ( int i=0; i<h; i++ ) { + uint *p = line[i]; + uint *end = p + w; + uchar *m = mline[i]; + int bit = 7; + if ( fromalpha ) { + while ( p < end ) { + if ( (*p++ >> 24) >= 128 ) + *m |= 1 << bit; // Set mask "on" + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } else { + while ( p < end ) { + if ( tqGray(*p++) < 128 ) + *m |= 1 << bit; // Set pixel "black" + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } + } + } else +#endif //TQT_NO_IMAGE_TRUECOLOR + if ( d == 8 ) { + uchar** line = src->jumpTable(); + for ( int i=0; i<h; i++ ) { + uchar *p = line[i]; + uchar *end = p + w; + uchar *m = mline[i]; + int bit = 7; + while ( p < end ) { + if ( gray[*p++] < 128 ) + *m |= 1 << bit; // Set mask "on"/ pixel "black" + if ( bit == 0 ) { + m++; + bit = 7; + } else { + bit--; + } + } + } + } + } + } + return TRUE; +} +#endif + +#ifndef TQT_NO_IMAGE_16_BIT +//###### Endianness issues! +static inline bool is16BitGray( ushort c ) +{ + int r=(c & 0xf800) >> 11; + int g=(c & 0x07e0) >> 6; //green/2 + int b=(c & 0x001f); + return r == g && g == b; +} + + +static bool convert_16_to_32( const TQImage *src, TQImage *dst ) +{ + if ( !dst->create(src->width(), src->height(), 32) ) + return FALSE; // create failed + dst->setAlphaBuffer( src->hasAlphaBuffer() ); + for ( int y=0; y<dst->height(); y++ ) { // for each scan line... + uint *p = (uint *)dst->scanLine(y); + ushort *s = (ushort*)src->scanLine(y); + uint *end = p + dst->width(); + while ( p < end ) + *p++ = qt_conv16ToRgb( *s++ ); + } + return TRUE; +} + + +static bool convert_32_to_16( const TQImage *src, TQImage *dst ) +{ + if ( !dst->create(src->width(), src->height(), 16) ) + return FALSE; // create failed + dst->setAlphaBuffer( src->hasAlphaBuffer() ); + for ( int y=0; y<dst->height(); y++ ) { // for each scan line... + ushort *p = (ushort *)dst->scanLine(y); + uint *s = (uint*)src->scanLine(y); + ushort *end = p + dst->width(); + while ( p < end ) + *p++ = qt_convRgbTo16( *s++ ); + } + return TRUE; +} + + +#endif + +/*! + Converts the depth (bpp) of the image to \a depth and returns the + converted image. The original image is not changed. + + The \a depth argument must be 1, 8, 16 (TQt/Embedded only) or 32. + + Returns \c *this if \a depth is equal to the image depth, or a + \link isNull() null\endlink image if this image cannot be + converted. + + If the image needs to be modified to fit in a lower-resolution + result (e.g. converting from 32-bit to 8-bit), use the \a + conversion_flags to specify how you'd prefer this to happen. + + \sa TQt::ImageConversionFlags depth() isNull() +*/ + +TQImage TQImage::convertDepth( int depth, int conversion_flags ) const +{ + TQImage image; + if ( data->d == depth ) + image = *this; // no conversion +#ifndef TQT_NO_IMAGE_DITHER_TO_1 + else if ( (data->d == 8 || data->d == 32) && depth == 1 ) // dither + dither_to_1( this, &image, conversion_flags, FALSE ); +#endif +#ifndef TQT_NO_IMAGE_TRUECOLOR + else if ( data->d == 32 && depth == 8 ) // 32 -> 8 + convert_32_to_8( this, &image, conversion_flags ); + else if ( data->d == 8 && depth == 32 ) // 8 -> 32 + convert_8_to_32( this, &image ); +#endif + else if ( data->d == 1 && depth == 8 ) // 1 -> 8 + convert_1_to_8( this, &image ); +#ifndef TQT_NO_IMAGE_TRUECOLOR + else if ( data->d == 1 && depth == 32 ) // 1 -> 32 + convert_1_to_32( this, &image ); +#endif +#ifndef TQT_NO_IMAGE_16_BIT + else if ( data->d == 16 && depth != 16 ) { + TQImage tmp; + convert_16_to_32( this, &tmp ); + image = tmp.convertDepth( depth, conversion_flags ); + } else if ( data->d != 16 && depth == 16 ) { + TQImage tmp = convertDepth( 32, conversion_flags ); + convert_32_to_16( &tmp, &image ); + } +#endif + else { +#if defined(QT_CHECK_RANGE) + if ( isNull() ) + tqWarning( "TQImage::convertDepth: Image is a null image" ); + else + tqWarning( "TQImage::convertDepth: Depth %d not supported", depth ); +#endif + } + return image; +} + +/*! + \overload +*/ + +TQImage TQImage::convertDepth( int depth ) const +{ + return convertDepth( depth, 0 ); +} + +/*! + Returns TRUE if ( \a x, \a y ) is a valid coordinate in the image; + otherwise returns FALSE. + + \sa width() height() pixelIndex() +*/ + +bool TQImage::valid( int x, int y ) const +{ + return x >= 0 && x < width() + && y >= 0 && y < height(); +} + +/*! + Returns the pixel index at the given coordinates. + + If (\a x, \a y) is not \link valid() valid\endlink, or if the + image is not a paletted image (depth() \> 8), the results are + undefined. + + \sa valid() depth() +*/ + +int TQImage::pixelIndex( int x, int y ) const +{ +#if defined(QT_CHECK_RANGE) + if ( x < 0 || x >= width() ) { + tqWarning( "TQImage::pixel: x=%d out of range", x ); + return -12345; + } +#endif + uchar * s = scanLine( y ); + switch( depth() ) { + case 1: + if ( bitOrder() == TQImage::LittleEndian ) + return (*(s + (x >> 3)) >> (x & 7)) & 1; + else + return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; + case 8: + return (int)s[x]; +#ifndef TQT_NO_IMAGE_TRUECOLOR +#ifndef TQT_NO_IMAGE_16_BIT + case 16: +#endif + case 32: +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::pixelIndex: Not applicable for %d-bpp images " + "(no palette)", depth() ); +#endif + return 0; +#endif //TQT_NO_IMAGE_TRUECOLOR + } + return 0; +} + + +/*! + Returns the color of the pixel at the coordinates (\a x, \a y). + + If (\a x, \a y) is not \link valid() on the image\endlink, the + results are undefined. + + \sa setPixel() tqRed() tqGreen() tqBlue() valid() +*/ + +TQRgb TQImage::pixel( int x, int y ) const +{ +#if defined(QT_CHECK_RANGE) + if ( x < 0 || x >= width() ) { + tqWarning( "TQImage::pixel: x=%d out of range", x ); + return 12345; + } +#endif + uchar * s = scanLine( y ); + switch( depth() ) { + case 1: + if ( bitOrder() == TQImage::LittleEndian ) + return color( (*(s + (x >> 3)) >> (x & 7)) & 1 ); + else + return color( (*(s + (x >> 3)) >> (7- (x & 7))) & 1 ); + case 8: + return color( (int)s[x] ); +#ifndef TQT_NO_IMAGE_16_BIT + case 16: + return qt_conv16ToRgb(((ushort*)s)[x]); +#endif +#ifndef TQT_NO_IMAGE_TRUECOLOR + case 32: + return ((TQRgb*)s)[x]; +#endif + default: + return 100367; + } +} + + +/*! + Sets the pixel index or color at the coordinates (\a x, \a y) to + \a index_or_rgb. + + If (\a x, \a y) is not \link valid() valid\endlink, the result is + undefined. + + If the image is a paletted image (depth() \<= 8) and \a + index_or_rgb \>= numColors(), the result is undefined. + + \sa pixelIndex() pixel() tqRgb() tqRgba() valid() +*/ + +void TQImage::setPixel( int x, int y, uint index_or_rgb ) +{ + if ( x < 0 || x >= width() ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::setPixel: x=%d out of range", x ); +#endif + return; + } + if ( depth() == 1 ) { + uchar * s = scanLine( y ); + if ( index_or_rgb > 1) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::setPixel: index=%d out of range", + index_or_rgb ); +#endif + } else if ( bitOrder() == TQImage::LittleEndian ) { + if (index_or_rgb==0) + *(s + (x >> 3)) &= ~(1 << (x & 7)); + else + *(s + (x >> 3)) |= (1 << (x & 7)); + } else { + if (index_or_rgb==0) + *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); + else + *(s + (x >> 3)) |= (1 << (7-(x & 7))); + } + } else if ( depth() == 8 ) { + if (index_or_rgb > (uint)numColors()) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::setPixel: index=%d out of range", + index_or_rgb ); +#endif + return; + } + uchar * s = scanLine( y ); + s[x] = index_or_rgb; +#ifndef TQT_NO_IMAGE_16_BIT + } else if ( depth() == 16 ) { + ushort * s = (ushort*)scanLine( y ); + s[x] = qt_convRgbTo16(index_or_rgb); +#endif +#ifndef TQT_NO_IMAGE_TRUECOLOR + } else if ( depth() == 32 ) { + TQRgb * s = (TQRgb*)scanLine( y ); + s[x] = index_or_rgb; +#endif + } +} + + +/*! + Converts the bit order of the image to \a bitOrder and returns the + converted image. The original image is not changed. + + Returns \c *this if the \a bitOrder is equal to the image bit + order, or a \link isNull() null\endlink image if this image cannot + be converted. + + \sa bitOrder() systemBitOrder() isNull() +*/ + +TQImage TQImage::convertBitOrder( Endian bitOrder ) const +{ + if ( isNull() || data->d != 1 || // invalid argument(s) + !(bitOrder == BigEndian || bitOrder == LittleEndian) ) { + TQImage nullImage; + return nullImage; + } + if ( data->bitordr == bitOrder ) // nothing to do + return copy(); + + TQImage image( data->w, data->h, 1, data->ncols, bitOrder ); + + int bpl = (width() + 7) / 8; + for ( int y = 0; y < data->h; y++ ) { + uchar *p = jumpTable()[y]; + uchar *end = p + bpl; + uchar *b = image.jumpTable()[y]; + while ( p < end ) + *b++ = bitflip[*p++]; + } + memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); + return image; +} + +// ### Candidate (renamed) for ntqcolor.h +static +bool isGray(TQRgb c) +{ + return tqRed(c) == tqGreen(c) + && tqRed(c) == tqBlue(c); +} + +/*! + Returns TRUE if all the colors in the image are shades of gray + (i.e. their red, green and blue components are equal); otherwise + returns FALSE. + + This function is slow for large 16-bit (TQt/Embedded only) and 32-bit images. + + \sa isGrayscale() +*/ +bool TQImage::allGray() const +{ +#ifndef TQT_NO_IMAGE_TRUECOLOR + if (depth()==32) { + int p = width()*height(); + TQRgb* b = (TQRgb*)bits(); + while (p--) + if (!isGray(*b++)) + return FALSE; +#ifndef TQT_NO_IMAGE_16_BIT + } else if (depth()==16) { + int p = width()*height(); + ushort* b = (ushort*)bits(); + while (p--) + if (!is16BitGray(*b++)) + return FALSE; +#endif + } else +#endif //TQT_NO_IMAGE_TRUECOLOR + { + if (!data->ctbl) return TRUE; + for (int i=0; i<numColors(); i++) + if (!isGray(data->ctbl[i])) + return FALSE; + } + return TRUE; +} + +/*! + For 16-bit (TQt/Embedded only) and 32-bit images, this function is + equivalent to allGray(). + + For 8-bpp images, this function returns TRUE if color(i) is + TQRgb(i,i,i) for all indices of the color table; otherwise returns + FALSE. + + \sa allGray() depth() +*/ +bool TQImage::isGrayscale() const +{ + switch (depth()) { +#ifndef TQT_NO_IMAGE_TRUECOLOR + case 32: +#ifndef TQT_NO_IMAGE_16_BIT + case 16: +#endif + return allGray(); +#endif //TQT_NO_IMAGE_TRUECOLOR + case 8: { + for (int i=0; i<numColors(); i++) + if (data->ctbl[i] != tqRgb(i,i,i)) + return FALSE; + return TRUE; + } + } + return FALSE; +} + +#ifndef TQT_NO_IMAGE_SMOOTHSCALE +static +void pnmscale(const TQImage& src, TQImage& dst) +{ + TQRgb* xelrow = 0; + TQRgb* tempxelrow = 0; + TQRgb* xP; + TQRgb* nxP; + int rows, cols, rowsread, newrows, newcols; + int row, col, needtoreadrow; + const uchar maxval = 255; + double xscale, yscale; + long sxscale, syscale; + long fracrowtofill, fracrowleft; + long* as; + long* rs; + long* gs; + long* bs; + int rowswritten = 0; + + cols = src.width(); + rows = src.height(); + newcols = dst.width(); + newrows = dst.height(); + + long SCALE; + long HALFSCALE; + + if (cols > 4096) + { + SCALE = 4096; + HALFSCALE = 2048; + } + else + { + int fac = 4096; + + while (cols * fac > 4096) + { + fac /= 2; + } + + SCALE = fac * cols; + HALFSCALE = fac * cols / 2; + } + + xscale = (double) newcols / (double) cols; + yscale = (double) newrows / (double) rows; + + sxscale = (long)(xscale * SCALE); + syscale = (long)(yscale * SCALE); + + if ( newrows != rows ) /* shortcut Y scaling if possible */ + tempxelrow = new TQRgb[cols]; + + if ( src.hasAlphaBuffer() ) { + dst.setAlphaBuffer(TRUE); + as = new long[cols]; + for ( col = 0; col < cols; ++col ) + as[col] = HALFSCALE; + } else { + as = 0; + } + rs = new long[cols]; + gs = new long[cols]; + bs = new long[cols]; + rowsread = 0; + fracrowleft = syscale; + needtoreadrow = 1; + for ( col = 0; col < cols; ++col ) + rs[col] = gs[col] = bs[col] = HALFSCALE; + fracrowtofill = SCALE; + + for ( row = 0; row < newrows; ++row ) { + /* First scale Y from xelrow into tempxelrow. */ + if ( newrows == rows ) { + /* shortcut Y scaling if possible */ + tempxelrow = xelrow = (TQRgb*)src.scanLine(rowsread++); + } else { + while ( fracrowleft < fracrowtofill ) { + if ( needtoreadrow && rowsread < rows ) + xelrow = (TQRgb*)src.scanLine(rowsread++); + for ( col = 0, xP = xelrow; col < cols; ++col, ++xP ) { + if (as) { + as[col] += fracrowleft * tqAlpha( *xP ); + rs[col] += fracrowleft * tqRed( *xP ) * tqAlpha( *xP ) / 255; + gs[col] += fracrowleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255; + bs[col] += fracrowleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255; + } else { + rs[col] += fracrowleft * tqRed( *xP ); + gs[col] += fracrowleft * tqGreen( *xP ); + bs[col] += fracrowleft * tqBlue( *xP ); + } + } + fracrowtofill -= fracrowleft; + fracrowleft = syscale; + needtoreadrow = 1; + } + /* Now fracrowleft is >= fracrowtofill, so we can produce a row. */ + if ( needtoreadrow && rowsread < rows ) { + xelrow = (TQRgb*)src.scanLine(rowsread++); + needtoreadrow = 0; + } + long a=0; + for ( col = 0, xP = xelrow, nxP = tempxelrow; + col < cols; ++col, ++xP, ++nxP ) + { + long r, g, b; + + if ( as ) { + r = rs[col] + fracrowtofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; + g = gs[col] + fracrowtofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; + b = bs[col] + fracrowtofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; + a = as[col] + fracrowtofill * tqAlpha( *xP ); + if ( a ) { + r = r * 255 / a * SCALE; + g = g * 255 / a * SCALE; + b = b * 255 / a * SCALE; + } + } else { + r = rs[col] + fracrowtofill * tqRed( *xP ); + g = gs[col] + fracrowtofill * tqGreen( *xP ); + b = bs[col] + fracrowtofill * tqBlue( *xP ); + } + r /= SCALE; + if ( r > maxval ) r = maxval; + g /= SCALE; + if ( g > maxval ) g = maxval; + b /= SCALE; + if ( b > maxval ) b = maxval; + if ( as ) { + a /= SCALE; + if ( a > maxval ) a = maxval; + *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); + as[col] = HALFSCALE; + } else { + *nxP = tqRgb( (int)r, (int)g, (int)b ); + } + rs[col] = gs[col] = bs[col] = HALFSCALE; + } + fracrowleft -= fracrowtofill; + if ( fracrowleft == 0 ) { + fracrowleft = syscale; + needtoreadrow = 1; + } + fracrowtofill = SCALE; + } + + /* Now scale X from tempxelrow into dst and write it out. */ + if ( newcols == cols ) { + /* shortcut X scaling if possible */ + memcpy(dst.scanLine(rowswritten++), tempxelrow, newcols*4); + } else { + long a, r, g, b; + long fraccoltofill, fraccolleft = 0; + int needcol; + + nxP = (TQRgb*)dst.scanLine(rowswritten++); + fraccoltofill = SCALE; + a = r = g = b = HALFSCALE; + needcol = 0; + for ( col = 0, xP = tempxelrow; col < cols; ++col, ++xP ) { + fraccolleft = sxscale; + while ( fraccolleft >= fraccoltofill ) { + if ( needcol ) { + ++nxP; + a = r = g = b = HALFSCALE; + } + if ( as ) { + r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; + g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; + b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; + a += fraccoltofill * tqAlpha( *xP ); + if ( a ) { + r = r * 255 / a * SCALE; + g = g * 255 / a * SCALE; + b = b * 255 / a * SCALE; + } + } else { + r += fraccoltofill * tqRed( *xP ); + g += fraccoltofill * tqGreen( *xP ); + b += fraccoltofill * tqBlue( *xP ); + } + r /= SCALE; + if ( r > maxval ) r = maxval; + g /= SCALE; + if ( g > maxval ) g = maxval; + b /= SCALE; + if ( b > maxval ) b = maxval; + if (as) { + a /= SCALE; + if ( a > maxval ) a = maxval; + *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); + } else { + *nxP = tqRgb( (int)r, (int)g, (int)b ); + } + fraccolleft -= fraccoltofill; + fraccoltofill = SCALE; + needcol = 1; + } + if ( fraccolleft > 0 ) { + if ( needcol ) { + ++nxP; + a = r = g = b = HALFSCALE; + needcol = 0; + } + if (as) { + a += fraccolleft * tqAlpha( *xP ); + r += fraccolleft * tqRed( *xP ) * tqAlpha( *xP ) / 255; + g += fraccolleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255; + b += fraccolleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255; + } else { + r += fraccolleft * tqRed( *xP ); + g += fraccolleft * tqGreen( *xP ); + b += fraccolleft * tqBlue( *xP ); + } + fraccoltofill -= fraccolleft; + } + } + if ( fraccoltofill > 0 ) { + --xP; + if (as) { + a += fraccolleft * tqAlpha( *xP ); + r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; + g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; + b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; + if ( a ) { + r = r * 255 / a * SCALE; + g = g * 255 / a * SCALE; + b = b * 255 / a * SCALE; + } + } else { + r += fraccoltofill * tqRed( *xP ); + g += fraccoltofill * tqGreen( *xP ); + b += fraccoltofill * tqBlue( *xP ); + } + } + if ( ! needcol ) { + r /= SCALE; + if ( r > maxval ) r = maxval; + g /= SCALE; + if ( g > maxval ) g = maxval; + b /= SCALE; + if ( b > maxval ) b = maxval; + if (as) { + a /= SCALE; + if ( a > maxval ) a = maxval; + *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); + } else { + *nxP = tqRgb( (int)r, (int)g, (int)b ); + } + } + } + } + + if ( newrows != rows && tempxelrow )// Robust, tempxelrow might be 0 1 day + delete [] tempxelrow; + if ( as ) // Avoid purify complaint + delete [] as; + if ( rs ) // Robust, rs might be 0 one day + delete [] rs; + if ( gs ) // Robust, gs might be 0 one day + delete [] gs; + if ( bs ) // Robust, bs might be 0 one day + delete [] bs; +} +#endif + +/*! + \enum TQImage::ScaleMode + + The functions scale() and smoothScale() use different modes for + scaling the image. The purpose of these modes is to retain the + ratio of the image if this is required. + + \img scaling.png + + \value ScaleFree The image is scaled freely: the resulting image + fits exactly into the specified size; the ratio will not + necessarily be preserved. + \value ScaleMin The ratio of the image is preserved and the + resulting image is guaranteed to fit into the specified size + (it is as large as possible within these constraints) - the + image might be smaller than the requested size. + \value ScaleMax The ratio of the image is preserved and the + resulting image fills the whole specified rectangle (it is as + small as possible within these constraints) - the image might + be larger than the requested size. +*/ + +#ifndef TQT_NO_IMAGE_SMOOTHSCALE +/*! + Returns a smoothly scaled copy of the image. The returned image + has a size of width \a w by height \a h pixels if \a mode is \c + ScaleFree. The modes \c ScaleMin and \c ScaleMax may be used to + preserve the ratio of the image: if \a mode is \c ScaleMin, the + returned image is guaranteed to fit into the rectangle specified + by \a w and \a h (it is as large as possible within the + constraints); if \a mode is \c ScaleMax, the returned image fits + at least into the specified rectangle (it is a small as possible + within the constraints). + + For 32-bpp images and 1-bpp/8-bpp color images the result will be + 32-bpp, whereas \link allGray() all-gray \endlink images + (including black-and-white 1-bpp) will produce 8-bit \link + isGrayscale() grayscale \endlink images with the palette spanning + 256 grays from black to white. + + This function uses code based on pnmscale.c by Jef Poskanzer. + + pnmscale.c - read a portable anymap and scale it + + \legalese + + Copyright (C) 1989, 1991 by Jef Poskanzer. + + Permission to use, copy, modify, and distribute this software and + its documentation for any purpose and without fee is hereby + granted, provided that the above copyright notice appear in all + copies and that both that copyright notice and this permission + notice appear in supporting documentation. This software is + provided "as is" without express or implied warranty. + + \sa scale() mirror() +*/ +TQImage TQImage::smoothScale( int w, int h, ScaleMode mode ) const +{ + return smoothScale( TQSize( w, h ), mode ); +} +#endif + +#ifndef TQT_NO_IMAGE_SMOOTHSCALE +/*! + \overload + + The requested size of the image is \a s. +*/ +TQImage TQImage::smoothScale( const TQSize& s, ScaleMode mode ) const +{ + if ( isNull() ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::smoothScale: Image is a null image" ); +#endif + return copy(); + } + + TQSize newSize = size(); + newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0 + if ( newSize == size() ) + return copy(); + + if ( depth() == 32 ) { + TQImage img( newSize, 32 ); + // 32-bpp to 32-bpp + pnmscale( *this, img ); + return img; + } else if ( depth() != 16 && allGray() && !hasAlphaBuffer() ) { + // Inefficient + return convertDepth(32).smoothScale(newSize, mode).convertDepth(8); + } else { + // Inefficient + return convertDepth(32).smoothScale(newSize, mode); + } +} +#endif + +/*! + Returns a copy of the image scaled to a rectangle of width \a w + and height \a h according to the ScaleMode \a mode. + + \list + \i If \a mode is \c ScaleFree, the image is scaled to (\a w, + \a h). + \i If \a mode is \c ScaleMin, the image is scaled to a rectangle + as large as possible inside (\a w, \a h), preserving the aspect + ratio. + \i If \a mode is \c ScaleMax, the image is scaled to a rectangle + as small as possible outside (\a w, \a h), preserving the aspect + ratio. + \endlist + + If either the width \a w or the height \a h is 0 or negative, this + function returns a \link isNull() null\endlink image. + + This function uses a simple, fast algorithm. If you need better + quality, use smoothScale() instead. + + \sa scaleWidth() scaleHeight() smoothScale() xForm() +*/ +#ifndef TQT_NO_IMAGE_TRANSFORMATION +TQImage TQImage::scale( int w, int h, ScaleMode mode ) const +{ + return scale( TQSize( w, h ), mode ); +} +#endif + +/*! + \overload + + The requested size of the image is \a s. +*/ +#ifndef TQT_NO_IMAGE_TRANSFORMATION +TQImage TQImage::scale( const TQSize& s, ScaleMode mode ) const +{ + if ( isNull() ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::scale: Image is a null image" ); +#endif + return copy(); + } + if ( s.isEmpty() ) + return TQImage(); + + TQSize newSize = size(); + newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0 + if ( newSize == size() ) + return copy(); + + TQImage img; + TQWMatrix wm; + wm.scale( (double)newSize.width() / width(), (double)newSize.height() / height() ); + img = xForm( wm ); + // ### I should test and resize the image if it has not the right size +// if ( img.width() != newSize.width() || img.height() != newSize.height() ) +// img.resize( newSize.width(), newSize.height() ); + return img; +} +#endif + +/*! + Returns a scaled copy of the image. The returned image has a width + of \a w pixels. This function automatically calculates the height + of the image so that the ratio of the image is preserved. + + If \a w is 0 or negative a \link isNull() null\endlink image is + returned. + + \sa scale() scaleHeight() smoothScale() xForm() +*/ +#ifndef TQT_NO_IMAGE_TRANSFORMATION +TQImage TQImage::scaleWidth( int w ) const +{ + if ( isNull() ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::scaleWidth: Image is a null image" ); +#endif + return copy(); + } + if ( w <= 0 ) + return TQImage(); + + TQWMatrix wm; + double factor = (double) w / width(); + wm.scale( factor, factor ); + return xForm( wm ); +} +#endif + +/*! + Returns a scaled copy of the image. The returned image has a + height of \a h pixels. This function automatically calculates the + width of the image so that the ratio of the image is preserved. + + If \a h is 0 or negative a \link isNull() null\endlink image is + returned. + + \sa scale() scaleWidth() smoothScale() xForm() +*/ +#ifndef TQT_NO_IMAGE_TRANSFORMATION +TQImage TQImage::scaleHeight( int h ) const +{ + if ( isNull() ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage::scaleHeight: Image is a null image" ); +#endif + return copy(); + } + if ( h <= 0 ) + return TQImage(); + + TQWMatrix wm; + double factor = (double) h / height(); + wm.scale( factor, factor ); + return xForm( wm ); +} +#endif + + +/*! + Returns a copy of the image that is transformed using the + transformation matrix, \a matrix. + + The transformation \a matrix is internally adjusted to compensate + for unwanted translation, i.e. xForm() returns the smallest image + that contains all the transformed points of the original image. + + \sa scale() TQPixmap::xForm() TQPixmap::trueMatrix() TQWMatrix +*/ +#ifndef TQT_NO_IMAGE_TRANSFORMATION +TQImage TQImage::xForm( const TQWMatrix &matrix ) const +{ + // This function uses the same algorithm as (and steals quite some + // code from) TQPixmap::xForm(). + + if ( isNull() ) + return copy(); + + if ( depth() == 16 ) { + // inefficient + return convertDepth( 32 ).xForm( matrix ); + } + + // source image data + int ws = width(); + int hs = height(); + int sbpl = bytesPerLine(); + uchar *sptr = bits(); + + // target image data + int wd; + int hd; + + int bpp = depth(); + + // compute size of target image + TQWMatrix mat = TQPixmap::trueMatrix( matrix, ws, hs ); + if ( mat.m12() == 0.0F && mat.m21() == 0.0F ) { + if ( mat.m11() == 1.0F && mat.m22() == 1.0F ) // identity matrix + return copy(); + hd = tqRound( mat.m22() * hs ); + wd = tqRound( mat.m11() * ws ); + hd = TQABS( hd ); + wd = TQABS( wd ); + } else { // rotation or shearing + TQPointArray a( TQRect(0, 0, ws, hs) ); + a = mat.map( a ); + TQRect r = a.boundingRect().normalize(); + wd = r.width(); + hd = r.height(); + } + + bool invertible; + mat = mat.invert( &invertible ); // invert matrix + if ( hd == 0 || wd == 0 || !invertible ) // error, return null image + return TQImage(); + + // create target image (some of the code is from TQImage::copy()) + TQImage dImage( wd, hd, depth(), numColors(), bitOrder() ); + + // If the image allocation failed, we need to gracefully abort. + if (dImage.isNull()) + return dImage; + + memcpy( dImage.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); + dImage.setAlphaBuffer( hasAlphaBuffer() ); + dImage.data->dpmx = dotsPerMeterX(); + dImage.data->dpmy = dotsPerMeterY(); + + switch ( bpp ) { + // initizialize the data + case 1: + memset( dImage.bits(), 0, dImage.numBytes() ); + break; + case 8: + if ( dImage.data->ncols < 256 ) { + // colors are left in the color table, so pick that one as transparent + dImage.setNumColors( dImage.data->ncols+1 ); + dImage.setColor( dImage.data->ncols-1, 0x00 ); + memset( dImage.bits(), dImage.data->ncols-1, dImage.numBytes() ); + } else { + memset( dImage.bits(), 0, dImage.numBytes() ); + } + break; + case 16: + memset( dImage.bits(), 0xff, dImage.numBytes() ); + break; + case 32: + memset( dImage.bits(), 0x00, dImage.numBytes() ); + break; + } + + int type; + if ( bitOrder() == BigEndian ) + type = QT_XFORM_TYPE_MSBFIRST; + else + type = QT_XFORM_TYPE_LSBFIRST; + int dbpl = dImage.bytesPerLine(); + qt_xForm_helper( mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, + ws, hs ); + return dImage; +} +#endif + +/*! + Builds and returns a 1-bpp mask from the alpha buffer in this + image. Returns a \link isNull() null\endlink image if \link + setAlphaBuffer() alpha buffer mode\endlink is disabled. + + See TQPixmap::convertFromImage() for a description of the \a + conversion_flags argument. + + The returned image has little-endian bit order, which you can + convert to big-endianness using convertBitOrder(). + + \sa createHeuristicMask() hasAlphaBuffer() setAlphaBuffer() +*/ +#ifndef TQT_NO_IMAGE_DITHER_TO_1 +TQImage TQImage::createAlphaMask( int conversion_flags ) const +{ + if ( conversion_flags == 1 ) { + // Old code is passing "TRUE". + conversion_flags = TQt::DiffuseAlphaDither; + } + + if ( isNull() || !hasAlphaBuffer() ) + return TQImage(); + + if ( depth() == 1 ) { + // A monochrome pixmap, with alpha channels on those two colors. + // Pretty unlikely, so use less efficient solution. + return convertDepth(8, conversion_flags) + .createAlphaMask( conversion_flags ); + } + + TQImage mask1; + dither_to_1( this, &mask1, conversion_flags, TRUE ); + return mask1; +} +#endif + +#ifndef TQT_NO_IMAGE_HEURISTIC_MASK +/*! + Creates and returns a 1-bpp heuristic mask for this image. It + works by selecting a color from one of the corners, then chipping + away pixels of that color starting at all the edges. + + The four corners vote for which color is to be masked away. In + case of a draw (this generally means that this function is not + applicable to the image), the result is arbitrary. + + The returned image has little-endian bit order, which you can + convert to big-endianness using convertBitOrder(). + + If \a clipTight is TRUE the mask is just large enough to cover the + pixels; otherwise, the mask is larger than the data pixels. + + This function disregards the \link hasAlphaBuffer() alpha buffer + \endlink. + + \sa createAlphaMask() +*/ + +TQImage TQImage::createHeuristicMask( bool clipTight ) const +{ + if ( isNull() ) { + TQImage nullImage; + return nullImage; + } + if ( depth() != 32 ) { + TQImage img32 = convertDepth(32); + return img32.createHeuristicMask(clipTight); + } + +#define PIX(x,y) (*((TQRgb*)scanLine(y)+x) & 0x00ffffff) + + int w = width(); + int h = height(); + TQImage m(w, h, 1, 2, TQImage::LittleEndian); + m.setColor( 0, 0xffffff ); + m.setColor( 1, 0 ); + m.fill( 0xff ); + + TQRgb background = PIX(0,0); + if ( background != PIX(w-1,0) && + background != PIX(0,h-1) && + background != PIX(w-1,h-1) ) { + background = PIX(w-1,0); + if ( background != PIX(w-1,h-1) && + background != PIX(0,h-1) && + PIX(0,h-1) == PIX(w-1,h-1) ) { + background = PIX(w-1,h-1); + } + } + + int x,y; + bool done = FALSE; + uchar *ypp, *ypc, *ypn; + while( !done ) { + done = TRUE; + ypn = m.scanLine(0); + ypc = 0; + for ( y = 0; y < h; y++ ) { + ypp = ypc; + ypc = ypn; + ypn = (y == h-1) ? 0 : m.scanLine(y+1); + TQRgb *p = (TQRgb *)scanLine(y); + for ( x = 0; x < w; x++ ) { + // slowness here - it's possible to do six of these tests + // together in one go. oh well. + if ( ( x == 0 || y == 0 || x == w-1 || y == h-1 || + !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || + !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || + !(*(ypp + (x >> 3)) & (1 << (x & 7))) || + !(*(ypn + (x >> 3)) & (1 << (x & 7))) ) && + ( (*(ypc + (x >> 3)) & (1 << (x & 7))) ) && + ( (*p & 0x00ffffff) == background ) ) { + done = FALSE; + *(ypc + (x >> 3)) &= ~(1 << (x & 7)); + } + p++; + } + } + } + + if ( !clipTight ) { + ypn = m.scanLine(0); + ypc = 0; + for ( y = 0; y < h; y++ ) { + ypp = ypc; + ypc = ypn; + ypn = (y == h-1) ? 0 : m.scanLine(y+1); + TQRgb *p = (TQRgb *)scanLine(y); + for ( x = 0; x < w; x++ ) { + if ( (*p & 0x00ffffff) != background ) { + if ( x > 0 ) + *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); + if ( x < w-1 ) + *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); + if ( y > 0 ) + *(ypp + (x >> 3)) |= (1 << (x & 7)); + if ( y < h-1 ) + *(ypn + (x >> 3)) |= (1 << (x & 7)); + } + p++; + } + } + } + +#undef PIX + + return m; +} +#endif //TQT_NO_IMAGE_HEURISTIC_MASK + +#ifndef TQT_NO_IMAGE_MIRROR +/* + This code is contributed by Philipp Lang, + GeneriCom Software Germany (www.generi.com) + under the terms of the TQPL, Version 1.0 +*/ + +/*! + \overload + + Returns a mirror of the image, mirrored in the horizontal and/or + the vertical direction depending on whether \a horizontal and \a + vertical are set to TRUE or FALSE. The original image is not + changed. + + \sa smoothScale() +*/ +TQImage TQImage::mirror(bool horizontal, bool vertical) const +{ + int w = width(); + int h = height(); + if ( (w <= 1 && h <= 1) || (!horizontal && !vertical) ) + return copy(); + + // Create result image, copy colormap + TQImage result(w, h, depth(), numColors(), bitOrder()); + memcpy(result.colorTable(), colorTable(), numColors()*sizeof(TQRgb)); + result.setAlphaBuffer(hasAlphaBuffer()); + + if (depth() == 1) + w = (w+7)/8; + int dxi = horizontal ? -1 : 1; + int dxs = horizontal ? w-1 : 0; + int dyi = vertical ? -1 : 1; + int dy = vertical ? h-1: 0; + + // 1 bit, 8 bit + if (depth() == 1 || depth() == 8) { + for (int sy = 0; sy < h; sy++, dy += dyi) { + TQ_UINT8* ssl = (TQ_UINT8*)(data->bits[sy]); + TQ_UINT8* dsl = (TQ_UINT8*)(result.data->bits[dy]); + int dx = dxs; + for (int sx = 0; sx < w; sx++, dx += dxi) + dsl[dx] = ssl[sx]; + } + } +#ifndef TQT_NO_IMAGE_TRUECOLOR +#ifndef TQT_NO_IMAGE_16_BIT + // 16 bit + else if (depth() == 16) { + for (int sy = 0; sy < h; sy++, dy += dyi) { + TQ_UINT16* ssl = (TQ_UINT16*)(data->bits[sy]); + TQ_UINT16* dsl = (TQ_UINT16*)(result.data->bits[dy]); + int dx = dxs; + for (int sx = 0; sx < w; sx++, dx += dxi) + dsl[dx] = ssl[sx]; + } + } +#endif + // 32 bit + else if (depth() == 32) { + for (int sy = 0; sy < h; sy++, dy += dyi) { + TQ_UINT32* ssl = (TQ_UINT32*)(data->bits[sy]); + TQ_UINT32* dsl = (TQ_UINT32*)(result.data->bits[dy]); + int dx = dxs; + for (int sx = 0; sx < w; sx++, dx += dxi) + dsl[dx] = ssl[sx]; + } + } +#endif + + // special handling of 1 bit images for horizontal mirroring + if (horizontal && depth() == 1) { + int shift = width() % 8; + for (int y = h-1; y >= 0; y--) { + TQ_UINT8* a0 = (TQ_UINT8*)(result.data->bits[y]); + // Swap bytes + TQ_UINT8* a = a0+dxs; + while (a >= a0) { + *a = bitflip[*a]; + a--; + } + // Shift bits if unaligned + if (shift != 0) { + a = a0+dxs; + TQ_UINT8 c = 0; + if (bitOrder() == TQImage::LittleEndian) { + while (a >= a0) { + TQ_UINT8 nc = *a << shift; + *a = (*a >> (8-shift)) | c; + --a; + c = nc; + } + } else { + while (a >= a0) { + TQ_UINT8 nc = *a >> shift; + *a = (*a << (8-shift)) | c; + --a; + c = nc; + } + } + } + } + } + + return result; +} + +/*! + Returns a TQImage which is a vertically mirrored copy of this + image. The original TQImage is not changed. +*/ + +TQImage TQImage::mirror() const +{ + return mirror(FALSE,TRUE); +} +#endif //TQT_NO_IMAGE_MIRROR + +/*! + Returns a TQImage in which the values of the red and blue + components of all pixels have been swapped, effectively converting + an RGB image to a BGR image. The original TQImage is not changed. +*/ + +TQImage TQImage::swapRGB() const +{ + TQImage res = copy(); + if ( !isNull() ) { +#ifndef TQT_NO_IMAGE_TRUECOLOR + if ( depth() == 32 ) { + for ( int i=0; i < height(); i++ ) { + uint *p = (uint*)scanLine( i ); + uint *q = (uint*)res.scanLine( i ); + uint *end = p + width(); + while ( p < end ) { + *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | + (*p & 0xff00ff00); + p++; + q++; + } + } +#ifndef TQT_NO_IMAGE_16_BIT + } else if ( depth() == 16 ) { + tqWarning( "TQImage::swapRGB not implemented for 16bpp" ); +#endif + } else +#endif //TQT_NO_IMAGE_TRUECOLOR + { + uint* p = (uint*)colorTable(); + uint* q = (uint*)res.colorTable(); + if ( p && q ) { + for ( int i=0; i < numColors(); i++ ) { + *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | + (*p & 0xff00ff00); + p++; + q++; + } + } + } + } + return res; +} + +#ifndef TQT_NO_IMAGEIO +/*! + Returns a string that specifies the image format of the file \a + fileName, or 0 if the file cannot be read or if the format is not + recognized. + + The TQImageIO documentation lists the guaranteed supported image + formats, or use TQImage::inputFormats() and TQImage::outputFormats() + to get lists that include the installed formats. + + \sa load() save() +*/ + +const char* TQImage::imageFormat( const TQString &fileName ) +{ + return TQImageIO::imageFormat( fileName ); +} + +/*! + Returns a list of image formats that are supported for image + input. + + \sa outputFormats() inputFormatList() TQImageIO +*/ +TQStrList TQImage::inputFormats() +{ + return TQImageIO::inputFormats(); +} +#ifndef TQT_NO_STRINGLIST +/*! + Returns a list of image formats that are supported for image + input. + + Note that if you want to iterate over the list, you should iterate + over a copy, e.g. + \code + TQStringList list = myImage.inputFormatList(); + TQStringList::Iterator it = list.begin(); + while( it != list.end() ) { + myProcessing( *it ); + ++it; + } + \endcode + + \sa outputFormatList() inputFormats() TQImageIO +*/ +TQStringList TQImage::inputFormatList() +{ + return TQStringList::fromStrList(TQImageIO::inputFormats()); +} + + +/*! + Returns a list of image formats that are supported for image + output. + + Note that if you want to iterate over the list, you should iterate + over a copy, e.g. + \code + TQStringList list = myImage.outputFormatList(); + TQStringList::Iterator it = list.begin(); + while( it != list.end() ) { + myProcessing( *it ); + ++it; + } + \endcode + + \sa inputFormatList() outputFormats() TQImageIO +*/ +TQStringList TQImage::outputFormatList() +{ + return TQStringList::fromStrList(TQImageIO::outputFormats()); +} +#endif //TQT_NO_STRINGLIST + +/*! + Returns a list of image formats that are supported for image + output. + + \sa inputFormats() outputFormatList() TQImageIO +*/ +TQStrList TQImage::outputFormats() +{ + return TQImageIO::outputFormats(); +} + + +/*! + Loads an image from the file \a fileName. Returns TRUE if the + image was successfully loaded; otherwise returns FALSE. + + If \a format is specified, the loader attempts to read the image + using the specified format. If \a format is not specified (which + is the default), the loader reads a few bytes from the header to + guess the file format. + + The TQImageIO documentation lists the supported image formats and + explains how to add extra formats. + + \sa loadFromData() save() imageFormat() TQPixmap::load() TQImageIO +*/ + +bool TQImage::load( const TQString &fileName, const char* format ) +{ + TQImageIO io( fileName, format ); + bool result = io.read(); + if ( result ) + operator=( io.image() ); + return result; +} + +/*! + Loads an image from the first \a len bytes of binary data in \a + buf. Returns TRUE if the image was successfully loaded; otherwise + returns FALSE. + + If \a format is specified, the loader attempts to read the image + using the specified format. If \a format is not specified (which + is the default), the loader reads a few bytes from the header to + guess the file format. + + The TQImageIO documentation lists the supported image formats and + explains how to add extra formats. + + \sa load() save() imageFormat() TQPixmap::loadFromData() TQImageIO +*/ + +bool TQImage::loadFromData( const uchar *buf, uint len, const char *format ) +{ + TQByteArray a; + a.setRawData( (char *)buf, len ); + TQBuffer b( a ); + b.open( IO_ReadOnly ); + TQImageIO io( &b, format ); + bool result = io.read(); + b.close(); + a.resetRawData( (char *)buf, len ); + if ( result ) + operator=( io.image() ); + return result; +} + +/*! + \overload + + Loads an image from the TQByteArray \a buf. +*/ +bool TQImage::loadFromData( TQByteArray buf, const char *format ) +{ + return loadFromData( (const uchar *)(buf.data()), buf.size(), format ); +} + +/*! + Saves the image to the file \a fileName, using the image file + format \a format and a quality factor of \a quality. \a quality + must be in the range 0..100 or -1. Specify 0 to obtain small + compressed files, 100 for large uncompressed files, and -1 (the + default) to use the default settings. + + Returns TRUE if the image was successfully saved; otherwise + returns FALSE. + + \sa load() loadFromData() imageFormat() TQPixmap::save() TQImageIO +*/ + +bool TQImage::save( const TQString &fileName, const char* format, int quality ) const +{ + if ( isNull() ) + return FALSE; // nothing to save + TQImageIO io( fileName, format ); + return doImageIO( &io, quality ); +} + +/*! + \overload + + This function writes a TQImage to the TQIODevice, \a device. This + can be used, for example, to save an image directly into a + TQByteArray: + \code + TQImage image; + TQByteArray ba; + TQBuffer buffer( ba ); + buffer.open( IO_WriteOnly ); + image.save( &buffer, "PNG" ); // writes image into ba in PNG format + \endcode +*/ + +bool TQImage::save( TQIODevice* device, const char* format, int quality ) const +{ + if ( isNull() ) + return FALSE; // nothing to save + TQImageIO io( device, format ); + return doImageIO( &io, quality ); +} + +/* \internal +*/ + +bool TQImage::doImageIO( TQImageIO* io, int quality ) const +{ + if ( !io ) + return FALSE; + io->setImage( *this ); +#if defined(QT_CHECK_RANGE) + if ( quality > 100 || quality < -1 ) + tqWarning( "TQPixmap::save: quality out of range [-1,100]" ); +#endif + if ( quality >= 0 ) + io->setQuality( TQMIN(quality,100) ); + return io->write(); +} +#endif //TQT_NO_IMAGEIO + +/***************************************************************************** + TQImage stream functions + *****************************************************************************/ +#if !defined(TQT_NO_DATASTREAM) && !defined(TQT_NO_IMAGEIO) +/*! + \relates TQImage + + Writes the image \a image to the stream \a s as a PNG image, or as a + BMP image if the stream's version is 1. + + Note that writing the stream to a file will not produce a valid image file. + + \sa TQImage::save() + \link datastreamformat.html Format of the TQDataStream operators \endlink +*/ + +TQDataStream &operator<<( TQDataStream &s, const TQImage &image ) +{ + if ( s.version() >= 5 ) { + if ( image.isNull() ) { + s << (TQ_INT32) 0; // null image marker + return s; + } else { + s << (TQ_INT32) 1; + // continue ... + } + } + TQImageIO io; + io.setIODevice( s.device() ); + if ( s.version() == 1 ) + io.setFormat( "BMP" ); + else + io.setFormat( "PNG" ); + + io.setImage( image ); + io.write(); + return s; +} + +/*! + \relates TQImage + + Reads an image from the stream \a s and stores it in \a image. + + \sa TQImage::load() + \link datastreamformat.html Format of the TQDataStream operators \endlink +*/ + +TQDataStream &operator>>( TQDataStream &s, TQImage &image ) +{ + if ( s.version() >= 5 ) { + TQ_INT32 nullMarker; + s >> nullMarker; + if ( !nullMarker ) { + image = TQImage(); // null image + return s; + } + } + TQImageIO io( s.device(), 0 ); + if ( io.read() ) + image = io.image(); + return s; +} +#endif + +/***************************************************************************** + Standard image io handlers (defined below) + *****************************************************************************/ + +// standard image io handlers (defined below) +#ifndef TQT_NO_IMAGEIO_BMP +static void read_bmp_image( TQImageIO * ); +static void write_bmp_image( TQImageIO * ); +#endif +#ifndef TQT_NO_IMAGEIO_PPM +static void read_pbm_image( TQImageIO * ); +static void write_pbm_image( TQImageIO * ); +#endif +#ifndef TQT_NO_IMAGEIO_XBM +static void read_xbm_image( TQImageIO * ); +static void write_xbm_image( TQImageIO * ); +#endif +#ifndef TQT_NO_IMAGEIO_XPM +static void read_xpm_image( TQImageIO * ); +static void write_xpm_image( TQImageIO * ); +#endif + +#ifndef TQT_NO_ASYNC_IMAGE_IO +static void read_async_image( TQImageIO * ); // Not in table of handlers +#endif + +/***************************************************************************** + Misc. utility functions + *****************************************************************************/ +#if !defined(TQT_NO_IMAGEIO_XPM) || !defined(TQT_NO_IMAGEIO_XBM) +static TQString fbname( const TQString &fileName ) // get file basename (sort of) +{ + TQString s = fileName; + if ( !s.isEmpty() ) { + int i; + if ( (i = s.findRev('/')) >= 0 ) + s = s.mid( i ); + if ( (i = s.findRev('\\')) >= 0 ) + s = s.mid( i ); + TQRegExp r( TQString::fromLatin1("[a-zA-Z][a-zA-Z0-9_]*") ); + int p = r.search( s ); + if ( p == -1 ) + s.truncate( 0 ); + else + s = s.mid( p, r.matchedLength() ); + } + if ( s.isEmpty() ) + s = TQString::fromLatin1( "dummy" ); + return s; +} +#endif + +#ifndef TQT_NO_IMAGEIO_BMP +static void swapPixel01( TQImage *image ) // 1-bpp: swap 0 and 1 pixels +{ + int i; + if ( image->depth() == 1 && image->numColors() == 2 ) { + uint *p = (uint *)image->bits(); + int nbytes = image->numBytes(); + for ( i=0; i<nbytes/4; i++ ) { + *p = ~*p; + p++; + } + uchar *p2 = (uchar *)p; + for ( i=0; i<(nbytes&3); i++ ) { + *p2 = ~*p2; + p2++; + } + TQRgb t = image->color(0); // swap color 0 and 1 + image->setColor( 0, image->color(1) ); + image->setColor( 1, t ); + } +} +#endif + + +/***************************************************************************** + TQImageIO member functions + *****************************************************************************/ + +/*! + \class TQImageIO tqimage.h + + \brief The TQImageIO class contains parameters for loading and + saving images. + + \ingroup images + \ingroup graphics + \ingroup io + + TQImageIO contains a TQIODevice object that is used for image data + I/O. The programmer can install new image file formats in addition + to those that TQt provides. + + TQt currently supports the following image file formats: PNG, BMP, + XBM, XPM and PNM. It may also support JPEG, MNG and GIF, if + specially configured during compilation. The different PNM formats + are: PBM (P1 or P4), PGM (P2 or P5), and PPM (P3 or P6). + + You don't normally need to use this class; TQPixmap::load(), + TQPixmap::save(), and TQImage contain sufficient functionality. + + For image files that contain sequences of images, only the first + is read. See TQMovie for loading multiple images. + + PBM, PGM, and PPM format \e output is always in the more condensed + raw format. PPM and PGM files with more than 256 levels of + intensity are scaled down when reading. + + \warning If you are in a country which recognizes software patents + and in which Unisys holds a patent on LZW compression and/or + decompression and you want to use GIF, Unisys may require you to + license the technology. Such countries include Canada, Japan, the + USA, France, Germany, Italy and the UK. + + GIF support may be removed completely in a future version of TQt. + We recommend using the PNG format. + + \sa TQImage TQPixmap TQFile TQMovie +*/ + +#ifndef TQT_NO_IMAGEIO +struct TQImageIOData +{ + const char *parameters; + int quality; + float gamma; +}; + +/*! + Constructs a TQImageIO object with all parameters set to zero. +*/ + +TQImageIO::TQImageIO() +{ + init(); +} + +/*! + Constructs a TQImageIO object with the I/O device \a ioDevice and a + \a format tag. +*/ + +TQImageIO::TQImageIO( TQIODevice *ioDevice, const char *format ) + : frmt(format) +{ + init(); + iodev = ioDevice; +} + +/*! + Constructs a TQImageIO object with the file name \a fileName and a + \a format tag. +*/ + +TQImageIO::TQImageIO( const TQString &fileName, const char* format ) + : frmt(format), fname(fileName) +{ + init(); +} + +/*! + Contains initialization common to all TQImageIO constructors. +*/ + +void TQImageIO::init() +{ + d = new TQImageIOData(); + d->parameters = 0; + d->quality = -1; // default quality of the current format + d->gamma=0.0f; + iostat = 0; + iodev = 0; +} + +/*! + Destroys the object and all related data. +*/ + +TQImageIO::~TQImageIO() +{ + if ( d->parameters ) + delete [] (char*)d->parameters; + delete d; +} + + +/***************************************************************************** + TQImageIO image handler functions + *****************************************************************************/ + +class TQImageHandler +{ +public: + TQImageHandler( const char *f, const char *h, const TQCString& fl, + image_io_handler r, image_io_handler w ); + TQCString format; // image format + TQRegExp header; // image header pattern + enum TMode { Untranslated=0, TranslateIn, TranslateInOut } text_mode; + image_io_handler read_image; // image read function + image_io_handler write_image; // image write function + bool obsolete; // support not "published" +}; + +TQImageHandler::TQImageHandler( const char *f, const char *h, const TQCString& fl, + image_io_handler r, image_io_handler w ) + : format(f), header(TQString::fromLatin1(h)) +{ + text_mode = Untranslated; + if ( fl.contains('t') ) + text_mode = TranslateIn; + else if ( fl.contains('T') ) + text_mode = TranslateInOut; + obsolete = fl.contains('O'); + read_image = r; + write_image = w; +} + +typedef TQPtrList<TQImageHandler> TQIHList;// list of image handlers +static TQIHList *imageHandlers = 0; +#ifndef TQT_NO_COMPONENT +static TQPluginManager<TQImageFormatInterface> *plugin_manager = 0; +#else +static void *plugin_manager = 0; +#endif + +void tqt_init_image_plugins() +{ +#ifndef TQT_NO_COMPONENT + if ( plugin_manager ) + return; + + plugin_manager = new TQPluginManager<TQImageFormatInterface>( IID_QImageFormat, TQApplication::libraryPaths(), "/imageformats" ); + + TQStringList features = plugin_manager->featureList(); + TQStringList::Iterator it = features.begin(); + while ( it != features.end() ) { + TQString str = *it; + ++it; + TQInterfacePtr<TQImageFormatInterface> iface; + plugin_manager->queryInterface( str, &iface ); + if ( iface ) + iface->installIOHandler( str ); + } +#endif +} + +static void cleanup() +{ + // make sure that image handlers are delete before plugin manager + delete imageHandlers; + imageHandlers = 0; +#ifndef TQT_NO_COMPONENT + delete plugin_manager; + plugin_manager = 0; +#endif +} + +void tqt_init_image_handlers() // initialize image handlers +{ + if ( !imageHandlers ) { + imageHandlers = new TQIHList; + TQ_CHECK_PTR( imageHandlers ); + imageHandlers->setAutoDelete( TRUE ); + tqAddPostRoutine( cleanup ); +#ifndef TQT_NO_IMAGEIO_BMP + TQImageIO::defineIOHandler( "BMP", "^BM", 0, + read_bmp_image, write_bmp_image ); +#endif +#ifndef TQT_NO_IMAGEIO_PPM + TQImageIO::defineIOHandler( "PBM", "^P1", "t", + read_pbm_image, write_pbm_image ); + TQImageIO::defineIOHandler( "PBMRAW", "^P4", "O", + read_pbm_image, write_pbm_image ); + TQImageIO::defineIOHandler( "PGM", "^P2", "t", + read_pbm_image, write_pbm_image ); + TQImageIO::defineIOHandler( "PGMRAW", "^P5", "O", + read_pbm_image, write_pbm_image ); + TQImageIO::defineIOHandler( "PPM", "^P3", "t", + read_pbm_image, write_pbm_image ); + TQImageIO::defineIOHandler( "PPMRAW", "^P6", "O", + read_pbm_image, write_pbm_image ); +#endif +#ifndef TQT_NO_IMAGEIO_XBM + TQImageIO::defineIOHandler( "XBM", "^((/\\*(?!.XPM.\\*/))|#define)", "T", + read_xbm_image, write_xbm_image ); +#endif +#ifndef TQT_NO_IMAGEIO_XPM + TQImageIO::defineIOHandler( "XPM", "/\\*.XPM.\\*/", "T", + read_xpm_image, write_xpm_image ); +#endif +#ifndef TQT_NO_IMAGEIO_MNG + qInitMngIO(); +#endif +#ifndef TQT_NO_IMAGEIO_PNG + qInitPngIO(); +#endif +#ifndef TQT_NO_IMAGEIO_JPEG + qInitJpegIO(); +#endif + } +} + +static TQImageHandler *get_image_handler( const char *format ) +{ // get pointer to handler + tqt_init_image_handlers(); + tqt_init_image_plugins(); + TQImageHandler *p = imageHandlers->first(); + while ( p ) { // traverse list + if ( p->format == format ) + return p; + p = imageHandlers->next(); + } + return 0; // no such handler +} + + +/*! + Defines an image I/O handler for the image format called \a + format, which is recognized using the \link ntqregexp.html#details + regular expression\endlink \a header, read using \a readImage and + written using \a writeImage. + + \a flags is a string of single-character flags for this format. + The only flag defined currently is T (upper case), so the only + legal value for \a flags are "T" and the empty string. The "T" + flag means that the image file is a text file, and TQt should treat + all newline conventions as equivalent. (XPM files and some PPM + files are text files for example.) + + \a format is used to select a handler to write a TQImage; \a header + is used to select a handler to read an image file. + + If \a readImage is a null pointer, the TQImageIO will not be able + to read images in \a format. If \a writeImage is a null pointer, + the TQImageIO will not be able to write images in \a format. If + both are null, the TQImageIO object is valid but useless. + + Example: + \code + void readGIF( TQImageIO *image ) + { + // read the image using the image->ioDevice() + } + + void writeGIF( TQImageIO *image ) + { + // write the image using the image->ioDevice() + } + + // add the GIF image handler + + TQImageIO::defineIOHandler( "GIF", + "^GIF[0-9][0-9][a-z]", + 0, + readGIF, + writeGIF ); + \endcode + + Before the regex test, all the 0 bytes in the file header are + converted to 1 bytes. This is done because when TQt was + ASCII-based, TQRegExp could not handle 0 bytes in strings. + + The regexp is only applied on the first 14 bytes of the file. + + Note that TQt assumes that there is only one handler per format; if + two handlers support the same format, TQt will choose one + arbitrarily. It is not possible to have one handler support + reading, and another support writing. +*/ + +void TQImageIO::defineIOHandler( const char *format, + const char *header, + const char *flags, + image_io_handler readImage, + image_io_handler writeImage ) +{ + tqt_init_image_handlers(); + TQImageHandler *p; + p = new TQImageHandler( format, header, flags, + readImage, writeImage ); + TQ_CHECK_PTR( p ); + imageHandlers->insert( 0, p ); +} + + +/***************************************************************************** + TQImageIO normal member functions + *****************************************************************************/ + +/*! + \fn const TQImage &TQImageIO::image() const + + Returns the image currently set. + + \sa setImage() +*/ + +/*! + \fn int TQImageIO::status() const + + Returns the image's IO status. A non-zero value indicates an + error, whereas 0 means that the IO operation was successful. + + \sa setStatus() +*/ + +/*! + \fn const char *TQImageIO::format() const + + Returns the image format string or 0 if no format has been + explicitly set. +*/ + +/*! + \fn TQIODevice *TQImageIO::ioDevice() const + + Returns the IO device currently set. + + \sa setIODevice() +*/ + +/*! + \fn TQString TQImageIO::fileName() const + + Returns the file name currently set. + + \sa setFileName() +*/ + +/*! + \fn TQString TQImageIO::description() const + + Returns the image description string. + + \sa setDescription() +*/ + + +/*! + Sets the image to \a image. + + \sa image() +*/ + +void TQImageIO::setImage( const TQImage &image ) +{ + im = image; +} + +/*! + Sets the image IO status to \a status. A non-zero value indicates + an error, whereas 0 means that the IO operation was successful. + + \sa status() +*/ + +void TQImageIO::setStatus( int status ) +{ + iostat = status; +} + +/*! + Sets the image format to \a format for the image to be read or + written. + + It is necessary to specify a format before writing an image, but + it is not necessary to specify a format before reading an image. + + If no format has been set, TQt guesses the image format before + reading it. If a format is set the image will only be read if it + has that format. + + \sa read() write() format() +*/ + +void TQImageIO::setFormat( const char *format ) +{ + frmt = format; +} + +/*! + Sets the IO device to be used for reading or writing an image. + + Setting the IO device allows images to be read/written to any + block-oriented TQIODevice. + + If \a ioDevice is not null, this IO device will override file name + settings. + + \sa setFileName() +*/ + +void TQImageIO::setIODevice( TQIODevice *ioDevice ) +{ + iodev = ioDevice; +} + +/*! + Sets the name of the file to read or write an image from to \a + fileName. + + \sa setIODevice() +*/ + +void TQImageIO::setFileName( const TQString &fileName ) +{ + fname = fileName; +} + +/*! + Returns the quality of the written image, related to the + compression ratio. + + \sa setQuality() TQImage::save() +*/ + +int TQImageIO::quality() const +{ + return d->quality; +} + +/*! + Sets the quality of the written image to \a q, related to the + compression ratio. + + \a q must be in the range -1..100. Specify 0 to obtain small + compressed files, 100 for large uncompressed files. (-1 signifies + the default compression.) + + \sa quality() TQImage::save() +*/ + +void TQImageIO::setQuality( int q ) +{ + d->quality = q; +} + +/*! + Returns the image's parameters string. + + \sa setParameters() +*/ + +const char *TQImageIO::parameters() const +{ + return d->parameters; +} + +/*! + Sets the image's parameter string to \a parameters. This is for + image handlers that require special parameters. + + Although the current image formats supported by TQt ignore the + parameters string, it may be used in future extensions or by + contributions (for example, JPEG). + + \sa parameters() +*/ + +void TQImageIO::setParameters( const char *parameters ) +{ + if ( d && d->parameters ) + delete [] (char*)d->parameters; + d->parameters = tqstrdup( parameters ); +} + +/*! + Sets the gamma value at which the image will be viewed to \a + gamma. If the image format stores a gamma value for which the + image is intended to be used, then this setting will be used to + modify the image. Setting to 0.0 will disable gamma correction + (i.e. any specification in the file will be ignored). + + The default value is 0.0. + + \sa gamma() +*/ +void TQImageIO::setGamma( float gamma ) +{ + d->gamma=gamma; +} + +/*! + Returns the gamma value at which the image will be viewed. + + \sa setGamma() +*/ +float TQImageIO::gamma() const +{ + return d->gamma; +} + +/*! + Sets the image description string for image handlers that support + image descriptions to \a description. + + Currently, no image format supported by TQt uses the description + string. +*/ + +void TQImageIO::setDescription( const TQString &description ) +{ + descr = description; +} + + +/*! + Returns a string that specifies the image format of the file \a + fileName, or null if the file cannot be read or if the format is + not recognized. +*/ + +const char* TQImageIO::imageFormat( const TQString &fileName ) +{ + TQFile file( fileName ); + if ( !file.open(IO_ReadOnly) ) + return 0; + const char* format = imageFormat( &file ); + file.close(); + return format; +} + +/*! + \overload + + Returns a string that specifies the image format of the image read + from IO device \a d, or 0 if the device cannot be read or if the + format is not recognized. + + Make sure that \a d is at the right position in the device (for + example, at the beginning of the file). + + \sa TQIODevice::at() +*/ + +const char *TQImageIO::imageFormat( TQIODevice *d ) +{ + // if you change this change the documentation for defineIOHandler() + const int buflen = 14; + + char buf[buflen]; + char buf2[buflen]; + tqt_init_image_handlers(); + tqt_init_image_plugins(); + int pos = d->at(); // save position + int rdlen = d->readBlock( buf, buflen ); // read a few bytes + + if ( rdlen != buflen ) + return 0; + + memcpy( buf2, buf, buflen ); + + const char* format = 0; + for ( int n = 0; n < rdlen; n++ ) + if ( buf[n] == '\0' ) + buf[n] = '\001'; + if ( d->status() == IO_Ok && rdlen > 0 ) { + buf[rdlen - 1] = '\0'; + TQString bufStr = TQString::fromLatin1(buf); + TQImageHandler *p = imageHandlers->first(); + int bestMatch = -1; + while ( p ) { + if ( p->read_image && p->header.search(bufStr) != -1 ) { + // try match with header if a read function is available + if (p->header.matchedLength() > bestMatch) { + // keep looking for best match + format = p->format; + bestMatch = p->header.matchedLength(); + } + } + p = imageHandlers->next(); + } + } + d->at( pos ); // restore position +#ifndef TQT_NO_ASYNC_IMAGE_IO + if ( !format ) + format = TQImageDecoder::formatName( (uchar*)buf2, rdlen ); +#endif + + return format; +} + +/*! + Returns a sorted list of image formats that are supported for + image input. +*/ +TQStrList TQImageIO::inputFormats() +{ + TQStrList result; + + tqt_init_image_handlers(); + tqt_init_image_plugins(); + +#ifndef TQT_NO_ASYNC_IMAGE_IO + // Include asynchronous loaders first. + result = TQImageDecoder::inputFormats(); +#endif + + TQImageHandler *p = imageHandlers->first(); + while ( p ) { + if ( p->read_image + && !p->obsolete + && !result.contains(p->format) ) + { + result.inSort(p->format); + } + p = imageHandlers->next(); + } + + return result; +} + +/*! + Returns a sorted list of image formats that are supported for + image output. +*/ +TQStrList TQImageIO::outputFormats() +{ + TQStrList result; + + tqt_init_image_handlers(); + tqt_init_image_plugins(); + + // Include asynchronous writers (!) first. + // (None) + + TQImageHandler *p = imageHandlers->first(); + while ( p ) { + if ( p->write_image + && !p->obsolete + && !result.contains(p->format) ) + { + result.inSort(p->format); + } + p = imageHandlers->next(); + } + + return result; +} + + + +/*! + Reads an image into memory and returns TRUE if the image was + successfully read; otherwise returns FALSE. + + Before reading an image you must set an IO device or a file name. + If both an IO device and a file name have been set, the IO device + will be used. + + Setting the image file format string is optional. + + Note that this function does \e not set the \link format() + format\endlink used to read the image. If you need that + information, use the imageFormat() static functions. + + Example: + + \code + TQImageIO iio; + TQPixmap pixmap; + iio.setFileName( "vegeburger.bmp" ); + if ( image.read() ) // ok + pixmap = iio.image(); // convert to pixmap + \endcode + + \sa setIODevice() setFileName() setFormat() write() TQPixmap::load() +*/ + +bool TQImageIO::read() +{ + TQFile file; + const char *image_format; + TQImageHandler *h; + + if ( iodev ) { // read from io device + // ok, already open + } else if ( !fname.isEmpty() ) { // read from file + file.setName( fname ); + if ( !file.open(IO_ReadOnly) ) + return FALSE; // cannot open file + iodev = &file; + } else { // no file name or io device + return FALSE; + } + if (frmt.isEmpty()) { + // Try to guess format + image_format = imageFormat( iodev ); // get image format + if ( !image_format ) { + if ( file.isOpen() ) { // unknown format + file.close(); + iodev = 0; + } + return FALSE; + } + } else { + image_format = frmt; + } + + h = get_image_handler( image_format ); + if ( file.isOpen() ) { +#if !defined(Q_OS_UNIX) + if ( h && h->text_mode ) { // reopen in translated mode + file.close(); + file.open( IO_ReadOnly | IO_Translate ); + } + else +#endif + file.at( 0 ); // position to start + } + iostat = 1; // assume error + + if ( h && h->read_image ) { + (*h->read_image)( this ); + } +#ifndef TQT_NO_ASYNC_IMAGE_IO + else { + // Format name, but no handler - must be an asychronous reader + read_async_image( this ); + } +#endif + + if ( file.isOpen() ) { // image was read using file + file.close(); + iodev = 0; + } + return iostat == 0; // image successfully read? +} + + +/*! + Writes an image to an IO device and returns TRUE if the image was + successfully written; otherwise returns FALSE. + + Before writing an image you must set an IO device or a file name. + If both an IO device and a file name have been set, the IO device + will be used. + + The image will be written using the specified image format. + + Example: + \code + TQImageIO iio; + TQImage im; + im = pixmap; // convert to image + iio.setImage( im ); + iio.setFileName( "vegeburger.bmp" ); + iio.setFormat( "BMP" ); + if ( iio.write() ) + // returned TRUE if written successfully + \endcode + + \sa setIODevice() setFileName() setFormat() read() TQPixmap::save() +*/ + +bool TQImageIO::write() +{ + if ( frmt.isEmpty() ) + return FALSE; + TQImageHandler *h = get_image_handler( frmt ); + if ( !h && !plugin_manager) { + tqt_init_image_plugins(); + h = get_image_handler( frmt ); + } + if ( !h || !h->write_image ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImageIO::write: No such image format handler: %s", + format() ); +#endif + return FALSE; + } + TQFile file; + if ( !iodev && !fname.isEmpty() ) { + file.setName( fname ); + bool translate = h->text_mode==TQImageHandler::TranslateInOut; + int fmode = translate ? IO_WriteOnly|IO_Translate : IO_WriteOnly; + if ( !file.open(fmode) ) // couldn't create file + return FALSE; + iodev = &file; + } + iostat = 1; + (*h->write_image)( this ); + if ( file.isOpen() ) { // image was written using file + file.close(); + iodev = 0; + } + return iostat == 0; // image successfully written? +} +#endif //TQT_NO_IMAGEIO + +#ifndef TQT_NO_IMAGEIO_BMP + +/***************************************************************************** + BMP (DIB) image read/write functions + *****************************************************************************/ + +const int BMP_FILEHDR_SIZE = 14; // size of BMP_FILEHDR data + +struct BMP_FILEHDR { // BMP file header + char bfType[2]; // "BM" + TQ_INT32 bfSize; // size of file + TQ_INT16 bfReserved1; + TQ_INT16 bfReserved2; + TQ_INT32 bfOffBits; // pointer to the pixmap bits +}; + +TQDataStream &operator>>( TQDataStream &s, BMP_FILEHDR &bf ) +{ // read file header + s.readRawBytes( bf.bfType, 2 ); + s >> bf.bfSize >> bf.bfReserved1 >> bf.bfReserved2 >> bf.bfOffBits; + return s; +} + +TQDataStream &operator<<( TQDataStream &s, const BMP_FILEHDR &bf ) +{ // write file header + s.writeRawBytes( bf.bfType, 2 ); + s << bf.bfSize << bf.bfReserved1 << bf.bfReserved2 << bf.bfOffBits; + return s; +} + + +const int BMP_OLD = 12; // old Windows/OS2 BMP size +const int BMP_WIN = 40; // new Windows BMP size +const int BMP_OS2 = 64; // new OS/2 BMP size + +const int BMP_RGB = 0; // no compression +const int BMP_RLE8 = 1; // run-length encoded, 8 bits +const int BMP_RLE4 = 2; // run-length encoded, 4 bits +const int BMP_BITFIELDS = 3; // RGB values encoded in data as bit-fields + +struct BMP_INFOHDR { // BMP information header + TQ_INT32 biSize; // size of this struct + TQ_INT32 biWidth; // pixmap width + TQ_INT32 biHeight; // pixmap height + TQ_INT16 biPlanes; // should be 1 + TQ_INT16 biBitCount; // number of bits per pixel + TQ_INT32 biCompression; // compression method + TQ_INT32 biSizeImage; // size of image + TQ_INT32 biXPelsPerMeter; // horizontal resolution + TQ_INT32 biYPelsPerMeter; // vertical resolution + TQ_INT32 biClrUsed; // number of colors used + TQ_INT32 biClrImportant; // number of important colors +}; + + +TQDataStream &operator>>( TQDataStream &s, BMP_INFOHDR &bi ) +{ + s >> bi.biSize; + if ( bi.biSize == BMP_WIN || bi.biSize == BMP_OS2 ) { + s >> bi.biWidth >> bi.biHeight >> bi.biPlanes >> bi.biBitCount; + s >> bi.biCompression >> bi.biSizeImage; + s >> bi.biXPelsPerMeter >> bi.biYPelsPerMeter; + s >> bi.biClrUsed >> bi.biClrImportant; + } + else { // probably old Windows format + TQ_INT16 w, h; + s >> w >> h >> bi.biPlanes >> bi.biBitCount; + bi.biWidth = w; + bi.biHeight = h; + bi.biCompression = BMP_RGB; // no compression + bi.biSizeImage = 0; + bi.biXPelsPerMeter = bi.biYPelsPerMeter = 0; + bi.biClrUsed = bi.biClrImportant = 0; + } + return s; +} + +TQDataStream &operator<<( TQDataStream &s, const BMP_INFOHDR &bi ) +{ + s << bi.biSize; + s << bi.biWidth << bi.biHeight; + s << bi.biPlanes; + s << bi.biBitCount; + s << bi.biCompression; + s << bi.biSizeImage; + s << bi.biXPelsPerMeter << bi.biYPelsPerMeter; + s << bi.biClrUsed << bi.biClrImportant; + return s; +} + +static +int calc_shift(int mask) +{ + int result = 0; + while (!(mask & 1)) { + result++; + mask >>= 1; + } + return result; +} + +static +bool read_dib( TQDataStream& s, int offset, int startpos, TQImage& image ) +{ + BMP_INFOHDR bi; + TQIODevice* d = s.device(); + + s >> bi; // read BMP info header + if ( d->atEnd() ) // end of stream/file + return FALSE; +#if 0 + tqDebug( "offset...........%d", offset ); + tqDebug( "startpos.........%d", startpos ); + tqDebug( "biSize...........%d", bi.biSize ); + tqDebug( "biWidth..........%d", bi.biWidth ); + tqDebug( "biHeight.........%d", bi.biHeight ); + tqDebug( "biPlanes.........%d", bi.biPlanes ); + tqDebug( "biBitCount.......%d", bi.biBitCount ); + tqDebug( "biCompression....%d", bi.biCompression ); + tqDebug( "biSizeImage......%d", bi.biSizeImage ); + tqDebug( "biXPelsPerMeter..%d", bi.biXPelsPerMeter ); + tqDebug( "biYPelsPerMeter..%d", bi.biYPelsPerMeter ); + tqDebug( "biClrUsed........%d", bi.biClrUsed ); + tqDebug( "biClrImportant...%d", bi.biClrImportant ); +#endif + int w = bi.biWidth, h = bi.biHeight, nbits = bi.biBitCount; + int t = bi.biSize, comp = bi.biCompression; + int red_mask, green_mask, blue_mask; + int red_shift = 0; + int green_shift = 0; + int blue_shift = 0; + int red_scale = 0; + int green_scale = 0; + int blue_scale = 0; + + if ( !(nbits == 1 || nbits == 4 || nbits == 8 || nbits == 16 || nbits == 24 || nbits == 32) || + bi.biPlanes != 1 || comp > BMP_BITFIELDS ) + return FALSE; // weird BMP image + if ( !(comp == BMP_RGB || (nbits == 4 && comp == BMP_RLE4) || + (nbits == 8 && comp == BMP_RLE8) || ((nbits == 16 || nbits == 32) && comp == BMP_BITFIELDS)) ) + return FALSE; // weird compression type + if ((w < 0) || ((w * abs(h)) > (16384 * 16384))) + return FALSE; + + int ncols; + int depth; + switch ( nbits ) { + case 32: + case 24: + case 16: + depth = 32; + break; + case 8: + case 4: + depth = 8; + break; + default: + depth = 1; + } + if ( depth == 32 ) // there's no colormap + ncols = 0; + else // # colors used + ncols = bi.biClrUsed ? bi.biClrUsed : 1 << nbits; + + image.create( w, h, depth, ncols, nbits == 1 ? + TQImage::BigEndian : TQImage::IgnoreEndian ); + if ( image.isNull() ) // could not create image + return FALSE; + + image.setDotsPerMeterX( bi.biXPelsPerMeter ); + image.setDotsPerMeterY( bi.biYPelsPerMeter ); + + d->at( startpos + BMP_FILEHDR_SIZE + bi.biSize ); // goto start of colormap + + if ( ncols > 0 ) { // read color table + uchar rgb[4]; + int rgb_len = t == BMP_OLD ? 3 : 4; + for ( int i=0; i<ncols; i++ ) { + if ( d->readBlock( (char *)rgb, rgb_len ) != rgb_len ) + return FALSE; + image.setColor( i, tqRgb(rgb[2],rgb[1],rgb[0]) ); + if ( d->atEnd() ) // truncated file + return FALSE; + } + } else if (comp == BMP_BITFIELDS && (nbits == 16 || nbits == 32)) { + if ( (TQ_ULONG)d->readBlock( (char *)&red_mask, sizeof(red_mask) ) != sizeof(red_mask) ) + return FALSE; + if ( (TQ_ULONG)d->readBlock( (char *)&green_mask, sizeof(green_mask) ) != sizeof(green_mask) ) + return FALSE; + if ( (TQ_ULONG)d->readBlock( (char *)&blue_mask, sizeof(blue_mask) ) != sizeof(blue_mask) ) + return FALSE; + red_shift = calc_shift(red_mask); + if (((red_mask >> red_shift) + 1) == 0) + return FALSE; + red_scale = 256 / ((red_mask >> red_shift) + 1); + green_shift = calc_shift(green_mask); + if (((green_mask >> green_shift) + 1) == 0) + return FALSE; + green_scale = 256 / ((green_mask >> green_shift) + 1); + blue_shift = calc_shift(blue_mask); + if (((blue_mask >> blue_shift) + 1) == 0) + return FALSE; + blue_scale = 256 / ((blue_mask >> blue_shift) + 1); + } else if (comp == BMP_RGB && (nbits == 24 || nbits == 32)) { + blue_mask = 0x000000ff; + green_mask = 0x0000ff00; + red_mask = 0x00ff0000; + blue_shift = 0; + green_shift = 8; + red_shift = 16; + blue_scale = green_scale = red_scale = 1; + } else if (comp == BMP_RGB && nbits == 16) // don't support RGB values for 15/16 bpp + return FALSE; + + // offset can be bogus, be careful + if (offset>=0 && startpos + offset > (TQ_LONG)d->at() ) + d->at( startpos + offset ); // start of image data + + int bpl = image.bytesPerLine(); +#ifdef TQ_WS_QWS + // + // Guess the number of bytes-per-line if we don't know how much + // image data is in the file (bogus image ?). + // + int bmpbpl = bi.biSizeImage > 0 ? + bi.biSizeImage / bi.biHeight : + (d->size() - offset) / bi.biHeight; + int pad = bmpbpl-bpl; +#endif + uchar **line = image.jumpTable(); + + if ( nbits == 1 ) { // 1 bit BMP image + while ( --h >= 0 ) { + if ( d->readBlock((char*)line[h],bpl) != bpl ) + break; +#ifdef TQ_WS_QWS + if ( pad > 0 ) + d->at(d->at()+pad); +#endif + } + if ( ncols == 2 && tqGray(image.color(0)) < tqGray(image.color(1)) ) + swapPixel01( &image ); // pixel 0 is white! + } + + else if ( nbits == 4 ) { // 4 bit BMP image + int buflen = ((w+7)/8)*4; + uchar *buf = new uchar[buflen]; + TQ_CHECK_PTR( buf ); + if ( comp == BMP_RLE4 ) { // run length compression + int x=0, y=0, b, c, i; + uchar *p = line[h-1]; + uchar *endp = line[h-1]+w; + while ( y < h ) { + if ( (b=d->getch()) == EOF ) + break; + if ( b == 0 ) { // escape code + switch ( (b=d->getch()) ) { + case 0: // end of line + x = 0; + y++; + p = line[h-y-1]; + break; + case 1: // end of image + case EOF: // end of file + y = h; // exit loop + break; + case 2: // delta (jump) + x += d->getch(); + y += d->getch(); + + // Protection + if ( (uint)x >= (uint)w ) + x = w-1; + if ( (uint)y >= (uint)h ) + y = h-1; + + p = line[h-y-1] + x; + break; + default: // absolute mode + // Protection + if ( p + b > endp ) + b = endp-p; + + i = (c = b)/2; + while ( i-- ) { + b = d->getch(); + *p++ = b >> 4; + *p++ = b & 0x0f; + } + if ( c & 1 ) + *p++ = d->getch() >> 4; + if ( (((c & 3) + 1) & 2) == 2 ) + d->getch(); // align on word boundary + x += c; + } + } else { // encoded mode + // Protection + if ( p + b > endp ) + b = endp-p; + + i = (c = b)/2; + b = d->getch(); // 2 pixels to be repeated + while ( i-- ) { + *p++ = b >> 4; + *p++ = b & 0x0f; + } + if ( c & 1 ) + *p++ = b >> 4; + x += c; + } + } + } else if ( comp == BMP_RGB ) { // no compression + while ( --h >= 0 ) { + if ( d->readBlock((char*)buf,buflen) != buflen ) + break; + uchar *p = line[h]; + uchar *b = buf; + for ( int i=0; i<w/2; i++ ) { // convert nibbles to bytes + *p++ = *b >> 4; + *p++ = *b++ & 0x0f; + } + if ( w & 1 ) // the last nibble + *p = *b >> 4; + } + } + delete [] buf; + } + + else if ( nbits == 8 ) { // 8 bit BMP image + if ( comp == BMP_RLE8 ) { // run length compression + int x=0, y=0, b; + uchar *p = line[h-1]; + const uchar *endp = line[h-1]+w; + while ( y < h ) { + if ( (b=d->getch()) == EOF ) + break; + if ( b == 0 ) { // escape code + switch ( (b=d->getch()) ) { + case 0: // end of line + x = 0; + y++; + p = line[h-y-1]; + break; + case 1: // end of image + case EOF: // end of file + y = h; // exit loop + break; + case 2: // delta (jump) + x += d->getch(); + y += d->getch(); + + // Protection + if ( (uint)x >= (uint)w ) + x = w-1; + if ( (uint)y >= (uint)h ) + y = h-1; + + p = line[h-y-1] + x; + break; + default: // absolute mode + // Protection + if ( p + b > endp ) + b = endp-p; + + if ( d->readBlock( (char *)p, b ) != b ) + return FALSE; + if ( (b & 1) == 1 ) + d->getch(); // align on word boundary + x += b; + p += b; + } + } else { // encoded mode + // Protection + if ( p + b > endp ) + b = endp-p; + + memset( p, d->getch(), b ); // repeat pixel + x += b; + p += b; + } + } + } else if ( comp == BMP_RGB ) { // uncompressed + while ( --h >= 0 ) { + if ( d->readBlock((char *)line[h],bpl) != bpl ) + break; +#ifdef TQ_WS_QWS + if ( pad > 0 ) + d->at(d->at()+pad); +#endif + } + } + } + + else if ( nbits == 16 || nbits == 24 || nbits == 32 ) { // 16,24,32 bit BMP image + TQRgb *p; + TQRgb *end; + uchar *buf24 = new uchar[bpl]; + int bpl24 = ((w*nbits+31)/32)*4; + uchar *b; + int c; + + while ( --h >= 0 ) { + p = (TQRgb *)line[h]; + end = p + w; + if ( d->readBlock( (char *)buf24,bpl24) != bpl24 ) + break; + b = buf24; + while ( p < end ) { + c = *(uchar*)b | (*(uchar*)(b+1)<<8); + if (nbits != 16) + c |= *(uchar*)(b+2)<<16; + *p++ = tqRgb(((c & red_mask) >> red_shift) * red_scale, + ((c & green_mask) >> green_shift) * green_scale, + ((c & blue_mask) >> blue_shift) * blue_scale); + b += nbits/8; + } + } + delete[] buf24; + } + + return TRUE; +} + +bool qt_read_dib( TQDataStream& s, TQImage& image ) +{ + return read_dib(s,-1,-BMP_FILEHDR_SIZE,image); +} + + +static void read_bmp_image( TQImageIO *iio ) +{ + TQIODevice *d = iio->ioDevice(); + TQDataStream s( d ); + BMP_FILEHDR bf; + int startpos = d->at(); + + s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order + s >> bf; // read BMP file header + + if ( tqstrncmp(bf.bfType,"BM",2) != 0 ) // not a BMP image + return; + + TQImage image; + if (read_dib( s, bf.bfOffBits, startpos, image )) { + iio->setImage( image ); + iio->setStatus( 0 ); // image ok + } +} + +bool qt_write_dib( TQDataStream& s, TQImage image ) +{ + int nbits; + int bpl_bmp; + int bpl = image.bytesPerLine(); + + TQIODevice* d = s.device(); + + if ( image.depth() == 8 && image.numColors() <= 16 ) { + bpl_bmp = (((bpl+1)/2+3)/4)*4; + nbits = 4; + } else if ( image.depth() == 32 ) { + bpl_bmp = ((image.width()*24+31)/32)*4; + nbits = 24; +#ifdef TQ_WS_QWS + } else if ( image.depth() == 1 || image.depth() == 8 ) { + // TQt/E doesn't word align. + bpl_bmp = ((image.width()*image.depth()+31)/32)*4; + nbits = image.depth(); +#endif + } else { + bpl_bmp = bpl; + nbits = image.depth(); + } + + BMP_INFOHDR bi; + bi.biSize = BMP_WIN; // build info header + bi.biWidth = image.width(); + bi.biHeight = image.height(); + bi.biPlanes = 1; + bi.biBitCount = nbits; + bi.biCompression = BMP_RGB; + bi.biSizeImage = bpl_bmp*image.height(); + bi.biXPelsPerMeter = image.dotsPerMeterX() ? image.dotsPerMeterX() + : 2834; // 72 dpi default + bi.biYPelsPerMeter = image.dotsPerMeterY() ? image.dotsPerMeterY() : 2834; + bi.biClrUsed = image.numColors(); + bi.biClrImportant = image.numColors(); + s << bi; // write info header + + if ( image.depth() != 32 ) { // write color table + uchar *color_table = new uchar[4*image.numColors()]; + uchar *rgb = color_table; + TQRgb *c = image.colorTable(); + for ( int i=0; i<image.numColors(); i++ ) { + *rgb++ = tqBlue ( c[i] ); + *rgb++ = tqGreen( c[i] ); + *rgb++ = tqRed ( c[i] ); + *rgb++ = 0; + } + d->writeBlock( (char *)color_table, 4*image.numColors() ); + delete [] color_table; + } + + if ( image.depth() == 1 && image.bitOrder() != TQImage::BigEndian ) + image = image.convertBitOrder( TQImage::BigEndian ); + + int y; + + if ( nbits == 1 || nbits == 8 ) { // direct output +#ifdef TQ_WS_QWS + // TQt/E doesn't word align. + int pad = bpl_bmp - bpl; + char padding[4]; +#endif + for ( y=image.height()-1; y>=0; y-- ) { + d->writeBlock( (char*)image.scanLine(y), bpl ); +#ifdef TQ_WS_QWS + d->writeBlock( padding, pad ); +#endif + } + return TRUE; + } + + uchar *buf = new uchar[bpl_bmp]; + uchar *b, *end; + uchar *p; + + memset( buf, 0, bpl_bmp ); + for ( y=image.height()-1; y>=0; y-- ) { // write the image bits + if ( nbits == 4 ) { // convert 8 -> 4 bits + p = image.scanLine(y); + b = buf; + end = b + image.width()/2; + while ( b < end ) { + *b++ = (*p << 4) | (*(p+1) & 0x0f); + p += 2; + } + if ( image.width() & 1 ) + *b = *p << 4; + } else { // 32 bits + TQRgb *p = (TQRgb *)image.scanLine( y ); + TQRgb *end = p + image.width(); + b = buf; + while ( p < end ) { + *b++ = tqBlue(*p); + *b++ = tqGreen(*p); + *b++ = tqRed(*p); + p++; + } + } + if ( bpl_bmp != d->writeBlock( (char*)buf, bpl_bmp ) ) { + delete[] buf; + return FALSE; + } + } + delete[] buf; + return TRUE; +} + + +static void write_bmp_image( TQImageIO *iio ) +{ + TQIODevice *d = iio->ioDevice(); + TQImage image = iio->image(); + TQDataStream s( d ); + BMP_FILEHDR bf; + int bpl_bmp; + int bpl = image.bytesPerLine(); + + // Code partially repeated in qt_write_dib + if ( image.depth() == 8 && image.numColors() <= 16 ) { + bpl_bmp = (((bpl+1)/2+3)/4)*4; + } else if ( image.depth() == 32 ) { + bpl_bmp = ((image.width()*24+31)/32)*4; + } else { + bpl_bmp = bpl; + } + + iio->setStatus( 0 ); + s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order + strncpy( bf.bfType, "BM", 2 ); // build file header + bf.bfReserved1 = bf.bfReserved2 = 0; // reserved, should be zero + bf.bfOffBits = BMP_FILEHDR_SIZE + BMP_WIN + image.numColors()*4; + bf.bfSize = bf.bfOffBits + bpl_bmp*image.height(); + s << bf; // write file header + + if ( !qt_write_dib( s, image ) ) + iio->setStatus( 1 ); + +} + +#endif // TQT_NO_IMAGEIO_BMP + +#ifndef TQT_NO_IMAGEIO_PPM + +/***************************************************************************** + PBM/PGM/PPM (ASCII and RAW) image read/write functions + *****************************************************************************/ + +static int read_pbm_int( TQIODevice *d ) +{ + int c; + int val = -1; + bool digit; + const int buflen = 100; + char buf[buflen]; + for ( ;; ) { + if ( (c=d->getch()) == EOF ) // end of file + break; + digit = isdigit( (uchar) c ); + if ( val != -1 ) { + if ( digit ) { + val = 10*val + c - '0'; + continue; + } else { + if ( c == '#' ) // comment + d->readLine( buf, buflen ); + break; + } + } + if ( digit ) // first digit + val = c - '0'; + else if ( isspace((uchar) c) ) + continue; + else if ( c == '#' ) + d->readLine( buf, buflen ); + else + break; + } + return val; +} + +static void read_pbm_image( TQImageIO *iio ) // read PBM image data +{ + const int buflen = 300; + char buf[buflen]; + TQIODevice *d = iio->ioDevice(); + int w, h, nbits, mcc, y; + int pbm_bpl; + char type; + bool raw; + TQImage image; + + if ( d->readBlock( buf, 3 ) != 3 ) // read P[1-6]<white-space> + return; + if ( !(buf[0] == 'P' && isdigit((uchar) buf[1]) && isspace((uchar) buf[2])) ) + return; + switch ( (type=buf[1]) ) { + case '1': // ascii PBM + case '4': // raw PBM + nbits = 1; + break; + case '2': // ascii PGM + case '5': // raw PGM + nbits = 8; + break; + case '3': // ascii PPM + case '6': // raw PPM + nbits = 32; + break; + default: + return; + } + raw = type >= '4'; + w = read_pbm_int( d ); // get image width + h = read_pbm_int( d ); // get image height + if ( nbits == 1 ) + mcc = 1; // ignore max color component + else + mcc = read_pbm_int( d ); // get max color component + if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 || mcc <= 0 || mcc > 0xffff ) + return; // weird P.M image + + int maxc = mcc; + if ( maxc > 255 ) + maxc = 255; + image.create( w, h, nbits, 0, + nbits == 1 ? TQImage::BigEndian : TQImage::IgnoreEndian ); + if ( image.isNull() ) + return; + + pbm_bpl = (nbits*w+7)/8; // bytes per scanline in PBM + + if ( raw ) { // read raw data + if ( nbits == 32 ) { // type 6 + pbm_bpl = 3*w; + uchar *buf24 = new uchar[pbm_bpl], *b; + TQRgb *p; + TQRgb *end; + for ( y=0; y<h; y++ ) { + if ( d->readBlock( (char *)buf24, pbm_bpl ) != pbm_bpl ) { + delete[] buf24; + return; + } + p = (TQRgb *)image.scanLine( y ); + end = p + w; + b = buf24; + while ( p < end ) { + *p++ = tqRgb(b[0],b[1],b[2]); + b += 3; + } + } + delete[] buf24; + } else { // type 4,5 + for ( y=0; y<h; y++ ) { + if ( d->readBlock( (char *)image.scanLine(y), pbm_bpl ) + != pbm_bpl ) + return; + } + } + } else { // read ascii data + uchar *p; + int n; + for ( y=0; y<h; y++ ) { + p = image.scanLine( y ); + n = pbm_bpl; + if ( nbits == 1 ) { + int b; + while ( n-- ) { + b = 0; + for ( int i=0; i<8; i++ ) + b = (b << 1) | (read_pbm_int(d) & 1); + *p++ = b; + } + } else if ( nbits == 8 ) { + if ( mcc == maxc ) { + while ( n-- ) { + *p++ = read_pbm_int( d ); + } + } else { + while ( n-- ) { + *p++ = read_pbm_int( d ) * maxc / mcc; + } + } + } else { // 32 bits + n /= 4; + int r, g, b; + if ( mcc == maxc ) { + while ( n-- ) { + r = read_pbm_int( d ); + g = read_pbm_int( d ); + b = read_pbm_int( d ); + *((TQRgb*)p) = tqRgb( r, g, b ); + p += 4; + } + } else { + while ( n-- ) { + r = read_pbm_int( d ) * maxc / mcc; + g = read_pbm_int( d ) * maxc / mcc; + b = read_pbm_int( d ) * maxc / mcc; + *((TQRgb*)p) = tqRgb( r, g, b ); + p += 4; + } + } + } + } + } + + if ( nbits == 1 ) { // bitmap + image.setNumColors( 2 ); + image.setColor( 0, tqRgb(255,255,255) ); // white + image.setColor( 1, tqRgb(0,0,0) ); // black + } else if ( nbits == 8 ) { // graymap + image.setNumColors( maxc+1 ); + for ( int i=0; i<=maxc; i++ ) + image.setColor( i, tqRgb(i*255/maxc,i*255/maxc,i*255/maxc) ); + } + + iio->setImage( image ); + iio->setStatus( 0 ); // image ok +} + + +static void write_pbm_image( TQImageIO *iio ) +{ + TQIODevice* out = iio->ioDevice(); + TQCString str; + + TQImage image = iio->image(); + TQCString format = iio->format(); + format = format.left(3); // ignore RAW part + bool gray = format == "PGM"; + + if ( format == "PBM" ) { + image = image.convertDepth(1); + } else if ( image.depth() == 1 ) { + image = image.convertDepth(8); + } + + if ( image.depth() == 1 && image.numColors() == 2 ) { + if ( tqGray(image.color(0)) < tqGray(image.color(1)) ) { + // 0=dark/black, 1=light/white - invert + image.detach(); + for ( int y=0; y<image.height(); y++ ) { + uchar *p = image.scanLine(y); + uchar *end = p + image.bytesPerLine(); + while ( p < end ) + *p++ ^= 0xff; + } + } + } + + uint w = image.width(); + uint h = image.height(); + + str.sprintf("P\n%d %d\n", w, h); + + switch (image.depth()) { + case 1: { + str.insert(1, '4'); + if ((uint)out->writeBlock(str, str.length()) != str.length()) { + iio->setStatus(1); + return; + } + w = (w+7)/8; + for (uint y=0; y<h; y++) { + uchar* line = image.scanLine(y); + if ( w != (uint)out->writeBlock((char*)line, w) ) { + iio->setStatus(1); + return; + } + } + } + break; + + case 8: { + str.insert(1, gray ? '5' : '6'); + str.append("255\n"); + if ((uint)out->writeBlock(str, str.length()) != str.length()) { + iio->setStatus(1); + return; + } + TQRgb *color = image.colorTable(); + uint bpl = w*(gray ? 1 : 3); + uchar *buf = new uchar[bpl]; + for (uint y=0; y<h; y++) { + uchar *b = image.scanLine(y); + uchar *p = buf; + uchar *end = buf+bpl; + if ( gray ) { + while ( p < end ) { + uchar g = (uchar)tqGray(color[*b++]); + *p++ = g; + } + } else { + while ( p < end ) { + TQRgb rgb = color[*b++]; + *p++ = tqRed(rgb); + *p++ = tqGreen(rgb); + *p++ = tqBlue(rgb); + } + } + if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) { + iio->setStatus(1); + return; + } + } + delete [] buf; + } + break; + + case 32: { + str.insert(1, gray ? '5' : '6'); + str.append("255\n"); + if ((uint)out->writeBlock(str, str.length()) != str.length()) { + iio->setStatus(1); + return; + } + uint bpl = w*(gray ? 1 : 3); + uchar *buf = new uchar[bpl]; + for (uint y=0; y<h; y++) { + TQRgb *b = (TQRgb*)image.scanLine(y); + uchar *p = buf; + uchar *end = buf+bpl; + if ( gray ) { + while ( p < end ) { + uchar g = (uchar)tqGray(*b++); + *p++ = g; + } + } else { + while ( p < end ) { + TQRgb rgb = *b++; + *p++ = tqRed(rgb); + *p++ = tqGreen(rgb); + *p++ = tqBlue(rgb); + } + } + if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) { + iio->setStatus(1); + return; + } + } + delete [] buf; + } + } + + iio->setStatus(0); +} + +#endif // TQT_NO_IMAGEIO_PPM + +#ifndef TQT_NO_ASYNC_IMAGE_IO + +class TQImageIOFrameGrabber : public TQImageConsumer { +public: + TQImageIOFrameGrabber() : framecount(0) { } + virtual ~TQImageIOFrameGrabber() { } + + TQImageDecoder *decoder; + int framecount; + + void changed(const TQRect&) { } + void end() { } + void frameDone(const TQPoint&, const TQRect&) { framecount++; } + void frameDone() { framecount++; } + void setLooping(int) { } + void setFramePeriod(int) { } + void setSize(int, int) { } +}; + +static void read_async_image( TQImageIO *iio ) +{ + const int buf_len = 2048; + uchar buffer[buf_len]; + TQIODevice *d = iio->ioDevice(); + TQImageIOFrameGrabber* consumer = new TQImageIOFrameGrabber(); + TQImageDecoder *decoder = new TQImageDecoder(consumer); + consumer->decoder = decoder; + int startAt = d->at(); + int totLen = 0; + + for (;;) { + int length = d->readBlock((char*)buffer, buf_len); + if ( length <= 0 ) { + iio->setStatus(length); + break; + } + uchar* b = buffer; + int r = -1; + while (length > 0 && consumer->framecount==0) { + r = decoder->decode(b, length); + if ( r <= 0 ) break; + b += r; + totLen += r; + length -= r; + } + if ( consumer->framecount ) { + // Stopped after first frame + if ( d->isDirectAccess() ) + d->at( startAt + totLen ); + else { + // ### We have (probably) read too much from the stream into + // the buffer, and there is no way to put it back! + } + iio->setImage(decoder->image()); + iio->setStatus(0); + break; + } + if ( r <= 0 ) { + iio->setStatus(r); + break; + } + } + + consumer->decoder = 0; + delete decoder; + delete consumer; +} + +#endif // TQT_NO_ASYNC_IMAGE_IO + +#ifndef TQT_NO_IMAGEIO_XBM + +/***************************************************************************** + X bitmap image read/write functions + *****************************************************************************/ + +static inline int hex2byte( char *p ) +{ + return ( (isdigit((uchar) *p) ? *p - '0' : toupper((uchar) *p) - 'A' + 10) << 4 ) | + ( isdigit((uchar) *(p+1)) ? *(p+1) - '0' : toupper((uchar) *(p+1)) - 'A' + 10 ); +} + +static void read_xbm_image( TQImageIO *iio ) +{ + const int buflen = 300; + const int maxlen = 4096; + char buf[buflen]; + TQRegExp r1, r2; + TQIODevice *d = iio->ioDevice(); + int w=-1, h=-1; + TQImage image; + TQ_INT64 readBytes = 0; + TQ_INT64 totalReadBytes = 0; + + r1 = TQString::fromLatin1("^#define[ \t]+[a-zA-Z0-9._]+[ \t]+"); + r2 = TQString::fromLatin1("[0-9]+"); + + buf[0] = '\0'; + while (buf[0] != '#') { //skip leading comment, if any + readBytes = d->readLine(buf, buflen); + + // if readBytes >= buflen, it's very probably not a C file + if ((readBytes <= 0) || (readBytes >= (buflen-1))) + return; + + // limit xbm headers to the first 4k in the file to prevent + // excessive reads on non-xbm files + totalReadBytes += readBytes; + if (totalReadBytes >= maxlen) + return; + } + + TQString sbuf; + sbuf = TQString::fromLatin1(buf); + + if ( r1.search(sbuf) == 0 && + r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() ) + w = atoi( &buf[r1.matchedLength()] ); + + readBytes = d->readLine(buf, buflen ); // "#define .._height <num>" + if (readBytes <= 0) { + return; + } + sbuf = TQString::fromLatin1(buf); + + if ( r1.search(sbuf) == 0 && + r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() ) + h = atoi( &buf[r1.matchedLength()] ); + + if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 ) + return; // format error + + for ( ;; ) { // scan for data + readBytes = d->readLine(buf, buflen); + if (readBytes <= 0) { // end of file + return; + } + buf[readBytes] = '\0'; + if ( strstr(buf,"0x") != 0 ) // does line contain data? + break; + } + + image.create( w, h, 1, 2, TQImage::LittleEndian ); + if ( image.isNull() ) + return; + + image.setColor( 0, tqRgb(255,255,255) ); // white + image.setColor( 1, tqRgb(0,0,0) ); // black + + int x = 0, y = 0; + uchar *b = image.scanLine(0); + char *p = strstr( buf, "0x" ); + w = (w+7)/8; // byte width + + while ( y < h ) { // for all encoded bytes... + if (p && (p < (buf + readBytes - 3))) { // p = "0x.." + if (!isxdigit(p[2]) || !isxdigit(p[3])) { + return; + } + *b++ = hex2byte(p+2); + p += 2; + if ( ++x == w && ++y < h ) { + b = image.scanLine(y); + x = 0; + } + p = strstr( p, "0x" ); + } else { // read another line + readBytes = d->readLine(buf, buflen); + if (readBytes <= 0) // EOF ==> truncated image + break; + buf[readBytes] = '\0'; + p = strstr( buf, "0x" ); + } + } + + iio->setImage( image ); + iio->setStatus( 0 ); // image ok +} + + +static void write_xbm_image( TQImageIO *iio ) +{ + TQIODevice *d = iio->ioDevice(); + TQImage image = iio->image(); + int w = image.width(); + int h = image.height(); + int i; + TQString s = fbname(iio->fileName()); // get file base name + char *buf = new char[s.length() + 100]; + + sprintf( buf, "#define %s_width %d\n", s.ascii(), w ); + d->writeBlock( buf, tqstrlen(buf) ); + sprintf( buf, "#define %s_height %d\n", s.ascii(), h ); + d->writeBlock( buf, tqstrlen(buf) ); + sprintf( buf, "static char %s_bits[] = {\n ", s.ascii() ); + d->writeBlock( buf, tqstrlen(buf) ); + + iio->setStatus( 0 ); + + if ( image.depth() != 1 ) + image = image.convertDepth( 1 ); // dither + if ( image.bitOrder() != TQImage::LittleEndian ) + image = image.convertBitOrder( TQImage::LittleEndian ); + + bool invert = tqGray(image.color(0)) < tqGray(image.color(1)); + char hexrep[16]; + for ( i=0; i<10; i++ ) + hexrep[i] = '0' + i; + for ( i=10; i<16; i++ ) + hexrep[i] = 'a' -10 + i; + if ( invert ) { + char t; + for ( i=0; i<8; i++ ) { + t = hexrep[15-i]; + hexrep[15-i] = hexrep[i]; + hexrep[i] = t; + } + } + int bcnt = 0; + char *p = buf; + int bpl = (w+7)/8; + for (int y = 0; y < h; ++y) { + uchar *b = image.scanLine(y); + for (i = 0; i < bpl; ++i) { + *p++ = '0'; *p++ = 'x'; + *p++ = hexrep[*b >> 4]; + *p++ = hexrep[*b++ & 0xf]; + + if ( i < bpl - 1 || y < h - 1 ) { + *p++ = ','; + if ( ++bcnt > 14 ) { + *p++ = '\n'; + *p++ = ' '; + *p = '\0'; + if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) { + iio->setStatus( 1 ); + delete [] buf; + return; + } + p = buf; + bcnt = 0; + } + } + } + } + strcpy( p, " };\n" ); + if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) + iio->setStatus( 1 ); + delete [] buf; +} + +#endif // TQT_NO_IMAGEIO_XBM + + +#ifndef TQT_NO_IMAGEIO_XPM + +/***************************************************************************** + XPM image read/write functions + *****************************************************************************/ + + +// Skip until ", read until the next ", return the rest in *buf +// Returns FALSE on error, TRUE on success + +static bool read_xpm_string( TQCString &buf, TQIODevice *d, + const char * const *source, int &index ) +{ + if ( source ) { + buf = source[index++]; + return TRUE; + } + + if ( buf.size() < 69 ) //# just an approximation + buf.resize( 123 ); + + buf[0] = '\0'; + int c; + int i; + while ( (c=d->getch()) != EOF && c != '"' ) { } + if ( c == EOF ) { + return FALSE; + } + i = 0; + while ( (c=d->getch()) != EOF && c != '"' ) { + if ( i == (int)buf.size() ) + buf.resize( i*2+42 ); + buf[i++] = c; + } + if ( c == EOF ) { + return FALSE; + } + + if ( i == (int)buf.size() ) // always use a 0 terminator + buf.resize( i+1 ); + buf[i] = '\0'; + return TRUE; +} + + + +static int nextColorSpec(const TQCString & buf) +{ + int i = buf.find(" c "); + if (i < 0) + i = buf.find(" g "); + if (i < 0) + i = buf.find(" g4 "); + if (i < 0) + i = buf.find(" m "); + if (i < 0) + i = buf.find(" s "); + return i; +} + +// +// INTERNAL +// +// Reads an .xpm from either the TQImageIO or from the TQString *. +// One of the two HAS to be 0, the other one is used. +// + +static void read_xpm_image_or_array( TQImageIO * iio, const char * const * source, + TQImage & image) +{ + TQCString buf; + TQIODevice *d = 0; + buf.resize( 200 ); + + int i, cpp, ncols, w, h, index = 0; + + if ( iio ) { + iio->setStatus( 1 ); + d = iio ? iio->ioDevice() : 0; + d->readLine( buf.data(), buf.size() ); // "/* XPM */" + TQRegExp r( TQString::fromLatin1("/\\*.XPM.\\*/") ); + if ( buf.find(r) == -1 ) + return; // bad magic + } else if ( !source ) { + return; + } + + if ( !read_xpm_string( buf, d, source, index ) ) + return; + + if ( sscanf( buf, "%d %d %d %d", &w, &h, &ncols, &cpp ) < 4 ) + return; // < 4 numbers parsed + + if ( cpp > 15 ) + return; + + if ( ncols > 256 ) { + image.create( w, h, 32 ); + } else { + image.create( w, h, 8, ncols ); + } + + if (image.isNull()) + return; + + TQMap<TQString, int> colorMap; + int currentColor; + + for( currentColor=0; currentColor < ncols; ++currentColor ) { + if ( !read_xpm_string( buf, d, source, index ) ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage: XPM color specification missing"); +#endif + return; + } + TQString index; + index = buf.left( cpp ); + buf = buf.mid( cpp ).simplifyWhiteSpace().lower(); + buf.prepend( " " ); + i = nextColorSpec(buf); + if ( i < 0 ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage: XPM color specification is missing: %s", buf.data()); +#endif + return; // no c/g/g4/m/s specification at all + } + buf = buf.mid( i+3 ); + // Strip any other colorspec + int end = nextColorSpec(buf); + if (end != -1) + buf.truncate(end); + buf = buf.stripWhiteSpace(); + if ( buf == "none" ) { + image.setAlphaBuffer( TRUE ); + int transparentColor = currentColor; + if ( image.depth() == 8 ) { + image.setColor( transparentColor, + TQT_RGB_MASK & tqRgb(198,198,198) ); + colorMap.insert( index, transparentColor ); + } else { + TQRgb rgb = TQT_RGB_MASK & tqRgb(198,198,198); + colorMap.insert( index, rgb ); + } + } else { + if ( ((buf.length()-1) % 3) && (buf[0] == '#') ) { + buf.truncate (((buf.length()-1) / 4 * 3) + 1); // remove alpha channel left by imagemagick + } + TQColor c( buf.data() ); + if ( image.depth() == 8 ) { + image.setColor( currentColor, 0xff000000 | c.rgb() ); + colorMap.insert( index, currentColor ); + } else { + TQRgb rgb = 0xff000000 | c.rgb(); + colorMap.insert( index, rgb ); + } + } + } + + // Read pixels + for( int y=0; y<h; y++ ) { + if ( !read_xpm_string( buf, d, source, index ) ) { +#if defined(QT_CHECK_RANGE) + tqWarning( "TQImage: XPM pixels missing on image line %d", y); +#endif + return; + } + if ( image.depth() == 8 ) { + uchar *p = image.scanLine(y); + uchar *d = (uchar *)buf.data(); + uchar *end = d + buf.length(); + int x; + if ( cpp == 1 ) { + char b[2]; + b[1] = '\0'; + for ( x=0; x<w && d<end; x++ ) { + b[0] = *d++; + *p++ = (uchar)colorMap[b]; + } + } else { + char b[16]; + b[cpp] = '\0'; + for ( x=0; x<w && d<end; x++ ) { + strncpy( b, (char *)d, cpp ); + *p++ = (uchar)colorMap[b]; + d += cpp; + } + } + } else { + TQRgb *p = (TQRgb*)image.scanLine(y); + uchar *d = (uchar *)buf.data(); + uchar *end = d + buf.length(); + int x; + char b[16]; + b[cpp] = '\0'; + for ( x=0; x<w && d<end; x++ ) { + strncpy( b, (char *)d, cpp ); + *p++ = (TQRgb)colorMap[b]; + d += cpp; + } + } + } + if ( iio ) { + iio->setImage( image ); + iio->setStatus( 0 ); // image ok + } +} + + +static void read_xpm_image( TQImageIO * iio ) +{ + TQImage i; + (void)read_xpm_image_or_array( iio, 0, i ); + return; +} + + +static const char* xpm_color_name( int cpp, int index ) +{ + static char returnable[5]; + static const char code[] = ".#abcdefghijklmnopqrstuvwxyzABCD" + "EFGHIJKLMNOPQRSTUVWXYZ0123456789"; + // cpp is limited to 4 and index is limited to 64^cpp + if ( cpp > 1 ) { + if ( cpp > 2 ) { + if ( cpp > 3 ) { + returnable[3] = code[index % 64]; + index /= 64; + } else + returnable[3] = '\0'; + returnable[2] = code[index % 64]; + index /= 64; + } else + returnable[2] = '\0'; + // the following 4 lines are a joke! + if ( index == 0 ) + index = 64*44+21; + else if ( index == 64*44+21 ) + index = 0; + returnable[1] = code[index % 64]; + index /= 64; + } else + returnable[1] = '\0'; + returnable[0] = code[index]; + + return returnable; +} + + +// write XPM image data +static void write_xpm_image( TQImageIO * iio ) +{ + if ( iio ) + iio->setStatus( 1 ); + else + return; + + // ### 8-bit case could be made faster + TQImage image; + if ( iio->image().depth() != 32 ) + image = iio->image().convertDepth( 32 ); + else + image = iio->image(); + + TQMap<TQRgb, int> colorMap; + + int w = image.width(), h = image.height(), ncolors = 0; + int x, y; + + // build color table + for( y=0; y<h; y++ ) { + TQRgb * yp = (TQRgb *)image.scanLine( y ); + for( x=0; x<w; x++ ) { + TQRgb color = *(yp + x); + if ( !colorMap.contains(color) ) + colorMap.insert( color, ncolors++ ); + } + } + + // number of 64-bit characters per pixel needed to encode all colors + int cpp = 1; + for ( int k = 64; ncolors > k; k *= 64 ) { + ++cpp; + // limit to 4 characters per pixel + // 64^4 colors is enough for a 4096x4096 image + if ( cpp > 4) + break; + } + + TQString line; + + // write header + TQTextStream s( iio->ioDevice() ); + s << "/* XPM */" << endl + << "static char *" << fbname(iio->fileName()) << "[]={" << endl + << "\"" << w << " " << h << " " << ncolors << " " << cpp << "\""; + + // write palette + TQMap<TQRgb, int>::Iterator c = colorMap.begin(); + while ( c != colorMap.end() ) { + TQRgb color = c.key(); + if ( image.hasAlphaBuffer() && color == (color & TQT_RGB_MASK) ) + line.sprintf( "\"%s c None\"", + xpm_color_name(cpp, *c) ); + else + line.sprintf( "\"%s c #%02x%02x%02x\"", + xpm_color_name(cpp, *c), + tqRed(color), + tqGreen(color), + tqBlue(color) ); + ++c; + s << "," << endl << line; + } + + // write pixels, limit to 4 characters per pixel + line.truncate( cpp*w ); + for( y=0; y<h; y++ ) { + TQRgb * yp = (TQRgb *) image.scanLine( y ); + int cc = 0; + for( x=0; x<w; x++ ) { + int color = (int)(*(yp + x)); + TQCString chars = xpm_color_name( cpp, colorMap[color] ); + line[cc++] = chars[0]; + if ( cpp > 1 ) { + line[cc++] = chars[1]; + if ( cpp > 2 ) { + line[cc++] = chars[2]; + if ( cpp > 3 ) { + line[cc++] = chars[3]; + } + } + } + } + s << "," << endl << "\"" << line << "\""; + } + s << "};" << endl; + + iio->setStatus( 0 ); +} + +#endif // TQT_NO_IMAGEIO_XPM + +/*! + Returns an image with depth \a d, using the \a palette_count + colors pointed to by \a palette. If \a d is 1 or 8, the returned + image will have its color table ordered the same as \a palette. + + If the image needs to be modified to fit in a lower-resolution + result (e.g. converting from 32-bit to 8-bit), use the \a + conversion_flags to specify how you'd prefer this to happen. + + Note: currently no closest-color search is made. If colors are + found that are not in the palette, the palette may not be used at + all. This result should not be considered valid because it may + change in future implementations. + + Currently inefficient for non-32-bit images. + + \sa TQt::ImageConversionFlags +*/ +#ifndef TQT_NO_IMAGE_TRUECOLOR +TQImage TQImage::convertDepthWithPalette( int d, TQRgb* palette, int palette_count, int conversion_flags ) const +{ + if ( depth() == 1 ) { + return convertDepth( 8, conversion_flags ) + .convertDepthWithPalette( d, palette, palette_count, conversion_flags ); + } else if ( depth() == 8 ) { + // ### this could be easily made more efficient + return convertDepth( 32, conversion_flags ) + .convertDepthWithPalette( d, palette, palette_count, conversion_flags ); + } else { + TQImage result; + convert_32_to_8( this, &result, + (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither, + palette, palette_count ); + return result.convertDepth( d ); + } +} +#endif +static +bool +haveSamePalette(const TQImage& a, const TQImage& b) +{ + if (a.depth() != b.depth()) return FALSE; + if (a.numColors() != b.numColors()) return FALSE; + TQRgb* ca = a.colorTable(); + TQRgb* cb = b.colorTable(); + for (int i=a.numColors(); i--; ) { + if (*ca++ != *cb++) return FALSE; + } + return TRUE; +} + +/*! + \relates TQImage + + Copies a block of pixels from \a src to \a dst. The pixels + copied from source (src) are converted according to + \a conversion_flags if it is incompatible with the destination + (\a dst). + + \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy + is the top-left position in \a dst and \a sw, \a sh is the + size of the copied block. + + The copying is clipped if areas outside \a src or \a dst are + specified. + + If \a sw is -1, it is adjusted to src->width(). Similarly, if \a + sh is -1, it is adjusted to src->height(). + + Currently inefficient for non 32-bit images. +*/ +void bitBlt( TQImage* dst, int dx, int dy, const TQImage* src, + int sx, int sy, int sw, int sh, int conversion_flags ) +{ + // Parameter correction + if ( sw < 0 ) sw = src->width(); + if ( sh < 0 ) sh = src->height(); + if ( sx < 0 ) { dx -= sx; sw += sx; sx = 0; } + if ( sy < 0 ) { dy -= sy; sh += sy; sy = 0; } + if ( dx < 0 ) { sx -= dx; sw += dx; dx = 0; } + if ( dy < 0 ) { sy -= dy; sh += dy; dy = 0; } + if ( sx + sw > src->width() ) sw = src->width() - sx; + if ( sy + sh > src->height() ) sh = src->height() - sy; + if ( dx + sw > dst->width() ) sw = dst->width() - dx; + if ( dy + sh > dst->height() ) sh = dst->height() - dy; + if ( sw <= 0 || sh <= 0 ) return; // Nothing left to copy + if ( (dst->data == src->data) && dx==sx && dy==sy ) return; // Same pixels + + // "Easy" to copy if both same depth and one of: + // - 32 bit + // - 8 bit, identical palette + // - 1 bit, identical palette and byte-aligned area + // + if ( haveSamePalette(*dst,*src) + && ( (dst->depth() != 1) || + (!( (dx&7) || (sx&7) || + (((sw&7) && (sx+sw < src->width())) || + (dx+sw < dst->width()) ) )) ) ) + { + // easy to copy + } else if ( dst->depth() != 32 ) { +#ifndef TQT_NO_IMAGE_TRUECOLOR + + TQImage dstconv = dst->convertDepth( 32 ); + bitBlt( &dstconv, dx, dy, src, sx, sy, sw, sh, + (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither ); + *dst = dstconv.convertDepthWithPalette( dst->depth(), + dst->colorTable(), dst->numColors() ); +#endif + return; + } + + // Now assume palette can be ignored + + if ( dst->depth() != src->depth() ) { + if ( ((sw == src->width()) && (sh == src->height())) || (dst->depth()==32) ) { + TQImage srcconv = src->convertDepth( dst->depth(), conversion_flags ); + bitBlt( dst, dx, dy, &srcconv, sx, sy, sw, sh, conversion_flags ); + } else { + TQImage srcconv = src->copy( sx, sy, sw, sh ); // ie. bitBlt + bitBlt( dst, dx, dy, &srcconv, 0, 0, sw, sh, conversion_flags ); + } + return; + } + + // Now assume both are the same depth. + + // Now assume both are 32-bit or 8-bit with compatible palettes. + + // "Easy" + + switch ( dst->depth() ) { + case 1: + { + uchar* d = dst->scanLine(dy) + dx/8; + uchar* s = src->scanLine(sy) + sx/8; + const int bw = (sw+7)/8; + if ( bw < 64 ) { + // Trust ourselves + const int dd = dst->bytesPerLine() - bw; + const int ds = src->bytesPerLine() - bw; + while ( sh-- ) { + for ( int t=bw; t--; ) + *d++ = *s++; + d += dd; + s += ds; + } + } else { + // Trust libc + const int dd = dst->bytesPerLine(); + const int ds = src->bytesPerLine(); + while ( sh-- ) { + memcpy( d, s, bw ); + d += dd; + s += ds; + } + } + } + break; + case 8: + { + uchar* d = dst->scanLine(dy) + dx; + uchar* s = src->scanLine(sy) + sx; + if ( sw < 64 ) { + // Trust ourselves + const int dd = dst->bytesPerLine() - sw; + const int ds = src->bytesPerLine() - sw; + while ( sh-- ) { + for ( int t=sw; t--; ) + *d++ = *s++; + d += dd; + s += ds; + } + } else { + // Trust libc + const int dd = dst->bytesPerLine(); + const int ds = src->bytesPerLine(); + while ( sh-- ) { + memcpy( d, s, sw ); + d += dd; + s += ds; + } + } + } + break; +#ifndef TQT_NO_IMAGE_TRUECOLOR + case 32: + if ( src->hasAlphaBuffer() ) { + TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx; + TQRgb* s = (TQRgb*)src->scanLine(sy) + sx; + const int dd = dst->width() - sw; + const int ds = src->width() - sw; + while ( sh-- ) { + for ( int t=sw; t--; ) { + unsigned char a = tqAlpha(*s); + if ( a == 255 ) + *d++ = *s++; + else if ( a == 0 ) + ++d,++s; // nothing + else { + unsigned char r = ((tqRed(*s)-tqRed(*d)) * a) / 256 + tqRed(*d); + unsigned char g = ((tqGreen(*s)-tqGreen(*d)) * a) / 256 + tqGreen(*d); + unsigned char b = ((tqBlue(*s)-tqBlue(*d)) * a) / 256 + tqBlue(*d); + a = TQMAX(tqAlpha(*d),a); // alternatives... + *d++ = tqRgba(r,g,b,a); + ++s; + } + } + d += dd; + s += ds; + } + } else { + TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx; + TQRgb* s = (TQRgb*)src->scanLine(sy) + sx; + if ( sw < 64 ) { + // Trust ourselves + const int dd = dst->width() - sw; + const int ds = src->width() - sw; + while ( sh-- ) { + for ( int t=sw; t--; ) + *d++ = *s++; + d += dd; + s += ds; + } + } else { + // Trust libc + const int dd = dst->width(); + const int ds = src->width(); + const int b = sw*sizeof(TQRgb); + while ( sh-- ) { + memcpy( d, s, b ); + d += dd; + s += ds; + } + } + } + break; +#endif // TQT_NO_IMAGE_TRUECOLOR + } +} + + +/*! + Returns TRUE if this image and image \a i have the same contents; + otherwise returns FALSE. The comparison can be slow, unless there + is some obvious difference, such as different widths, in which + case the function will return quickly. + + \sa operator=() +*/ + +bool TQImage::operator==( const TQImage & i ) const +{ + // same object, or shared? + if ( i.data == data ) + return TRUE; + // obviously different stuff? + if ( i.data->h != data->h || + i.data->w != data->w ) + return FALSE; + // not equal if one has alphabuffer and the other does not + if ( i.hasAlphaBuffer() != hasAlphaBuffer() ) + return FALSE; + // that was the fast bit... + TQImage i1 = convertDepth( 32 ); + TQImage i2 = i.convertDepth( 32 ); + int l; + // if no alpha buffer used, there might still be junk in the + // alpha bits; thus, we can't do memcmp-style comparison of scanlines + if ( !hasAlphaBuffer() ) { + int m; + TQRgb *i1line; + TQRgb *i2line; + for( l=0; l < data->h; l++ ) { + i1line = (uint *)i1.scanLine( l ); + i2line = (uint *)i2.scanLine( l ); + // compare pixels of scanline individually + for ( m=0; m < data->w; m++ ) + if ( (i1line[m] ^ i2line[m]) & 0x00FFFFFF ) + return FALSE; + } + } else { + // yay, we can do fast binary comparison on entire scanlines + for( l=0; l < data->h; l++ ) + if ( memcmp( i1.scanLine( l ), i2.scanLine( l ), 4*data->w ) ) + return FALSE; + } + return TRUE; +} + + +/*! + Returns TRUE if this image and image \a i have different contents; + otherwise returns FALSE. The comparison can be slow, unless there + is some obvious difference, such as different widths, in which + case the function will return quickly. + + \sa operator=() +*/ + +bool TQImage::operator!=( const TQImage & i ) const +{ + return !(*this == i); +} + + + + +/*! + \fn int TQImage::dotsPerMeterX() const + + Returns the number of pixels that fit horizontally in a physical + meter. This and dotsPerMeterY() define the intended scale and + aspect ratio of the image. + + \sa setDotsPerMeterX() +*/ + +/*! + \fn int TQImage::dotsPerMeterY() const + + Returns the number of pixels that fit vertically in a physical + meter. This and dotsPerMeterX() define the intended scale and + aspect ratio of the image. + + \sa setDotsPerMeterY() +*/ + +/*! + Sets the value returned by dotsPerMeterX() to \a x. +*/ +void TQImage::setDotsPerMeterX(int x) +{ + data->dpmx = x; +} + +/*! + Sets the value returned by dotsPerMeterY() to \a y. +*/ +void TQImage::setDotsPerMeterY(int y) +{ + data->dpmy = y; +} + +/*! + \fn TQPoint TQImage::offset() const + + Returns the number of pixels by which the image is intended to be + offset by when positioning relative to other images. +*/ + +/*! + Sets the value returned by offset() to \a p. +*/ +void TQImage::setOffset(const TQPoint& p) +{ + data->offset = p; +} +#ifndef TQT_NO_IMAGE_TEXT +/*! + \internal + + Returns the internal TQImageDataMisc object. This object will be + created if it doesn't already exist. +*/ +TQImageDataMisc& TQImage::misc() const +{ + if ( !data->misc ) + data->misc = new TQImageDataMisc; + return *data->misc; +} + +/*! + Returns the string recorded for the keyword \a key in language \a + lang, or in a default language if \a lang is 0. +*/ +TQString TQImage::text(const char* key, const char* lang) const +{ + TQImageTextKeyLang x(key,lang); + return misc().text_lang[x]; +} + +/*! + \overload + + Returns the string recorded for the keyword and language \a kl. +*/ +TQString TQImage::text(const TQImageTextKeyLang& kl) const +{ + return misc().text_lang[kl]; +} + +/*! + Returns the language identifiers for which some texts are + recorded. + + Note that if you want to iterate over the list, you should iterate + over a copy, e.g. + \code + TQStringList list = myImage.textLanguages(); + TQStringList::Iterator it = list.begin(); + while( it != list.end() ) { + myProcessing( *it ); + ++it; + } + \endcode + + \sa textList() text() setText() textKeys() +*/ +TQStringList TQImage::textLanguages() const +{ + if ( !data->misc ) + return TQStringList(); + return misc().languages(); +} + +/*! + Returns the keywords for which some texts are recorded. + + Note that if you want to iterate over the list, you should iterate + over a copy, e.g. + \code + TQStringList list = myImage.textKeys(); + TQStringList::Iterator it = list.begin(); + while( it != list.end() ) { + myProcessing( *it ); + ++it; + } + \endcode + + \sa textList() text() setText() textLanguages() +*/ +TQStringList TQImage::textKeys() const +{ + if ( !data->misc ) + return TQStringList(); + return misc().keys(); +} + +/*! + Returns a list of TQImageTextKeyLang objects that enumerate all the + texts key/language pairs set by setText() for this image. + + Note that if you want to iterate over the list, you should iterate + over a copy, e.g. + \code + TQValueList<TQImageTextKeyLang> list = myImage.textList(); + TQValueList<TQImageTextKeyLang>::Iterator it = list.begin(); + while( it != list.end() ) { + myProcessing( *it ); + ++it; + } + \endcode +*/ +TQValueList<TQImageTextKeyLang> TQImage::textList() const +{ + if ( !data->misc ) + return TQValueList<TQImageTextKeyLang>(); + return misc().list(); +} + +/*! + Records string \a s for the keyword \a key. The \a key should be a + portable keyword recognizable by other software - some suggested + values can be found in \link + http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text + the PNG specification \endlink. \a s can be any text. \a lang + should specify the language code (see + \link http://www.rfc-editor.org/rfc/rfc1766.txt RFC 1766 \endlink) or 0. +*/ +void TQImage::setText(const char* key, const char* lang, const TQString& s) +{ + TQImageTextKeyLang x(key,lang); + misc().text_lang.replace(x,s); +} + +#endif // TQT_NO_IMAGE_TEXT + +#ifdef TQ_WS_QWS +/*! + \internal +*/ +TQGfx * TQImage::graphicsContext() +{ + TQGfx * ret=0; + if(depth()) { + int w = qt_screen->mapToDevice( TQSize(width(),height()) ).width(); + int h = qt_screen->mapToDevice( TQSize(width(),height()) ).height(); + ret=TQGfx::createGfx(depth(),bits(),w,h,bytesPerLine()); + } else { + tqDebug("Trying to create image for null depth"); + return 0; + } + if(depth()<=8) { + TQRgb * tmp=colorTable(); + int nc=numColors(); + if(tmp==0) { + static TQRgb table[2] = { tqRgb(255,255,255), tqRgb(0,0,0) }; + tmp=table; + nc=2; + } + ret->setClut(tmp,nc); + } + return ret; +} + +#endif |