summaryrefslogtreecommitdiffstats
path: root/src/kernel/tqimage.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernel/tqimage.cpp')
-rw-r--r--src/kernel/tqimage.cpp6531
1 files changed, 6531 insertions, 0 deletions
diff --git a/src/kernel/tqimage.cpp b/src/kernel/tqimage.cpp
new file mode 100644
index 000000000..7a454818e
--- /dev/null
+++ b/src/kernel/tqimage.cpp
@@ -0,0 +1,6531 @@
+/****************************************************************************
+**
+** Implementation of TQImage and TQImageIO classes
+**
+** Created : 950207
+**
+** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
+**
+** This file is part of the kernel module of the TQt GUI Toolkit.
+**
+** This file may be used under the terms of the GNU General
+** Public License versions 2.0 or 3.0 as published by the Free
+** Software Foundation and appearing in the files LICENSE.GPL2
+** and LICENSE.GPL3 included in the packaging of this file.
+** Alternatively you may (at your option) use any later version
+** of the GNU General Public License if such license has been
+** publicly approved by Trolltech ASA (or its successors, if any)
+** and the KDE Free TQt Foundation.
+**
+** Please review the following information to ensure GNU General
+** Public Licensing requirements will be met:
+** http://trolltech.com/products/qt/licenses/licensing/opensource/.
+** If you are unsure which license is appropriate for your use, please
+** review the following information:
+** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
+** or contact the sales department at sales@trolltech.com.
+**
+** This file may be used under the terms of the Q Public License as
+** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
+** included in the packaging of this file. Licensees holding valid TQt
+** Commercial licenses may use this file in accordance with the TQt
+** Commercial License Agreement provided with the Software.
+**
+** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
+** herein.
+**
+**********************************************************************/
+
+#include "tqimage.h"
+#include "ntqregexp.h"
+#include "ntqfile.h"
+#include "ntqdatastream.h"
+#include "ntqtextstream.h"
+#include "ntqbuffer.h"
+#include "tqptrlist.h"
+#include "ntqasyncimageio.h"
+#include "ntqpngio.h"
+#include "ntqmngio.h"
+#include "ntqjpegio.h"
+#include "tqmap.h"
+#include <private/qpluginmanager_p.h>
+#include "tqimageformatinterface_p.h"
+#include "ntqwmatrix.h"
+#include "ntqapplication.h"
+#include "ntqmime.h"
+#include "ntqdragobject.h"
+#include <ctype.h>
+#include <stdlib.h>
+
+#ifdef TQ_WS_QWS
+#include "qgfx_qws.h"
+#endif
+
+// 16bpp images on supported on TQt/Embedded
+#if !defined( TQ_WS_QWS ) && !defined(TQT_NO_IMAGE_16_BIT)
+#define TQT_NO_IMAGE_16_BIT
+#endif
+
+
+/*!
+ \class TQImage
+ \brief The TQImage class provides a hardware-independent pixmap
+ representation with direct access to the pixel data.
+
+ \ingroup images
+ \ingroup graphics
+ \ingroup shared
+ \mainclass
+
+ It is one of the two classes TQt provides for dealing with images,
+ the other being TQPixmap. TQImage is designed and optimized for I/O
+ and for direct pixel access/manipulation. TQPixmap is designed and
+ optimized for drawing. There are (slow) functions to convert
+ between TQImage and TQPixmap: TQPixmap::convertToImage() and
+ TQPixmap::convertFromImage().
+
+ An image has the parameters \link width() width\endlink, \link
+ height() height\endlink and \link depth() depth\endlink (bits per
+ pixel, bpp), a color table and the actual \link bits()
+ pixels\endlink. TQImage supports 1-bpp, 8-bpp and 32-bpp image
+ data. 1-bpp and 8-bpp images use a color lookup table; the pixel
+ value is a color table index.
+
+ 32-bpp images encode an RGB value in 24 bits and ignore the color
+ table. The most significant byte is used for the \link
+ setAlphaBuffer() alpha buffer\endlink.
+
+ An entry in the color table is an RGB triplet encoded as a \c
+ uint. Use the \link ::tqRed() tqRed()\endlink, \link ::tqGreen()
+ tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink functions (\c
+ ntqcolor.h) to access the components, and \link ::tqRgb()
+ tqRgb\endlink to make an RGB triplet (see the TQColor class
+ documentation).
+
+ 1-bpp (monochrome) images have a color table with a most two
+ colors. There are two different formats: big endian (MSB first) or
+ little endian (LSB first) bit order. To access a single bit you
+ will must do some bit shifts:
+
+ \code
+ TQImage image;
+ // sets bit at (x,y) to 1
+ if ( image.bitOrder() == TQImage::LittleEndian )
+ *(image.scanLine(y) + (x >> 3)) |= 1 << (x & 7);
+ else
+ *(image.scanLine(y) + (x >> 3)) |= 1 << (7 - (x & 7));
+ \endcode
+
+ If this looks complicated, it might be a good idea to convert the
+ 1-bpp image to an 8-bpp image using convertDepth().
+
+ 8-bpp images are much easier to work with than 1-bpp images
+ because they have a single byte per pixel:
+
+ \code
+ TQImage image;
+ // set entry 19 in the color table to yellow
+ image.setColor( 19, tqRgb(255,255,0) );
+ // set 8 bit pixel at (x,y) to value yellow (in color table)
+ *(image.scanLine(y) + x) = 19;
+ \endcode
+
+ 32-bpp images ignore the color table; instead, each pixel contains
+ the RGB triplet. 24 bits contain the RGB value; the most
+ significant byte is reserved for the alpha buffer.
+
+ \code
+ TQImage image;
+ // sets 32 bit pixel at (x,y) to yellow.
+ uint *p = (uint *)image.scanLine(y) + x;
+ *p = tqRgb(255,255,0);
+ \endcode
+
+ On TQt/Embedded, scanlines are aligned to the pixel depth and may
+ be padded to any degree, while on all other platforms, the
+ scanlines are 32-bit aligned for all depths. The constructor
+ taking a \c{uchar*} argument always expects 32-bit aligned data.
+ On TQt/Embedded, an additional constructor allows the number of
+ bytes-per-line to be specified.
+
+ TQImage supports a variety of methods for getting information about
+ the image, for example, colorTable(), allGray(), isGrayscale(),
+ bitOrder(), bytesPerLine(), depth(), dotsPerMeterX() and
+ dotsPerMeterY(), hasAlphaBuffer(), numBytes(), numColors(), and
+ width() and height().
+
+ Pixel colors are retrieved with pixel() and set with setPixel().
+
+ TQImage also supports a number of functions for creating a new
+ image that is a transformed version of the original. For example,
+ copy(), convertBitOrder(), convertDepth(), createAlphaMask(),
+ createHeuristicMask(), mirror(), scale(), smoothScale(), swapRGB()
+ and xForm(). There are also functions for changing attributes of
+ an image in-place, for example, setAlphaBuffer(), setColor(),
+ setDotsPerMeterX() and setDotsPerMeterY() and setNumColors().
+
+ Images can be loaded and saved in the supported formats. Images
+ are saved to a file with save(). Images are loaded from a file
+ with load() (or in the constructor) or from an array of data with
+ loadFromData(). The lists of supported formats are available from
+ inputFormatList() and outputFormatList().
+
+ Strings of text may be added to images using setText().
+
+ The TQImage class uses explicit \link shclass.html sharing\endlink,
+ similar to that used by TQMemArray.
+
+ New image formats can be added as \link plugins-howto.html
+ plugins\endlink.
+
+ \sa TQImageIO TQPixmap \link shclass.html Shared Classes\endlink
+*/
+
+
+/*!
+ \enum TQImage::Endian
+
+ This enum type is used to describe the endianness of the CPU and
+ graphics hardware.
+
+ \value IgnoreEndian Endianness does not matter. Useful for some
+ operations that are independent of endianness.
+ \value BigEndian Network byte order, as on SPARC and Motorola CPUs.
+ \value LittleEndian PC/Alpha byte order.
+*/
+
+/*!
+ \enum TQt::ImageConversionFlags
+
+ The conversion flag is a bitwise-OR of the following values. The
+ options marked "(default)" are set if no other values from the
+ list are included (since the defaults are zero):
+
+ Color/Mono preference (ignored for TQBitmap)
+ \value AutoColor (default) - If the image has \link
+ TQImage::depth() depth\endlink 1 and contains only
+ black and white pixels, the pixmap becomes monochrome.
+ \value ColorOnly The pixmap is dithered/converted to the
+ \link TQPixmap::defaultDepth() native display depth\endlink.
+ \value MonoOnly The pixmap becomes monochrome. If necessary,
+ it is dithered using the chosen dithering algorithm.
+
+ Dithering mode preference for RGB channels
+ \value DiffuseDither (default) - A high-quality dither.
+ \value OrderedDither A faster, more ordered dither.
+ \value ThresholdDither No dithering; closest color is used.
+
+ Dithering mode preference for alpha channel
+ \value ThresholdAlphaDither (default) - No dithering.
+ \value OrderedAlphaDither A faster, more ordered dither.
+ \value DiffuseAlphaDither A high-quality dither.
+ \value NoAlpha Not supported.
+
+ Color matching versus dithering preference
+ \value PreferDither (default when converting to a pixmap) - Always dither
+ 32-bit images when the image is converted to 8 bits.
+ \value AvoidDither (default when converting for the purpose of saving to
+ file) - Dither 32-bit images only if the image has more than 256
+ colors and it is being converted to 8 bits.
+ \value AutoDither Not supported.
+
+ The following are not values that are used directly, but masks for
+ the above classes:
+ \value ColorMode_Mask Mask for the color mode.
+ \value Dither_Mask Mask for the dithering mode for RGB channels.
+ \value AlphaDither_Mask Mask for the dithering mode for the alpha channel.
+ \value DitherMode_Mask Mask for the mode that determines the preference of
+ color matching versus dithering.
+
+ Using 0 as the conversion flag sets all the default options.
+*/
+
+#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)
+#pragma message disable narrowptr
+#endif
+
+#ifndef TQT_NO_IMAGE_TEXT
+class TQImageDataMisc {
+public:
+ TQImageDataMisc() { }
+ TQImageDataMisc( const TQImageDataMisc& o ) :
+ text_lang(o.text_lang) { }
+
+ TQImageDataMisc& operator=(const TQImageDataMisc& o)
+ {
+ text_lang = o.text_lang;
+ return *this;
+ }
+ TQValueList<TQImageTextKeyLang> list()
+ {
+ return text_lang.keys();
+ }
+
+ TQStringList languages()
+ {
+ TQStringList r;
+ TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin();
+ for ( ; it != text_lang.end(); ++it ) {
+ r.remove( it.key().lang );
+ r.append( it.key().lang );
+ }
+ return r;
+ }
+ TQStringList keys()
+ {
+ TQStringList r;
+ TQMap<TQImageTextKeyLang,TQString>::Iterator it = text_lang.begin();
+ for ( ; it != text_lang.end(); ++it ) {
+ r.remove( it.key().key );
+ r.append( it.key().key );
+ }
+ return r;
+ }
+
+ TQMap<TQImageTextKeyLang,TQString> text_lang;
+};
+#endif // TQT_NO_IMAGE_TEXT
+
+
+
+/*****************************************************************************
+ TQImage member functions
+ *****************************************************************************/
+
+// table to flip bits
+static const uchar bitflip[256] = {
+ /*
+ open OUT, "| fmt";
+ for $i (0..255) {
+ print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |
+ (($i >> 3) & 0x04) | (($i >> 1) & 0x08) |
+ (($i << 7) & 0x80) | (($i << 5) & 0x40) |
+ (($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";
+ }
+ close OUT;
+ */
+ 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
+ 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
+ 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
+ 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
+ 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
+ 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
+ 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
+ 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
+ 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
+ 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
+ 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
+ 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
+ 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
+ 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
+ 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
+ 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
+};
+
+const uchar *qt_get_bitflip_array() // called from TQPixmap code
+{
+ return bitflip;
+}
+
+
+/*!
+ Constructs a null image.
+
+ \sa isNull()
+*/
+
+TQImage::TQImage()
+{
+ init();
+}
+
+/*!
+ Constructs an image with \a w width, \a h height, \a depth bits
+ per pixel, \a numColors colors and bit order \a bitOrder.
+
+ Using this constructor is the same as first constructing a null
+ image and then calling the create() function.
+
+ \sa create()
+*/
+
+TQImage::TQImage( int w, int h, int depth, int numColors, Endian bitOrder )
+{
+ init();
+ create( w, h, depth, numColors, bitOrder );
+}
+
+/*!
+ Constructs an image with size \a size pixels, depth \a depth bits,
+ \a numColors and \a bitOrder endianness.
+
+ Using this constructor is the same as first constructing a null
+ image and then calling the create() function.
+
+ \sa create()
+*/
+TQImage::TQImage( const TQSize& size, int depth, int numColors, Endian bitOrder )
+{
+ init();
+ create( size, depth, numColors, bitOrder );
+}
+
+#ifndef TQT_NO_IMAGEIO
+/*!
+ Constructs an image and tries to load the image from the file \a
+ fileName.
+
+ If \a format is specified, the loader attempts to read the image
+ using the specified format. If \a format is not specified (which
+ is the default), the loader reads a few bytes from the header to
+ guess the file format.
+
+ If the loading of the image failed, this object is a \link
+ isNull() null\endlink image.
+
+ The TQImageIO documentation lists the supported image formats and
+ explains how to add extra formats.
+
+ \sa load() isNull() TQImageIO
+*/
+
+TQImage::TQImage( const TQString &fileName, const char* format )
+{
+ init();
+ load( fileName, format );
+}
+
+#ifndef TQT_NO_IMAGEIO_XPM
+// helper
+static void read_xpm_image_or_array( TQImageIO *, const char * const *, TQImage & );
+#endif
+/*!
+ Constructs an image from \a xpm, which must be a valid XPM image.
+
+ Errors are silently ignored.
+
+ Note that it's possible to squeeze the XPM variable a little bit
+ by using an unusual declaration:
+
+ \code
+ static const char * const start_xpm[]={
+ "16 15 8 1",
+ "a c #cec6bd",
+ ....
+ \endcode
+
+ The extra \c const makes the entire definition read-only, which is
+ slightly more efficient (e.g. when the code is in a shared
+ library) and ROMable when the application is to be stored in ROM.
+*/
+
+TQImage::TQImage( const char * const xpm[] )
+{
+ init();
+#ifndef TQT_NO_IMAGEIO_XPM
+ read_xpm_image_or_array( 0, xpm, *this );
+#else
+ // We use a tqFatal rather than disabling the whole function, as this
+ // constructor may be ambiguous.
+ tqFatal("XPM not supported");
+#endif
+}
+
+/*!
+ Constructs an image from the binary data \a array. It tries to
+ guess the file format.
+
+ If the loading of the image failed, this object is a \link
+ isNull() null\endlink image.
+
+ \sa loadFromData() isNull() imageFormat()
+*/
+TQImage::TQImage( const TQByteArray &array )
+{
+ init();
+ loadFromData(array);
+}
+#endif //TQT_NO_IMAGEIO
+
+
+/*!
+ Constructs a \link shclass.html shallow copy\endlink of \a image.
+*/
+
+TQImage::TQImage( const TQImage &image )
+{
+ data = image.data;
+ data->ref();
+}
+
+/*!
+ Constructs an image \a w pixels wide, \a h pixels high with a
+ color depth of \a depth, that uses an existing memory buffer, \a
+ yourdata. The buffer must remain valid throughout the life of the
+ TQImage. The image does not delete the buffer at destruction.
+
+ If \a colortable is 0, a color table sufficient for \a numColors
+ will be allocated (and destructed later).
+
+ Note that \a yourdata must be 32-bit aligned.
+
+ The endianness is given in \a bitOrder.
+*/
+TQImage::TQImage( uchar* yourdata, int w, int h, int depth,
+ TQRgb* colortable, int numColors,
+ Endian bitOrder )
+{
+ init();
+ int bpl = ((w*depth+31)/32)*4; // bytes per scanline
+ if ( w <= 0 || h <= 0 || depth <= 0 || numColors < 0
+ || INT_MAX / sizeof(uchar *) < uint(h)
+ || INT_MAX / uint(depth) < uint(w)
+ || bpl <= 0
+ || INT_MAX / uint(bpl) < uint(h) )
+ return; // invalid parameter(s)
+ data->w = w;
+ data->h = h;
+ data->d = depth;
+ data->ncols = depth != 32 ? numColors : 0;
+ if ( !yourdata )
+ return; // Image header info can be saved without needing to allocate memory.
+ data->nbytes = bpl*h;
+ if ( colortable || !data->ncols ) {
+ data->ctbl = colortable;
+ data->ctbl_mine = FALSE;
+ } else {
+ // calloc since we realloc, etc. later (ick)
+ data->ctbl = (TQRgb*)calloc( data->ncols*sizeof(TQRgb), data->ncols );
+ TQ_CHECK_PTR(data->ctbl);
+ data->ctbl_mine = TRUE;
+ }
+ uchar** jt = (uchar**)malloc(h*sizeof(uchar*));
+ TQ_CHECK_PTR(jt);
+ for (int j=0; j<h; j++) {
+ jt[j] = yourdata+j*bpl;
+ }
+ data->bits = jt;
+ data->bitordr = bitOrder;
+}
+
+#ifdef TQ_WS_QWS
+
+/*!
+ Constructs an image that uses an existing memory buffer. The
+ buffer must remain valid for the life of the TQImage. The image
+ does not delete the buffer at destruction. The buffer is passed as
+ \a yourdata. The image's width is \a w and its height is \a h. The
+ color depth is \a depth. \a bpl specifies the number of bytes per
+ line.
+
+ If \a colortable is 0, a color table sufficient for \a numColors
+ will be allocated (and destructed later).
+
+ The endianness is specified by \a bitOrder.
+
+ \warning This constructor is only available on TQt/Embedded.
+*/
+TQImage::TQImage( uchar* yourdata, int w, int h, int depth,
+ int bpl, TQRgb* colortable, int numColors,
+ Endian bitOrder )
+{
+ init();
+ if ( !yourdata || w <= 0 || h <= 0 || depth <= 0 || numColors < 0
+ || INT_MAX / sizeof(uchar *) < uint(h)
+ || INT_MAX / uint(bpl) < uint(h)
+ )
+ return; // invalid parameter(s)
+ data->w = w;
+ data->h = h;
+ data->d = depth;
+ data->ncols = numColors;
+ data->nbytes = bpl * h;
+ if ( colortable || !numColors ) {
+ data->ctbl = colortable;
+ data->ctbl_mine = FALSE;
+ } else {
+ // calloc since we realloc, etc. later (ick)
+ data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), numColors );
+ TQ_CHECK_PTR(data->ctbl);
+ data->ctbl_mine = TRUE;
+ }
+ uchar** jt = (uchar**)malloc(h*sizeof(uchar*));
+ TQ_CHECK_PTR(jt);
+ for (int j=0; j<h; j++) {
+ jt[j] = yourdata+j*bpl;
+ }
+ data->bits = jt;
+ data->bitordr = bitOrder;
+}
+#endif // TQ_WS_QWS
+
+/*!
+ Destroys the image and cleans up.
+*/
+
+TQImage::~TQImage()
+{
+ if ( data && data->deref() ) {
+ reset();
+ delete data;
+ }
+}
+
+
+
+
+/*! Convenience function. Gets the data associated with the absolute
+ name \a abs_name from the default mime source factory and decodes it
+ to an image.
+
+ \sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode()
+*/
+#ifndef TQT_NO_MIME
+TQImage TQImage::fromMimeSource( const TQString &abs_name )
+{
+ const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name );
+ if ( !m ) {
+#if defined(QT_CHECK_STATE)
+ tqWarning("TQImage::fromMimeSource: Cannot find image \"%s\" in the mime source factory", abs_name.latin1() );
+#endif
+ return TQImage();
+ }
+ TQImage img;
+ TQImageDrag::decode( m, img );
+ return img;
+}
+#endif
+
+
+/*!
+ Assigns a \link shclass.html shallow copy\endlink of \a image to
+ this image and returns a reference to this image.
+
+ \sa copy()
+*/
+
+TQImage &TQImage::operator=( const TQImage &image )
+{
+ image.data->ref(); // avoid 'x = x'
+ if ( data->deref() ) {
+ reset();
+ delete data;
+ }
+ data = image.data;
+ return *this;
+}
+
+/*!
+ \overload
+
+ Sets the image bits to the \a pixmap contents and returns a
+ reference to the image.
+
+ If the image shares data with other images, it will first
+ dereference the shared data.
+
+ Makes a call to TQPixmap::convertToImage().
+*/
+
+TQImage &TQImage::operator=( const TQPixmap &pixmap )
+{
+ *this = pixmap.convertToImage();
+ return *this;
+}
+
+/*!
+ Detaches from shared image data and makes sure that this image is
+ the only one referring to the data.
+
+ If multiple images share common data, this image makes a copy of
+ the data and detaches itself from the sharing mechanism.
+ Nothing is done if there is just a single reference.
+
+ \sa copy()
+*/
+
+void TQImage::detach()
+{
+ if ( data->count != 1 )
+ *this = copy();
+}
+
+/*!
+ Returns a \link shclass.html deep copy\endlink of the image.
+
+ \sa detach()
+*/
+
+TQImage TQImage::copy() const
+{
+ if ( isNull() ) {
+ // maintain the fields of invalid TQImages when copied
+ return TQImage( 0, width(), height(), depth(), colorTable(), numColors(), bitOrder() );
+ } else {
+ TQImage image;
+ image.create( width(), height(), depth(), numColors(), bitOrder() );
+#ifdef TQ_WS_QWS
+ // TQt/Embedded can create images with non-default bpl
+ // make sure we don't crash.
+ if ( image.numBytes() != numBytes() )
+ for ( int i = 0; i < height(); i++ )
+ memcpy( image.scanLine(i), scanLine(i), image.bytesPerLine() );
+ else
+#endif
+ memcpy( image.bits(), bits(), numBytes() );
+ memcpy( image.colorTable(), colorTable(), numColors() * sizeof(TQRgb) );
+ image.setAlphaBuffer( hasAlphaBuffer() );
+ image.data->dpmx = dotsPerMeterX();
+ image.data->dpmy = dotsPerMeterY();
+ image.data->offset = offset();
+#ifndef TQT_NO_IMAGE_TEXT
+ if ( data->misc ) {
+ image.data->misc = new TQImageDataMisc;
+ *image.data->misc = misc();
+ }
+#endif
+ return image;
+ }
+}
+
+/*!
+ \overload
+
+ Returns a \link shclass.html deep copy\endlink of a sub-area of
+ the image.
+
+ The returned image is always \a w by \a h pixels in size, and is
+ copied from position \a x, \a y in this image. In areas beyond
+ this image pixels are filled with pixel 0.
+
+ If the image needs to be modified to fit in a lower-resolution
+ result (e.g. converting from 32-bit to 8-bit), use the \a
+ conversion_flags to specify how you'd prefer this to happen.
+
+ \sa bitBlt() TQt::ImageConversionFlags
+*/
+
+TQImage TQImage::copy(int x, int y, int w, int h, int conversion_flags) const
+{
+ int dx = 0;
+ int dy = 0;
+ if ( w <= 0 || h <= 0 ) return TQImage(); // Nothing to copy
+
+ TQImage image( w, h, depth(), numColors(), bitOrder() );
+
+ if ( x < 0 || y < 0 || x + w > width() || y + h > height() ) {
+ // bitBlt will not cover entire image - clear it.
+ // ### should deal with each side separately for efficiency
+ image.fill(0);
+ if ( x < 0 ) {
+ dx = -x;
+ x = 0;
+ }
+ if ( y < 0 ) {
+ dy = -y;
+ y = 0;
+ }
+ }
+
+ bool has_alpha = hasAlphaBuffer();
+ if ( has_alpha ) {
+ // alpha channel should be only copied, not used by bitBlt(), and
+ // this is mutable, we will restore the image state before returning
+ TQImage *that = (TQImage *) this;
+ that->setAlphaBuffer( FALSE );
+ }
+ memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
+ bitBlt( &image, dx, dy, this, x, y, -1, -1, conversion_flags );
+ if ( has_alpha ) {
+ // restore image state
+ TQImage *that = (TQImage *) this;
+ that->setAlphaBuffer( TRUE );
+ }
+ image.setAlphaBuffer(hasAlphaBuffer());
+ image.data->dpmx = dotsPerMeterX();
+ image.data->dpmy = dotsPerMeterY();
+ image.data->offset = offset();
+#ifndef TQT_NO_IMAGE_TEXT
+ if ( data->misc ) {
+ image.data->misc = new TQImageDataMisc;
+ *image.data->misc = misc();
+ }
+#endif
+ return image;
+}
+
+/*!
+ \overload TQImage TQImage::copy(const TQRect& r) const
+
+ Returns a \link shclass.html deep copy\endlink of a sub-area of
+ the image.
+
+ The returned image always has the size of the rectangle \a r. In
+ areas beyond this image pixels are filled with pixel 0.
+*/
+
+/*!
+ \fn bool TQImage::isNull() const
+
+ Returns TRUE if it is a null image; otherwise returns FALSE.
+
+ A null image has all parameters set to zero and no allocated data.
+*/
+
+
+/*!
+ \fn int TQImage::width() const
+
+ Returns the width of the image.
+
+ \sa height() size() rect()
+*/
+
+/*!
+ \fn int TQImage::height() const
+
+ Returns the height of the image.
+
+ \sa width() size() rect()
+*/
+
+/*!
+ \fn TQSize TQImage::size() const
+
+ Returns the size of the image, i.e. its width and height.
+
+ \sa width() height() rect()
+*/
+
+/*!
+ \fn TQRect TQImage::rect() const
+
+ Returns the enclosing rectangle (0, 0, width(), height()) of the
+ image.
+
+ \sa width() height() size()
+*/
+
+/*!
+ \fn int TQImage::depth() const
+
+ Returns the depth of the image.
+
+ The image depth is the number of bits used to encode a single
+ pixel, also called bits per pixel (bpp) or bit planes of an image.
+
+ The supported depths are 1, 8, 16 (TQt/Embedded only) and 32.
+
+ \sa convertDepth()
+*/
+
+/*!
+ \fn int TQImage::numColors() const
+
+ Returns the size of the color table for the image.
+
+ Notice that numColors() returns 0 for 16-bpp (TQt/Embedded only)
+ and 32-bpp images because these images do not use color tables,
+ but instead encode pixel values as RGB triplets.
+
+ \sa setNumColors() colorTable()
+*/
+
+/*!
+ \fn TQImage::Endian TQImage::bitOrder() const
+
+ Returns the bit order for the image.
+
+ If it is a 1-bpp image, this function returns either
+ TQImage::BigEndian or TQImage::LittleEndian.
+
+ If it is not a 1-bpp image, this function returns
+ TQImage::IgnoreEndian.
+
+ \sa depth()
+*/
+
+/*!
+ \fn uchar **TQImage::jumpTable() const
+
+ Returns a pointer to the scanline pointer table.
+
+ This is the beginning of the data block for the image.
+
+ \sa bits() scanLine()
+*/
+
+/*!
+ \fn TQRgb *TQImage::colorTable() const
+
+ Returns a pointer to the color table.
+
+ \sa numColors()
+*/
+
+/*!
+ \fn int TQImage::numBytes() const
+
+ Returns the number of bytes occupied by the image data.
+
+ \sa bytesPerLine() bits()
+*/
+
+/*!
+ \fn int TQImage::bytesPerLine() const
+
+ Returns the number of bytes per image scanline. This is equivalent
+ to numBytes()/height().
+
+ \sa numBytes() scanLine()
+*/
+
+/*!
+ \fn TQRgb TQImage::color( int i ) const
+
+ Returns the color in the color table at index \a i. The first
+ color is at index 0.
+
+ A color value is an RGB triplet. Use the \link ::tqRed()
+ tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link
+ ::tqBlue() tqBlue()\endlink functions (defined in \c ntqcolor.h) to
+ get the color value components.
+
+ \sa setColor() numColors() TQColor
+*/
+
+/*!
+ \fn void TQImage::setColor( int i, TQRgb c )
+
+ Sets a color in the color table at index \a i to \a c.
+
+ A color value is an RGB triplet. Use the \link ::tqRgb()
+ tqRgb()\endlink function (defined in \c ntqcolor.h) to make RGB
+ triplets.
+
+ \sa color() setNumColors() numColors()
+*/
+
+/*!
+ \fn uchar *TQImage::scanLine( int i ) const
+
+ Returns a pointer to the pixel data at the scanline with index \a
+ i. The first scanline is at index 0.
+
+ The scanline data is aligned on a 32-bit boundary.
+
+ \warning If you are accessing 32-bpp image data, cast the returned
+ pointer to \c{TQRgb*} (TQRgb has a 32-bit size) and use it to
+ read/write the pixel value. You cannot use the \c{uchar*} pointer
+ directly, because the pixel format depends on the byte order on
+ the underlying platform. Hint: use \link ::tqRed() tqRed()\endlink,
+ \link ::tqGreen() tqGreen()\endlink and \link ::tqBlue()
+ tqBlue()\endlink, etc. (ntqcolor.h) to access the pixels.
+
+ \warning If you are accessing 16-bpp image data, you must handle
+ endianness yourself. (TQt/Embedded only)
+
+ \sa bytesPerLine() bits() jumpTable()
+*/
+
+/*!
+ \fn uchar *TQImage::bits() const
+
+ Returns a pointer to the first pixel data. This is equivalent to
+ scanLine(0).
+
+ \sa numBytes() scanLine() jumpTable()
+*/
+
+
+
+void TQImage::warningIndexRange( const char *func, int i )
+{
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::%s: Index %d out of range", func, i );
+#else
+ Q_UNUSED( func )
+ Q_UNUSED( i )
+#endif
+}
+
+
+/*!
+ Resets all image parameters and deallocates the image data.
+*/
+
+void TQImage::reset()
+{
+ freeBits();
+ setNumColors( 0 );
+#ifndef TQT_NO_IMAGE_TEXT
+ delete data->misc;
+#endif
+ reinit();
+}
+
+
+/*!
+ Fills the entire image with the pixel value \a pixel.
+
+ If the \link depth() depth\endlink of this image is 1, only the
+ lowest bit is used. If you say fill(0), fill(2), etc., the image
+ is filled with 0s. If you say fill(1), fill(3), etc., the image is
+ filled with 1s. If the depth is 8, the lowest 8 bits are used.
+
+ If the depth is 32 and the image has no alpha buffer, the \a pixel
+ value is written to each pixel in the image. If the image has an
+ alpha buffer, only the 24 RGB bits are set and the upper 8 bits
+ (alpha value) are left unchanged.
+
+ Note: TQImage::pixel() returns the color of the pixel at the given
+ coordinates; TQColor::pixel() returns the pixel value of the
+ underlying window system (essentially an index value), so normally
+ you will want to use TQImage::pixel() to use a color from an
+ existing image or TQColor::rgb() to use a specific color.
+
+ \sa invertPixels() depth() hasAlphaBuffer() create()
+*/
+
+void TQImage::fill( uint pixel )
+{
+ if ( depth() == 1 || depth() == 8 ) {
+ if ( depth() == 1 ) {
+ if ( pixel & 1 )
+ pixel = 0xffffffff;
+ else
+ pixel = 0;
+ } else {
+ uint c = pixel & 0xff;
+ pixel = c | ((c << 8) & 0xff00) | ((c << 16) & 0xff0000) |
+ ((c << 24) & 0xff000000);
+ }
+ int bpl = bytesPerLine();
+ for ( int i=0; i<height(); i++ )
+ memset( scanLine(i), pixel, bpl );
+#ifndef TQT_NO_IMAGE_16_BIT
+ } else if ( depth() == 16 ) {
+ for ( int i=0; i<height(); i++ ) {
+ //optimize with 32-bit writes, since image is always aligned
+ uint *p = (uint *)scanLine(i);
+ uint *end = (uint*)(((ushort*)p) + width());
+ uint fill;
+ ushort *f = (ushort*)&fill;
+ f[0]=pixel;
+ f[1]=pixel;
+ while ( p < end )
+ *p++ = fill;
+ }
+#endif // TQT_NO_IMAGE_16_BIT
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ } else if ( depth() == 32 ) {
+ if ( hasAlphaBuffer() ) {
+ pixel &= 0x00ffffff;
+ for ( int i=0; i<height(); i++ ) {
+ uint *p = (uint *)scanLine(i);
+ uint *end = p + width();
+ while ( p < end ) {
+ *p = (*p & 0xff000000) | pixel;
+ p++;
+ }
+ }
+ } else {
+ for ( int i=0; i<height(); i++ ) {
+ uint *p = (uint *)scanLine(i);
+ uint *end = p + width();
+ while ( p < end )
+ *p++ = pixel;
+ }
+ }
+#endif // TQT_NO_IMAGE_TRUECOLOR
+ }
+}
+
+
+/*!
+ Inverts all pixel values in the image.
+
+ If the depth is 32: if \a invertAlpha is TRUE, the alpha bits are
+ also inverted, otherwise they are left unchanged.
+
+ If the depth is not 32, the argument \a invertAlpha has no
+ meaning.
+
+ Note that inverting an 8-bit image means to replace all pixels
+ using color index \e i with a pixel using color index 255 minus \e
+ i. Similarly for a 1-bit image. The color table is not changed.
+
+ \sa fill() depth() hasAlphaBuffer()
+*/
+
+void TQImage::invertPixels( bool invertAlpha )
+{
+ TQ_UINT32 n = numBytes();
+ if ( n % 4 ) {
+ TQ_UINT8 *p = (TQ_UINT8*)bits();
+ TQ_UINT8 *end = p + n;
+ while ( p < end )
+ *p++ ^= 0xff;
+ } else {
+ TQ_UINT32 *p = (TQ_UINT32*)bits();
+ TQ_UINT32 *end = p + n/4;
+ uint xorbits = invertAlpha && depth() == 32 ? 0x00ffffff : 0xffffffff;
+ while ( p < end )
+ *p++ ^= xorbits;
+ }
+}
+
+
+/*!
+ Determines the host computer byte order. Returns
+ TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first).
+
+ \sa systemBitOrder()
+*/
+
+TQImage::Endian TQImage::systemByteOrder()
+{
+ static Endian sbo = IgnoreEndian;
+ if ( sbo == IgnoreEndian ) { // initialize
+ int ws;
+ bool be;
+ tqSysInfo( &ws, &be );
+ sbo = be ? BigEndian : LittleEndian;
+ }
+ return sbo;
+}
+
+
+#if defined(TQ_WS_X11)
+#include <X11/Xlib.h> // needed for systemBitOrder
+#include <X11/Xutil.h>
+#include <X11/Xos.h>
+#if defined(Q_OS_WIN32)
+#undef open
+#undef close
+#undef read
+#undef write
+#endif
+#endif
+
+// POSIX Large File Support redefines open -> open64
+#if defined(open)
+# undef open
+#endif
+
+// POSIX Large File Support redefines truncate -> truncate64
+#if defined(truncate)
+# undef truncate
+#endif
+
+/*!
+ Determines the bit order of the display hardware. Returns
+ TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first).
+
+ \sa systemByteOrder()
+*/
+
+TQImage::Endian TQImage::systemBitOrder()
+{
+#if defined(TQ_WS_X11)
+ return BitmapBitOrder(tqt_xdisplay()) == MSBFirst ? BigEndian :LittleEndian;
+#else
+ return BigEndian;
+#endif
+}
+
+
+/*!
+ Resizes the color table to \a numColors colors.
+
+ If the color table is expanded all the extra colors will be set to
+ black (RGB 0,0,0).
+
+ \sa numColors() color() setColor() colorTable()
+*/
+
+void TQImage::setNumColors( int numColors )
+{
+ if ( numColors == data->ncols )
+ return;
+ if ( numColors == 0 ) { // use no color table
+ if ( data->ctbl ) {
+ if ( data->ctbl_mine )
+ free( data->ctbl );
+ else
+ data->ctbl_mine = TRUE;
+ data->ctbl = 0;
+ }
+ data->ncols = 0;
+ return;
+ }
+ if ( data->ctbl && data->ctbl_mine ) { // already has color table
+ data->ctbl = (TQRgb*)realloc( data->ctbl, numColors*sizeof(TQRgb) );
+ if ( data->ctbl && numColors > data->ncols )
+ memset( (char *)&data->ctbl[data->ncols], 0,
+ (numColors-data->ncols)*sizeof(TQRgb) );
+ } else { // create new color table
+ data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), 1 );
+ TQ_CHECK_PTR(data->ctbl);
+ data->ctbl_mine = TRUE;
+ }
+ data->ncols = data->ctbl == 0 ? 0 : numColors;
+}
+
+
+/*!
+ \fn bool TQImage::hasAlphaBuffer() const
+
+ Returns TRUE if alpha buffer mode is enabled; otherwise returns
+ FALSE.
+
+ \sa setAlphaBuffer()
+*/
+
+/*!
+ Enables alpha buffer mode if \a enable is TRUE, otherwise disables
+ it. The default setting is disabled.
+
+ An 8-bpp image has 8-bit pixels. A pixel is an index into the
+ \link color() color table\endlink, which contains 32-bit color
+ values. In a 32-bpp image, the 32-bit pixels are the color values.
+
+ This 32-bit value is encoded as follows: The lower 24 bits are
+ used for the red, green, and blue components. The upper 8 bits
+ contain the alpha component.
+
+ The alpha component specifies the transparency of a pixel. 0 means
+ completely transparent and 255 means opaque. The alpha component
+ is ignored if you do not enable alpha buffer mode.
+
+ The alpha buffer is used to set a mask when a TQImage is translated
+ to a TQPixmap.
+
+ \sa hasAlphaBuffer() createAlphaMask()
+*/
+
+void TQImage::setAlphaBuffer( bool enable )
+{
+ data->alpha = enable;
+}
+
+
+/*!
+ Sets the image \a width, \a height, \a depth, its number of colors
+ (in \a numColors), and bit order. Returns TRUE if successful, or
+ FALSE if the parameters are incorrect or if memory cannot be
+ allocated.
+
+ The \a width and \a height is limited to 32767. \a depth must be
+ 1, 8, or 32. If \a depth is 1, \a bitOrder must be set to
+ either TQImage::LittleEndian or TQImage::BigEndian. For other depths
+ \a bitOrder must be TQImage::IgnoreEndian.
+
+ This function allocates a color table and a buffer for the image
+ data. The image data is not initialized.
+
+ The image buffer is allocated as a single block that consists of a
+ table of \link scanLine() scanline\endlink pointers (jumpTable())
+ and the image data (bits()).
+
+ \sa fill() width() height() depth() numColors() bitOrder()
+ jumpTable() scanLine() bits() bytesPerLine() numBytes()
+*/
+
+bool TQImage::create( int width, int height, int depth, int numColors,
+ Endian bitOrder )
+{
+ reset(); // reset old data
+ if ( width <= 0 || height <= 0 || depth <= 0 || numColors < 0 )
+ return FALSE; // invalid parameter(s)
+ if ( depth == 1 && bitOrder == IgnoreEndian ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::create: Bit order is required for 1 bpp images" );
+#endif
+ return FALSE;
+ }
+ if ( depth != 1 )
+ bitOrder = IgnoreEndian;
+
+#if defined(QT_CHECK_RANGE)
+ if ( depth == 24 )
+ tqWarning( "TQImage::create: 24-bpp images no longer supported, "
+ "use 32-bpp instead" );
+#endif
+ switch ( depth ) {
+ case 1:
+ case 8:
+#ifndef TQT_NO_IMAGE_16_BIT
+ case 16:
+#endif
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ case 32:
+#endif
+ break;
+ default: // invalid depth
+ return FALSE;
+ }
+
+ if ( depth == 32 )
+ numColors = 0;
+ setNumColors( numColors );
+ if ( data->ncols != numColors ) // could not alloc color table
+ return FALSE;
+
+ if ( INT_MAX / uint(depth) < uint(width) ) { // sanity check for potential overflow
+ setNumColors( 0 );
+ return FALSE;
+ }
+// TQt/Embedded doesn't waste memory on unnecessary padding.
+#ifdef TQ_WS_QWS
+ const int bpl = (width*depth+7)/8; // bytes per scanline
+ const int pad = 0;
+#else
+ const int bpl = ((width*depth+31)/32)*4; // bytes per scanline
+ // #### WWA: shouldn't this be (width*depth+7)/8:
+ const int pad = bpl - (width*depth)/8; // pad with zeros
+#endif
+ if ( INT_MAX / uint(bpl) < uint(height)
+ || bpl < 0
+ || INT_MAX / sizeof(uchar *) < uint(height) ) { // sanity check for potential overflow
+ setNumColors( 0 );
+ return FALSE;
+ }
+ int nbytes = bpl*height; // image size
+ int ptbl = height*sizeof(uchar*); // pointer table size
+ int size = nbytes + ptbl; // total size of data block
+ uchar **p = (uchar **)malloc( size ); // alloc image bits
+ TQ_CHECK_PTR(p);
+ if ( !p ) { // no memory
+ setNumColors( 0 );
+ return FALSE;
+ }
+ data->w = width;
+ data->h = height;
+ data->d = depth;
+ data->nbytes = nbytes;
+ data->bitordr = bitOrder;
+ data->bits = p; // set image pointer
+ //uchar *d = (uchar*)p + ptbl; // setup scanline pointers
+ uchar *d = (uchar*)(p + height); // setup scanline pointers
+ while ( height-- ) {
+ *p++ = d;
+ if ( pad )
+ memset( d+bpl-pad, 0, pad );
+ d += bpl;
+ }
+ return TRUE;
+}
+
+/*!
+ \overload bool TQImage::create( const TQSize&, int depth, int numColors, Endian bitOrder )
+*/
+bool TQImage::create( const TQSize& size, int depth, int numColors,
+ TQImage::Endian bitOrder )
+{
+ return create(size.width(), size.height(), depth, numColors, bitOrder);
+}
+
+/*!
+ \internal
+ Initializes the image data structure.
+*/
+
+void TQImage::init()
+{
+ data = new TQImageData;
+ TQ_CHECK_PTR( data );
+ reinit();
+}
+
+void TQImage::reinit()
+{
+ data->w = data->h = data->d = data->ncols = 0;
+ data->nbytes = 0;
+ data->ctbl = 0;
+ data->bits = 0;
+ data->bitordr = TQImage::IgnoreEndian;
+ data->alpha = FALSE;
+#ifndef TQT_NO_IMAGE_TEXT
+ data->misc = 0;
+#endif
+ data->dpmx = 0;
+ data->dpmy = 0;
+ data->offset = TQPoint(0,0);
+}
+
+/*!
+ \internal
+ Deallocates the image data and sets the bits pointer to 0.
+*/
+
+void TQImage::freeBits()
+{
+ if ( data->bits ) { // dealloc image bits
+ free( data->bits );
+ data->bits = 0;
+ }
+}
+
+
+/*****************************************************************************
+ Internal routines for converting image depth.
+ *****************************************************************************/
+
+//
+// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit
+// image with a colormap. If the 32 bit image has more than 256 colors,
+// we convert the red,green and blue bytes into a single byte encoded
+// as 6 shades of each of red, green and blue.
+//
+// if dithering is needed, only 1 color at most is available for alpha.
+//
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+struct TQRgbMap {
+ TQRgbMap() : rgb(0xffffffff) { }
+ bool used() const { return rgb!=0xffffffff; }
+ uchar pix;
+ TQRgb rgb;
+};
+
+static bool convert_32_to_8( const TQImage *src, TQImage *dst, int conversion_flags, TQRgb* palette=0, int palette_count=0 )
+{
+ TQRgb *p;
+ uchar *b;
+ bool do_quant = FALSE;
+ int y, x;
+
+ if ( !dst->create(src->width(), src->height(), 8, 256) )
+ return FALSE;
+
+ const int tablesize = 997; // prime
+ TQRgbMap table[tablesize];
+ int pix=0;
+ TQRgb amask = src->hasAlphaBuffer() ? 0xffffffff : 0x00ffffff;
+ if ( src->hasAlphaBuffer() )
+ dst->setAlphaBuffer(TRUE);
+
+ if ( palette ) {
+ // Preload palette into table.
+
+ p = palette;
+ // Almost same code as pixel insertion below
+ while ( palette_count-- > 0 ) {
+ // Find in table...
+ int hash = (*p & amask) % tablesize;
+ for (;;) {
+ if ( table[hash].used() ) {
+ if ( table[hash].rgb == (*p & amask) ) {
+ // Found previous insertion - use it
+ break;
+ } else {
+ // Keep searching...
+ if (++hash == tablesize) hash = 0;
+ }
+ } else {
+ // Cannot be in table
+ Q_ASSERT ( pix != 256 ); // too many colors
+ // Insert into table at this unused position
+ dst->setColor( pix, (*p & amask) );
+ table[hash].pix = pix++;
+ table[hash].rgb = *p & amask;
+ break;
+ }
+ }
+ p++;
+ }
+ }
+
+ if ( (conversion_flags & TQt::DitherMode_Mask) == TQt::PreferDither ) {
+ do_quant = TRUE;
+ } else {
+ for ( y=0; y<src->height(); y++ ) { // check if <= 256 colors
+ p = (TQRgb *)src->scanLine(y);
+ b = dst->scanLine(y);
+ x = src->width();
+ while ( x-- ) {
+ // Find in table...
+ int hash = (*p & amask) % tablesize;
+ for (;;) {
+ if ( table[hash].used() ) {
+ if ( table[hash].rgb == (*p & amask) ) {
+ // Found previous insertion - use it
+ break;
+ } else {
+ // Keep searching...
+ if (++hash == tablesize) hash = 0;
+ }
+ } else {
+ // Cannot be in table
+ if ( pix == 256 ) { // too many colors
+ do_quant = TRUE;
+ // Break right out
+ x = 0;
+ y = src->height();
+ } else {
+ // Insert into table at this unused position
+ dst->setColor( pix, (*p & amask) );
+ table[hash].pix = pix++;
+ table[hash].rgb = (*p & amask);
+ }
+ break;
+ }
+ }
+ *b++ = table[hash].pix; // May occur once incorrectly
+ p++;
+ }
+ }
+ }
+ int ncols = do_quant ? 256 : pix;
+
+ static uint bm[16][16];
+ static int init=0;
+ if (!init) {
+ // Build a Bayer Matrix for dithering
+
+ init = 1;
+ int n, i, j;
+
+ bm[0][0]=0;
+
+ for (n=1; n<16; n*=2) {
+ for (i=0; i<n; i++) {
+ for (j=0; j<n; j++) {
+ bm[i][j]*=4;
+ bm[i+n][j]=bm[i][j]+2;
+ bm[i][j+n]=bm[i][j]+3;
+ bm[i+n][j+n]=bm[i][j]+1;
+ }
+ }
+ }
+
+ for (i=0; i<16; i++)
+ for (j=0; j<16; j++)
+ bm[i][j]<<=8;
+ }
+
+ dst->setNumColors( ncols );
+
+ if ( do_quant ) { // quantization needed
+
+#define MAX_R 5
+#define MAX_G 5
+#define MAX_B 5
+#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
+
+ int rc, gc, bc;
+
+ for ( rc=0; rc<=MAX_R; rc++ ) // build 6x6x6 color cube
+ for ( gc=0; gc<=MAX_G; gc++ )
+ for ( bc=0; bc<=MAX_B; bc++ ) {
+ dst->setColor( INDEXOF(rc,gc,bc),
+ (amask&0xff000000)
+ | tqRgb( rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B ) );
+ }
+
+ int sw = src->width();
+
+ int* line1[3];
+ int* line2[3];
+ int* pv[3];
+ if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) {
+ line1[0] = new int[sw];
+ line2[0] = new int[sw];
+ line1[1] = new int[sw];
+ line2[1] = new int[sw];
+ line1[2] = new int[sw];
+ line2[2] = new int[sw];
+ pv[0] = new int[sw];
+ pv[1] = new int[sw];
+ pv[2] = new int[sw];
+ }
+
+ for ( y=0; y < src->height(); y++ ) {
+ p = (TQRgb *)src->scanLine(y);
+ b = dst->scanLine(y);
+ TQRgb *end = p + sw;
+
+ // perform quantization
+ if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) {
+#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))
+ while ( p < end ) {
+ rc = tqRed( *p );
+ gc = tqGreen( *p );
+ bc = tqBlue( *p );
+
+ *b++ =
+ INDEXOF(
+ DITHER(rc, MAX_R),
+ DITHER(gc, MAX_G),
+ DITHER(bc, MAX_B)
+ );
+
+ p++;
+ }
+#undef DITHER
+ } else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) {
+#define DITHER(p,d,m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) / 65536 ))
+
+ int x = 0;
+ while ( p < end ) {
+ uint d = bm[y&15][x&15];
+
+ rc = tqRed( *p );
+ gc = tqGreen( *p );
+ bc = tqBlue( *p );
+
+ *b++ =
+ INDEXOF(
+ DITHER(rc, d, MAX_R),
+ DITHER(gc, d, MAX_G),
+ DITHER(bc, d, MAX_B)
+ );
+
+ p++;
+ x++;
+ }
+#undef DITHER
+ } else { // Diffuse
+ int endian = (TQImage::systemByteOrder() == TQImage::BigEndian);
+ int x;
+ uchar* q = src->scanLine(y);
+ uchar* q2 = src->scanLine(y+1 < src->height() ? y + 1 : 0);
+ for (int chan = 0; chan < 3; chan++) {
+ b = dst->scanLine(y);
+ int *l1 = (y&1) ? line2[chan] : line1[chan];
+ int *l2 = (y&1) ? line1[chan] : line2[chan];
+ if ( y == 0 ) {
+ for (int i=0; i<sw; i++)
+ l1[i] = q[i*4+chan+endian];
+ }
+ if ( y+1 < src->height() ) {
+ for (int i=0; i<sw; i++)
+ l2[i] = q2[i*4+chan+endian];
+ }
+ // Bi-directional error diffusion
+ if ( y&1 ) {
+ for (x=0; x<sw; x++) {
+ int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0);
+ int err = l1[x] - pix * 255 / 5;
+ pv[chan][x] = pix;
+
+ // Spread the error around...
+ if ( x+1<sw ) {
+ l1[x+1] += (err*7)>>4;
+ l2[x+1] += err>>4;
+ }
+ l2[x]+=(err*5)>>4;
+ if (x>1)
+ l2[x-1]+=(err*3)>>4;
+ }
+ } else {
+ for (x=sw; x-->0; ) {
+ int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0);
+ int err = l1[x] - pix * 255 / 5;
+ pv[chan][x] = pix;
+
+ // Spread the error around...
+ if ( x > 0 ) {
+ l1[x-1] += (err*7)>>4;
+ l2[x-1] += err>>4;
+ }
+ l2[x]+=(err*5)>>4;
+ if (x+1 < sw)
+ l2[x+1]+=(err*3)>>4;
+ }
+ }
+ }
+ if (endian) {
+ for (x=0; x<sw; x++) {
+ *b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
+ }
+ } else {
+ for (x=0; x<sw; x++) {
+ *b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
+ }
+ }
+ }
+ }
+
+#ifndef TQT_NO_IMAGE_DITHER_TO_1
+ if ( src->hasAlphaBuffer() ) {
+ const int trans = 216;
+ dst->setColor(trans, 0x00000000); // transparent
+ TQImage mask = src->createAlphaMask(conversion_flags);
+ uchar* m;
+ for ( y=0; y < src->height(); y++ ) {
+ uchar bit = 0x80;
+ m = mask.scanLine(y);
+ b = dst->scanLine(y);
+ int w = src->width();
+ for ( x = 0; x<w; x++ ) {
+ if ( !(*m&bit) )
+ b[x] = trans;
+ if (!(bit >>= 1)) {
+ bit = 0x80;
+ while ( x<w-1 && *++m == 0xff ) // skip chunks
+ x+=8;
+ }
+ }
+ }
+ }
+#endif
+
+ if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) {
+ delete [] line1[0];
+ delete [] line2[0];
+ delete [] line1[1];
+ delete [] line2[1];
+ delete [] line1[2];
+ delete [] line2[2];
+ delete [] pv[0];
+ delete [] pv[1];
+ delete [] pv[2];
+ }
+
+#undef MAX_R
+#undef MAX_G
+#undef MAX_B
+#undef INDEXOF
+
+ }
+
+ return TRUE;
+}
+
+
+static bool convert_8_to_32( const TQImage *src, TQImage *dst )
+{
+ if ( !dst->create(src->width(), src->height(), 32) )
+ return FALSE; // create failed
+ dst->setAlphaBuffer( src->hasAlphaBuffer() );
+ for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
+ uint *p = (uint *)dst->scanLine(y);
+ uchar *b = src->scanLine(y);
+ uint *end = p + dst->width();
+ while ( p < end )
+ *p++ = src->color(*b++);
+ }
+ return TRUE;
+}
+
+
+static bool convert_1_to_32( const TQImage *src, TQImage *dst )
+{
+ if ( !dst->create(src->width(), src->height(), 32) )
+ return FALSE; // could not create
+ dst->setAlphaBuffer( src->hasAlphaBuffer() );
+ for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
+ uint *p = (uint *)dst->scanLine(y);
+ uchar *b = src->scanLine(y);
+ int x;
+ if ( src->bitOrder() == TQImage::BigEndian ) {
+ for ( x=0; x<dst->width(); x++ ) {
+ *p++ = src->color( (*b >> (7 - (x & 7))) & 1 );
+ if ( (x & 7) == 7 )
+ b++;
+ }
+ } else {
+ for ( x=0; x<dst->width(); x++ ) {
+ *p++ = src->color( (*b >> (x & 7)) & 1 );
+ if ( (x & 7) == 7 )
+ b++;
+ }
+ }
+ }
+ return TRUE;
+}
+#endif // TQT_NO_IMAGE_TRUECOLOR
+
+static bool convert_1_to_8( const TQImage *src, TQImage *dst )
+{
+ if ( !dst->create(src->width(), src->height(), 8, 2) )
+ return FALSE; // something failed
+ dst->setAlphaBuffer( src->hasAlphaBuffer() );
+ if (src->numColors() >= 2) {
+ dst->setColor( 0, src->color(0) ); // copy color table
+ dst->setColor( 1, src->color(1) );
+ } else {
+ // Unlikely, but they do exist
+ if (src->numColors() >= 1)
+ dst->setColor( 0, src->color(0) );
+ else
+ dst->setColor( 0, 0xffffffff );
+ dst->setColor( 1, 0xff000000 );
+ }
+ for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
+ uchar *p = dst->scanLine(y);
+ uchar *b = src->scanLine(y);
+ int x;
+ if ( src->bitOrder() == TQImage::BigEndian ) {
+ for ( x=0; x<dst->width(); x++ ) {
+ *p++ = (*b >> (7 - (x & 7))) & 1;
+ if ( (x & 7) == 7 )
+ b++;
+ }
+ } else {
+ for ( x=0; x<dst->width(); x++ ) {
+ *p++ = (*b >> (x & 7)) & 1;
+ if ( (x & 7) == 7 )
+ b++;
+ }
+ }
+ }
+ return TRUE;
+}
+
+#ifndef TQT_NO_IMAGE_DITHER_TO_1
+//
+// dither_to_1: Uses selected dithering algorithm.
+//
+
+static bool dither_to_1( const TQImage *src, TQImage *dst,
+ int conversion_flags, bool fromalpha )
+{
+ if ( !dst->create(src->width(), src->height(), 1, 2, TQImage::BigEndian) )
+ return FALSE; // something failed
+
+ enum { Threshold, Ordered, Diffuse } dithermode;
+
+ if ( fromalpha ) {
+ if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::DiffuseAlphaDither )
+ dithermode = Diffuse;
+ else if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::OrderedAlphaDither )
+ dithermode = Ordered;
+ else
+ dithermode = Threshold;
+ } else {
+ if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither )
+ dithermode = Threshold;
+ else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither )
+ dithermode = Ordered;
+ else
+ dithermode = Diffuse;
+ }
+
+ dst->setColor( 0, tqRgb(255, 255, 255) );
+ dst->setColor( 1, tqRgb( 0, 0, 0) );
+ int w = src->width();
+ int h = src->height();
+ int d = src->depth();
+ uchar gray[256]; // gray map for 8 bit images
+ bool use_gray = d == 8;
+ if ( use_gray ) { // make gray map
+ if ( fromalpha ) {
+ // Alpha 0x00 -> 0 pixels (white)
+ // Alpha 0xFF -> 1 pixels (black)
+ for ( int i=0; i<src->numColors(); i++ )
+ gray[i] = (255 - (src->color(i) >> 24));
+ } else {
+ // Pixel 0x00 -> 1 pixels (black)
+ // Pixel 0xFF -> 0 pixels (white)
+ for ( int i=0; i<src->numColors(); i++ )
+ gray[i] = tqGray( src->color(i) & 0x00ffffff );
+ }
+ }
+
+ switch ( dithermode ) {
+ case Diffuse: {
+ int *line1 = new int[w];
+ int *line2 = new int[w];
+ int bmwidth = (w+7)/8;
+ if ( !(line1 && line2) )
+ return FALSE;
+ uchar *p;
+ uchar *end;
+ int *b1, *b2;
+ int wbytes = w * (d/8);
+ p = src->bits();
+ end = p + wbytes;
+ b2 = line2;
+ if ( use_gray ) { // 8 bit image
+ while ( p < end )
+ *b2++ = gray[*p++];
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ } else { // 32 bit image
+ if ( fromalpha ) {
+ while ( p < end ) {
+ *b2++ = 255 - (*(uint*)p >> 24);
+ p += 4;
+ }
+ } else {
+ while ( p < end ) {
+ *b2++ = tqGray(*(uint*)p);
+ p += 4;
+ }
+ }
+#endif
+ }
+ int x, y;
+ for ( y=0; y<h; y++ ) { // for each scan line...
+ int *tmp = line1; line1 = line2; line2 = tmp;
+ bool not_last_line = y < h - 1;
+ if ( not_last_line ) { // calc. grayvals for next line
+ p = src->scanLine(y+1);
+ end = p + wbytes;
+ b2 = line2;
+ if ( use_gray ) { // 8 bit image
+ while ( p < end )
+ *b2++ = gray[*p++];
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ } else { // 24 bit image
+ if ( fromalpha ) {
+ while ( p < end ) {
+ *b2++ = 255 - (*(uint*)p >> 24);
+ p += 4;
+ }
+ } else {
+ while ( p < end ) {
+ *b2++ = tqGray(*(uint*)p);
+ p += 4;
+ }
+ }
+#endif
+ }
+ }
+
+ int err;
+ p = dst->scanLine( y );
+ memset( p, 0, bmwidth );
+ b1 = line1;
+ b2 = line2;
+ int bit = 7;
+ for ( x=1; x<=w; x++ ) {
+ if ( *b1 < 128 ) { // black pixel
+ err = *b1++;
+ *p |= 1 << bit;
+ } else { // white pixel
+ err = *b1++ - 255;
+ }
+ if ( bit == 0 ) {
+ p++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ if ( x < w )
+ *b1 += (err*7)>>4; // spread error to right pixel
+ if ( not_last_line ) {
+ b2[0] += (err*5)>>4; // pixel below
+ if ( x > 1 )
+ b2[-1] += (err*3)>>4; // pixel below left
+ if ( x < w )
+ b2[1] += err>>4; // pixel below right
+ }
+ b2++;
+ }
+ }
+ delete [] line1;
+ delete [] line2;
+ } break;
+ case Ordered: {
+ static uint bm[16][16];
+ static int init=0;
+ if (!init) {
+ // Build a Bayer Matrix for dithering
+
+ init = 1;
+ int n, i, j;
+
+ bm[0][0]=0;
+
+ for (n=1; n<16; n*=2) {
+ for (i=0; i<n; i++) {
+ for (j=0; j<n; j++) {
+ bm[i][j]*=4;
+ bm[i+n][j]=bm[i][j]+2;
+ bm[i][j+n]=bm[i][j]+3;
+ bm[i+n][j+n]=bm[i][j]+1;
+ }
+ }
+ }
+
+ // Force black to black
+ bm[0][0]=1;
+ }
+
+ dst->fill( 0 );
+ uchar** mline = dst->jumpTable();
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ if ( d == 32 ) {
+ uint** line = (uint**)src->jumpTable();
+ for ( int i=0; i<h; i++ ) {
+ uint *p = line[i];
+ uint *end = p + w;
+ uchar *m = mline[i];
+ int bit = 7;
+ int j = 0;
+ if ( fromalpha ) {
+ while ( p < end ) {
+ if ( (*p++ >> 24) >= bm[j++&15][i&15] )
+ *m |= 1 << bit;
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ } else {
+ while ( p < end ) {
+ if ( (uint)tqGray(*p++) < bm[j++&15][i&15] )
+ *m |= 1 << bit;
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ }
+ } else
+#endif // TQT_NO_IMAGE_TRUECOLOR
+ /* ( d == 8 ) */ {
+ uchar** line = src->jumpTable();
+ for ( int i=0; i<h; i++ ) {
+ uchar *p = line[i];
+ uchar *end = p + w;
+ uchar *m = mline[i];
+ int bit = 7;
+ int j = 0;
+ while ( p < end ) {
+ if ( (uint)gray[*p++] < bm[j++&15][i&15] )
+ *m |= 1 << bit;
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ }
+ } break;
+ default: { // Threshold:
+ dst->fill( 0 );
+ uchar** mline = dst->jumpTable();
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ if ( d == 32 ) {
+ uint** line = (uint**)src->jumpTable();
+ for ( int i=0; i<h; i++ ) {
+ uint *p = line[i];
+ uint *end = p + w;
+ uchar *m = mline[i];
+ int bit = 7;
+ if ( fromalpha ) {
+ while ( p < end ) {
+ if ( (*p++ >> 24) >= 128 )
+ *m |= 1 << bit; // Set mask "on"
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ } else {
+ while ( p < end ) {
+ if ( tqGray(*p++) < 128 )
+ *m |= 1 << bit; // Set pixel "black"
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ }
+ } else
+#endif //TQT_NO_IMAGE_TRUECOLOR
+ if ( d == 8 ) {
+ uchar** line = src->jumpTable();
+ for ( int i=0; i<h; i++ ) {
+ uchar *p = line[i];
+ uchar *end = p + w;
+ uchar *m = mline[i];
+ int bit = 7;
+ while ( p < end ) {
+ if ( gray[*p++] < 128 )
+ *m |= 1 << bit; // Set mask "on"/ pixel "black"
+ if ( bit == 0 ) {
+ m++;
+ bit = 7;
+ } else {
+ bit--;
+ }
+ }
+ }
+ }
+ }
+ }
+ return TRUE;
+}
+#endif
+
+#ifndef TQT_NO_IMAGE_16_BIT
+//###### Endianness issues!
+static inline bool is16BitGray( ushort c )
+{
+ int r=(c & 0xf800) >> 11;
+ int g=(c & 0x07e0) >> 6; //green/2
+ int b=(c & 0x001f);
+ return r == g && g == b;
+}
+
+
+static bool convert_16_to_32( const TQImage *src, TQImage *dst )
+{
+ if ( !dst->create(src->width(), src->height(), 32) )
+ return FALSE; // create failed
+ dst->setAlphaBuffer( src->hasAlphaBuffer() );
+ for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
+ uint *p = (uint *)dst->scanLine(y);
+ ushort *s = (ushort*)src->scanLine(y);
+ uint *end = p + dst->width();
+ while ( p < end )
+ *p++ = qt_conv16ToRgb( *s++ );
+ }
+ return TRUE;
+}
+
+
+static bool convert_32_to_16( const TQImage *src, TQImage *dst )
+{
+ if ( !dst->create(src->width(), src->height(), 16) )
+ return FALSE; // create failed
+ dst->setAlphaBuffer( src->hasAlphaBuffer() );
+ for ( int y=0; y<dst->height(); y++ ) { // for each scan line...
+ ushort *p = (ushort *)dst->scanLine(y);
+ uint *s = (uint*)src->scanLine(y);
+ ushort *end = p + dst->width();
+ while ( p < end )
+ *p++ = qt_convRgbTo16( *s++ );
+ }
+ return TRUE;
+}
+
+
+#endif
+
+/*!
+ Converts the depth (bpp) of the image to \a depth and returns the
+ converted image. The original image is not changed.
+
+ The \a depth argument must be 1, 8, 16 (TQt/Embedded only) or 32.
+
+ Returns \c *this if \a depth is equal to the image depth, or a
+ \link isNull() null\endlink image if this image cannot be
+ converted.
+
+ If the image needs to be modified to fit in a lower-resolution
+ result (e.g. converting from 32-bit to 8-bit), use the \a
+ conversion_flags to specify how you'd prefer this to happen.
+
+ \sa TQt::ImageConversionFlags depth() isNull()
+*/
+
+TQImage TQImage::convertDepth( int depth, int conversion_flags ) const
+{
+ TQImage image;
+ if ( data->d == depth )
+ image = *this; // no conversion
+#ifndef TQT_NO_IMAGE_DITHER_TO_1
+ else if ( (data->d == 8 || data->d == 32) && depth == 1 ) // dither
+ dither_to_1( this, &image, conversion_flags, FALSE );
+#endif
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ else if ( data->d == 32 && depth == 8 ) // 32 -> 8
+ convert_32_to_8( this, &image, conversion_flags );
+ else if ( data->d == 8 && depth == 32 ) // 8 -> 32
+ convert_8_to_32( this, &image );
+#endif
+ else if ( data->d == 1 && depth == 8 ) // 1 -> 8
+ convert_1_to_8( this, &image );
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ else if ( data->d == 1 && depth == 32 ) // 1 -> 32
+ convert_1_to_32( this, &image );
+#endif
+#ifndef TQT_NO_IMAGE_16_BIT
+ else if ( data->d == 16 && depth != 16 ) {
+ TQImage tmp;
+ convert_16_to_32( this, &tmp );
+ image = tmp.convertDepth( depth, conversion_flags );
+ } else if ( data->d != 16 && depth == 16 ) {
+ TQImage tmp = convertDepth( 32, conversion_flags );
+ convert_32_to_16( &tmp, &image );
+ }
+#endif
+ else {
+#if defined(QT_CHECK_RANGE)
+ if ( isNull() )
+ tqWarning( "TQImage::convertDepth: Image is a null image" );
+ else
+ tqWarning( "TQImage::convertDepth: Depth %d not supported", depth );
+#endif
+ }
+ return image;
+}
+
+/*!
+ \overload
+*/
+
+TQImage TQImage::convertDepth( int depth ) const
+{
+ return convertDepth( depth, 0 );
+}
+
+/*!
+ Returns TRUE if ( \a x, \a y ) is a valid coordinate in the image;
+ otherwise returns FALSE.
+
+ \sa width() height() pixelIndex()
+*/
+
+bool TQImage::valid( int x, int y ) const
+{
+ return x >= 0 && x < width()
+ && y >= 0 && y < height();
+}
+
+/*!
+ Returns the pixel index at the given coordinates.
+
+ If (\a x, \a y) is not \link valid() valid\endlink, or if the
+ image is not a paletted image (depth() \> 8), the results are
+ undefined.
+
+ \sa valid() depth()
+*/
+
+int TQImage::pixelIndex( int x, int y ) const
+{
+#if defined(QT_CHECK_RANGE)
+ if ( x < 0 || x >= width() ) {
+ tqWarning( "TQImage::pixel: x=%d out of range", x );
+ return -12345;
+ }
+#endif
+ uchar * s = scanLine( y );
+ switch( depth() ) {
+ case 1:
+ if ( bitOrder() == TQImage::LittleEndian )
+ return (*(s + (x >> 3)) >> (x & 7)) & 1;
+ else
+ return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;
+ case 8:
+ return (int)s[x];
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+#ifndef TQT_NO_IMAGE_16_BIT
+ case 16:
+#endif
+ case 32:
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::pixelIndex: Not applicable for %d-bpp images "
+ "(no palette)", depth() );
+#endif
+ return 0;
+#endif //TQT_NO_IMAGE_TRUECOLOR
+ }
+ return 0;
+}
+
+
+/*!
+ Returns the color of the pixel at the coordinates (\a x, \a y).
+
+ If (\a x, \a y) is not \link valid() on the image\endlink, the
+ results are undefined.
+
+ \sa setPixel() tqRed() tqGreen() tqBlue() valid()
+*/
+
+TQRgb TQImage::pixel( int x, int y ) const
+{
+#if defined(QT_CHECK_RANGE)
+ if ( x < 0 || x >= width() ) {
+ tqWarning( "TQImage::pixel: x=%d out of range", x );
+ return 12345;
+ }
+#endif
+ uchar * s = scanLine( y );
+ switch( depth() ) {
+ case 1:
+ if ( bitOrder() == TQImage::LittleEndian )
+ return color( (*(s + (x >> 3)) >> (x & 7)) & 1 );
+ else
+ return color( (*(s + (x >> 3)) >> (7- (x & 7))) & 1 );
+ case 8:
+ return color( (int)s[x] );
+#ifndef TQT_NO_IMAGE_16_BIT
+ case 16:
+ return qt_conv16ToRgb(((ushort*)s)[x]);
+#endif
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ case 32:
+ return ((TQRgb*)s)[x];
+#endif
+ default:
+ return 100367;
+ }
+}
+
+
+/*!
+ Sets the pixel index or color at the coordinates (\a x, \a y) to
+ \a index_or_rgb.
+
+ If (\a x, \a y) is not \link valid() valid\endlink, the result is
+ undefined.
+
+ If the image is a paletted image (depth() \<= 8) and \a
+ index_or_rgb \>= numColors(), the result is undefined.
+
+ \sa pixelIndex() pixel() tqRgb() tqRgba() valid()
+*/
+
+void TQImage::setPixel( int x, int y, uint index_or_rgb )
+{
+ if ( x < 0 || x >= width() ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::setPixel: x=%d out of range", x );
+#endif
+ return;
+ }
+ if ( depth() == 1 ) {
+ uchar * s = scanLine( y );
+ if ( index_or_rgb > 1) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::setPixel: index=%d out of range",
+ index_or_rgb );
+#endif
+ } else if ( bitOrder() == TQImage::LittleEndian ) {
+ if (index_or_rgb==0)
+ *(s + (x >> 3)) &= ~(1 << (x & 7));
+ else
+ *(s + (x >> 3)) |= (1 << (x & 7));
+ } else {
+ if (index_or_rgb==0)
+ *(s + (x >> 3)) &= ~(1 << (7-(x & 7)));
+ else
+ *(s + (x >> 3)) |= (1 << (7-(x & 7)));
+ }
+ } else if ( depth() == 8 ) {
+ if (index_or_rgb > (uint)numColors()) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::setPixel: index=%d out of range",
+ index_or_rgb );
+#endif
+ return;
+ }
+ uchar * s = scanLine( y );
+ s[x] = index_or_rgb;
+#ifndef TQT_NO_IMAGE_16_BIT
+ } else if ( depth() == 16 ) {
+ ushort * s = (ushort*)scanLine( y );
+ s[x] = qt_convRgbTo16(index_or_rgb);
+#endif
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ } else if ( depth() == 32 ) {
+ TQRgb * s = (TQRgb*)scanLine( y );
+ s[x] = index_or_rgb;
+#endif
+ }
+}
+
+
+/*!
+ Converts the bit order of the image to \a bitOrder and returns the
+ converted image. The original image is not changed.
+
+ Returns \c *this if the \a bitOrder is equal to the image bit
+ order, or a \link isNull() null\endlink image if this image cannot
+ be converted.
+
+ \sa bitOrder() systemBitOrder() isNull()
+*/
+
+TQImage TQImage::convertBitOrder( Endian bitOrder ) const
+{
+ if ( isNull() || data->d != 1 || // invalid argument(s)
+ !(bitOrder == BigEndian || bitOrder == LittleEndian) ) {
+ TQImage nullImage;
+ return nullImage;
+ }
+ if ( data->bitordr == bitOrder ) // nothing to do
+ return copy();
+
+ TQImage image( data->w, data->h, 1, data->ncols, bitOrder );
+
+ int bpl = (width() + 7) / 8;
+ for ( int y = 0; y < data->h; y++ ) {
+ uchar *p = jumpTable()[y];
+ uchar *end = p + bpl;
+ uchar *b = image.jumpTable()[y];
+ while ( p < end )
+ *b++ = bitflip[*p++];
+ }
+ memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
+ return image;
+}
+
+// ### Candidate (renamed) for ntqcolor.h
+static
+bool isGray(TQRgb c)
+{
+ return tqRed(c) == tqGreen(c)
+ && tqRed(c) == tqBlue(c);
+}
+
+/*!
+ Returns TRUE if all the colors in the image are shades of gray
+ (i.e. their red, green and blue components are equal); otherwise
+ returns FALSE.
+
+ This function is slow for large 16-bit (TQt/Embedded only) and 32-bit images.
+
+ \sa isGrayscale()
+*/
+bool TQImage::allGray() const
+{
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ if (depth()==32) {
+ int p = width()*height();
+ TQRgb* b = (TQRgb*)bits();
+ while (p--)
+ if (!isGray(*b++))
+ return FALSE;
+#ifndef TQT_NO_IMAGE_16_BIT
+ } else if (depth()==16) {
+ int p = width()*height();
+ ushort* b = (ushort*)bits();
+ while (p--)
+ if (!is16BitGray(*b++))
+ return FALSE;
+#endif
+ } else
+#endif //TQT_NO_IMAGE_TRUECOLOR
+ {
+ if (!data->ctbl) return TRUE;
+ for (int i=0; i<numColors(); i++)
+ if (!isGray(data->ctbl[i]))
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/*!
+ For 16-bit (TQt/Embedded only) and 32-bit images, this function is
+ equivalent to allGray().
+
+ For 8-bpp images, this function returns TRUE if color(i) is
+ TQRgb(i,i,i) for all indices of the color table; otherwise returns
+ FALSE.
+
+ \sa allGray() depth()
+*/
+bool TQImage::isGrayscale() const
+{
+ switch (depth()) {
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ case 32:
+#ifndef TQT_NO_IMAGE_16_BIT
+ case 16:
+#endif
+ return allGray();
+#endif //TQT_NO_IMAGE_TRUECOLOR
+ case 8: {
+ for (int i=0; i<numColors(); i++)
+ if (data->ctbl[i] != tqRgb(i,i,i))
+ return FALSE;
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+#ifndef TQT_NO_IMAGE_SMOOTHSCALE
+static
+void pnmscale(const TQImage& src, TQImage& dst)
+{
+ TQRgb* xelrow = 0;
+ TQRgb* tempxelrow = 0;
+ TQRgb* xP;
+ TQRgb* nxP;
+ int rows, cols, rowsread, newrows, newcols;
+ int row, col, needtoreadrow;
+ const uchar maxval = 255;
+ double xscale, yscale;
+ long sxscale, syscale;
+ long fracrowtofill, fracrowleft;
+ long* as;
+ long* rs;
+ long* gs;
+ long* bs;
+ int rowswritten = 0;
+
+ cols = src.width();
+ rows = src.height();
+ newcols = dst.width();
+ newrows = dst.height();
+
+ long SCALE;
+ long HALFSCALE;
+
+ if (cols > 4096)
+ {
+ SCALE = 4096;
+ HALFSCALE = 2048;
+ }
+ else
+ {
+ int fac = 4096;
+
+ while (cols * fac > 4096)
+ {
+ fac /= 2;
+ }
+
+ SCALE = fac * cols;
+ HALFSCALE = fac * cols / 2;
+ }
+
+ xscale = (double) newcols / (double) cols;
+ yscale = (double) newrows / (double) rows;
+
+ sxscale = (long)(xscale * SCALE);
+ syscale = (long)(yscale * SCALE);
+
+ if ( newrows != rows ) /* shortcut Y scaling if possible */
+ tempxelrow = new TQRgb[cols];
+
+ if ( src.hasAlphaBuffer() ) {
+ dst.setAlphaBuffer(TRUE);
+ as = new long[cols];
+ for ( col = 0; col < cols; ++col )
+ as[col] = HALFSCALE;
+ } else {
+ as = 0;
+ }
+ rs = new long[cols];
+ gs = new long[cols];
+ bs = new long[cols];
+ rowsread = 0;
+ fracrowleft = syscale;
+ needtoreadrow = 1;
+ for ( col = 0; col < cols; ++col )
+ rs[col] = gs[col] = bs[col] = HALFSCALE;
+ fracrowtofill = SCALE;
+
+ for ( row = 0; row < newrows; ++row ) {
+ /* First scale Y from xelrow into tempxelrow. */
+ if ( newrows == rows ) {
+ /* shortcut Y scaling if possible */
+ tempxelrow = xelrow = (TQRgb*)src.scanLine(rowsread++);
+ } else {
+ while ( fracrowleft < fracrowtofill ) {
+ if ( needtoreadrow && rowsread < rows )
+ xelrow = (TQRgb*)src.scanLine(rowsread++);
+ for ( col = 0, xP = xelrow; col < cols; ++col, ++xP ) {
+ if (as) {
+ as[col] += fracrowleft * tqAlpha( *xP );
+ rs[col] += fracrowleft * tqRed( *xP ) * tqAlpha( *xP ) / 255;
+ gs[col] += fracrowleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
+ bs[col] += fracrowleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
+ } else {
+ rs[col] += fracrowleft * tqRed( *xP );
+ gs[col] += fracrowleft * tqGreen( *xP );
+ bs[col] += fracrowleft * tqBlue( *xP );
+ }
+ }
+ fracrowtofill -= fracrowleft;
+ fracrowleft = syscale;
+ needtoreadrow = 1;
+ }
+ /* Now fracrowleft is >= fracrowtofill, so we can produce a row. */
+ if ( needtoreadrow && rowsread < rows ) {
+ xelrow = (TQRgb*)src.scanLine(rowsread++);
+ needtoreadrow = 0;
+ }
+ long a=0;
+ for ( col = 0, xP = xelrow, nxP = tempxelrow;
+ col < cols; ++col, ++xP, ++nxP )
+ {
+ long r, g, b;
+
+ if ( as ) {
+ r = rs[col] + fracrowtofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
+ g = gs[col] + fracrowtofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
+ b = bs[col] + fracrowtofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
+ a = as[col] + fracrowtofill * tqAlpha( *xP );
+ if ( a ) {
+ r = r * 255 / a * SCALE;
+ g = g * 255 / a * SCALE;
+ b = b * 255 / a * SCALE;
+ }
+ } else {
+ r = rs[col] + fracrowtofill * tqRed( *xP );
+ g = gs[col] + fracrowtofill * tqGreen( *xP );
+ b = bs[col] + fracrowtofill * tqBlue( *xP );
+ }
+ r /= SCALE;
+ if ( r > maxval ) r = maxval;
+ g /= SCALE;
+ if ( g > maxval ) g = maxval;
+ b /= SCALE;
+ if ( b > maxval ) b = maxval;
+ if ( as ) {
+ a /= SCALE;
+ if ( a > maxval ) a = maxval;
+ *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
+ as[col] = HALFSCALE;
+ } else {
+ *nxP = tqRgb( (int)r, (int)g, (int)b );
+ }
+ rs[col] = gs[col] = bs[col] = HALFSCALE;
+ }
+ fracrowleft -= fracrowtofill;
+ if ( fracrowleft == 0 ) {
+ fracrowleft = syscale;
+ needtoreadrow = 1;
+ }
+ fracrowtofill = SCALE;
+ }
+
+ /* Now scale X from tempxelrow into dst and write it out. */
+ if ( newcols == cols ) {
+ /* shortcut X scaling if possible */
+ memcpy(dst.scanLine(rowswritten++), tempxelrow, newcols*4);
+ } else {
+ long a, r, g, b;
+ long fraccoltofill, fraccolleft = 0;
+ int needcol;
+
+ nxP = (TQRgb*)dst.scanLine(rowswritten++);
+ fraccoltofill = SCALE;
+ a = r = g = b = HALFSCALE;
+ needcol = 0;
+ for ( col = 0, xP = tempxelrow; col < cols; ++col, ++xP ) {
+ fraccolleft = sxscale;
+ while ( fraccolleft >= fraccoltofill ) {
+ if ( needcol ) {
+ ++nxP;
+ a = r = g = b = HALFSCALE;
+ }
+ if ( as ) {
+ r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
+ g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
+ b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
+ a += fraccoltofill * tqAlpha( *xP );
+ if ( a ) {
+ r = r * 255 / a * SCALE;
+ g = g * 255 / a * SCALE;
+ b = b * 255 / a * SCALE;
+ }
+ } else {
+ r += fraccoltofill * tqRed( *xP );
+ g += fraccoltofill * tqGreen( *xP );
+ b += fraccoltofill * tqBlue( *xP );
+ }
+ r /= SCALE;
+ if ( r > maxval ) r = maxval;
+ g /= SCALE;
+ if ( g > maxval ) g = maxval;
+ b /= SCALE;
+ if ( b > maxval ) b = maxval;
+ if (as) {
+ a /= SCALE;
+ if ( a > maxval ) a = maxval;
+ *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
+ } else {
+ *nxP = tqRgb( (int)r, (int)g, (int)b );
+ }
+ fraccolleft -= fraccoltofill;
+ fraccoltofill = SCALE;
+ needcol = 1;
+ }
+ if ( fraccolleft > 0 ) {
+ if ( needcol ) {
+ ++nxP;
+ a = r = g = b = HALFSCALE;
+ needcol = 0;
+ }
+ if (as) {
+ a += fraccolleft * tqAlpha( *xP );
+ r += fraccolleft * tqRed( *xP ) * tqAlpha( *xP ) / 255;
+ g += fraccolleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
+ b += fraccolleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
+ } else {
+ r += fraccolleft * tqRed( *xP );
+ g += fraccolleft * tqGreen( *xP );
+ b += fraccolleft * tqBlue( *xP );
+ }
+ fraccoltofill -= fraccolleft;
+ }
+ }
+ if ( fraccoltofill > 0 ) {
+ --xP;
+ if (as) {
+ a += fraccolleft * tqAlpha( *xP );
+ r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255;
+ g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255;
+ b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255;
+ if ( a ) {
+ r = r * 255 / a * SCALE;
+ g = g * 255 / a * SCALE;
+ b = b * 255 / a * SCALE;
+ }
+ } else {
+ r += fraccoltofill * tqRed( *xP );
+ g += fraccoltofill * tqGreen( *xP );
+ b += fraccoltofill * tqBlue( *xP );
+ }
+ }
+ if ( ! needcol ) {
+ r /= SCALE;
+ if ( r > maxval ) r = maxval;
+ g /= SCALE;
+ if ( g > maxval ) g = maxval;
+ b /= SCALE;
+ if ( b > maxval ) b = maxval;
+ if (as) {
+ a /= SCALE;
+ if ( a > maxval ) a = maxval;
+ *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a );
+ } else {
+ *nxP = tqRgb( (int)r, (int)g, (int)b );
+ }
+ }
+ }
+ }
+
+ if ( newrows != rows && tempxelrow )// Robust, tempxelrow might be 0 1 day
+ delete [] tempxelrow;
+ if ( as ) // Avoid purify complaint
+ delete [] as;
+ if ( rs ) // Robust, rs might be 0 one day
+ delete [] rs;
+ if ( gs ) // Robust, gs might be 0 one day
+ delete [] gs;
+ if ( bs ) // Robust, bs might be 0 one day
+ delete [] bs;
+}
+#endif
+
+/*!
+ \enum TQImage::ScaleMode
+
+ The functions scale() and smoothScale() use different modes for
+ scaling the image. The purpose of these modes is to retain the
+ ratio of the image if this is required.
+
+ \img scaling.png
+
+ \value ScaleFree The image is scaled freely: the resulting image
+ fits exactly into the specified size; the ratio will not
+ necessarily be preserved.
+ \value ScaleMin The ratio of the image is preserved and the
+ resulting image is guaranteed to fit into the specified size
+ (it is as large as possible within these constraints) - the
+ image might be smaller than the requested size.
+ \value ScaleMax The ratio of the image is preserved and the
+ resulting image fills the whole specified rectangle (it is as
+ small as possible within these constraints) - the image might
+ be larger than the requested size.
+*/
+
+#ifndef TQT_NO_IMAGE_SMOOTHSCALE
+/*!
+ Returns a smoothly scaled copy of the image. The returned image
+ has a size of width \a w by height \a h pixels if \a mode is \c
+ ScaleFree. The modes \c ScaleMin and \c ScaleMax may be used to
+ preserve the ratio of the image: if \a mode is \c ScaleMin, the
+ returned image is guaranteed to fit into the rectangle specified
+ by \a w and \a h (it is as large as possible within the
+ constraints); if \a mode is \c ScaleMax, the returned image fits
+ at least into the specified rectangle (it is a small as possible
+ within the constraints).
+
+ For 32-bpp images and 1-bpp/8-bpp color images the result will be
+ 32-bpp, whereas \link allGray() all-gray \endlink images
+ (including black-and-white 1-bpp) will produce 8-bit \link
+ isGrayscale() grayscale \endlink images with the palette spanning
+ 256 grays from black to white.
+
+ This function uses code based on pnmscale.c by Jef Poskanzer.
+
+ pnmscale.c - read a portable anymap and scale it
+
+ \legalese
+
+ Copyright (C) 1989, 1991 by Jef Poskanzer.
+
+ Permission to use, copy, modify, and distribute this software and
+ its documentation for any purpose and without fee is hereby
+ granted, provided that the above copyright notice appear in all
+ copies and that both that copyright notice and this permission
+ notice appear in supporting documentation. This software is
+ provided "as is" without express or implied warranty.
+
+ \sa scale() mirror()
+*/
+TQImage TQImage::smoothScale( int w, int h, ScaleMode mode ) const
+{
+ return smoothScale( TQSize( w, h ), mode );
+}
+#endif
+
+#ifndef TQT_NO_IMAGE_SMOOTHSCALE
+/*!
+ \overload
+
+ The requested size of the image is \a s.
+*/
+TQImage TQImage::smoothScale( const TQSize& s, ScaleMode mode ) const
+{
+ if ( isNull() ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::smoothScale: Image is a null image" );
+#endif
+ return copy();
+ }
+
+ TQSize newSize = size();
+ newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0
+ if ( newSize == size() )
+ return copy();
+
+ if ( depth() == 32 ) {
+ TQImage img( newSize, 32 );
+ // 32-bpp to 32-bpp
+ pnmscale( *this, img );
+ return img;
+ } else if ( depth() != 16 && allGray() && !hasAlphaBuffer() ) {
+ // Inefficient
+ return convertDepth(32).smoothScale(newSize, mode).convertDepth(8);
+ } else {
+ // Inefficient
+ return convertDepth(32).smoothScale(newSize, mode);
+ }
+}
+#endif
+
+/*!
+ Returns a copy of the image scaled to a rectangle of width \a w
+ and height \a h according to the ScaleMode \a mode.
+
+ \list
+ \i If \a mode is \c ScaleFree, the image is scaled to (\a w,
+ \a h).
+ \i If \a mode is \c ScaleMin, the image is scaled to a rectangle
+ as large as possible inside (\a w, \a h), preserving the aspect
+ ratio.
+ \i If \a mode is \c ScaleMax, the image is scaled to a rectangle
+ as small as possible outside (\a w, \a h), preserving the aspect
+ ratio.
+ \endlist
+
+ If either the width \a w or the height \a h is 0 or negative, this
+ function returns a \link isNull() null\endlink image.
+
+ This function uses a simple, fast algorithm. If you need better
+ quality, use smoothScale() instead.
+
+ \sa scaleWidth() scaleHeight() smoothScale() xForm()
+*/
+#ifndef TQT_NO_IMAGE_TRANSFORMATION
+TQImage TQImage::scale( int w, int h, ScaleMode mode ) const
+{
+ return scale( TQSize( w, h ), mode );
+}
+#endif
+
+/*!
+ \overload
+
+ The requested size of the image is \a s.
+*/
+#ifndef TQT_NO_IMAGE_TRANSFORMATION
+TQImage TQImage::scale( const TQSize& s, ScaleMode mode ) const
+{
+ if ( isNull() ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::scale: Image is a null image" );
+#endif
+ return copy();
+ }
+ if ( s.isEmpty() )
+ return TQImage();
+
+ TQSize newSize = size();
+ newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0
+ if ( newSize == size() )
+ return copy();
+
+ TQImage img;
+ TQWMatrix wm;
+ wm.scale( (double)newSize.width() / width(), (double)newSize.height() / height() );
+ img = xForm( wm );
+ // ### I should test and resize the image if it has not the right size
+// if ( img.width() != newSize.width() || img.height() != newSize.height() )
+// img.resize( newSize.width(), newSize.height() );
+ return img;
+}
+#endif
+
+/*!
+ Returns a scaled copy of the image. The returned image has a width
+ of \a w pixels. This function automatically calculates the height
+ of the image so that the ratio of the image is preserved.
+
+ If \a w is 0 or negative a \link isNull() null\endlink image is
+ returned.
+
+ \sa scale() scaleHeight() smoothScale() xForm()
+*/
+#ifndef TQT_NO_IMAGE_TRANSFORMATION
+TQImage TQImage::scaleWidth( int w ) const
+{
+ if ( isNull() ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::scaleWidth: Image is a null image" );
+#endif
+ return copy();
+ }
+ if ( w <= 0 )
+ return TQImage();
+
+ TQWMatrix wm;
+ double factor = (double) w / width();
+ wm.scale( factor, factor );
+ return xForm( wm );
+}
+#endif
+
+/*!
+ Returns a scaled copy of the image. The returned image has a
+ height of \a h pixels. This function automatically calculates the
+ width of the image so that the ratio of the image is preserved.
+
+ If \a h is 0 or negative a \link isNull() null\endlink image is
+ returned.
+
+ \sa scale() scaleWidth() smoothScale() xForm()
+*/
+#ifndef TQT_NO_IMAGE_TRANSFORMATION
+TQImage TQImage::scaleHeight( int h ) const
+{
+ if ( isNull() ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage::scaleHeight: Image is a null image" );
+#endif
+ return copy();
+ }
+ if ( h <= 0 )
+ return TQImage();
+
+ TQWMatrix wm;
+ double factor = (double) h / height();
+ wm.scale( factor, factor );
+ return xForm( wm );
+}
+#endif
+
+
+/*!
+ Returns a copy of the image that is transformed using the
+ transformation matrix, \a matrix.
+
+ The transformation \a matrix is internally adjusted to compensate
+ for unwanted translation, i.e. xForm() returns the smallest image
+ that contains all the transformed points of the original image.
+
+ \sa scale() TQPixmap::xForm() TQPixmap::trueMatrix() TQWMatrix
+*/
+#ifndef TQT_NO_IMAGE_TRANSFORMATION
+TQImage TQImage::xForm( const TQWMatrix &matrix ) const
+{
+ // This function uses the same algorithm as (and steals quite some
+ // code from) TQPixmap::xForm().
+
+ if ( isNull() )
+ return copy();
+
+ if ( depth() == 16 ) {
+ // inefficient
+ return convertDepth( 32 ).xForm( matrix );
+ }
+
+ // source image data
+ int ws = width();
+ int hs = height();
+ int sbpl = bytesPerLine();
+ uchar *sptr = bits();
+
+ // target image data
+ int wd;
+ int hd;
+
+ int bpp = depth();
+
+ // compute size of target image
+ TQWMatrix mat = TQPixmap::trueMatrix( matrix, ws, hs );
+ if ( mat.m12() == 0.0F && mat.m21() == 0.0F ) {
+ if ( mat.m11() == 1.0F && mat.m22() == 1.0F ) // identity matrix
+ return copy();
+ hd = tqRound( mat.m22() * hs );
+ wd = tqRound( mat.m11() * ws );
+ hd = TQABS( hd );
+ wd = TQABS( wd );
+ } else { // rotation or shearing
+ TQPointArray a( TQRect(0, 0, ws, hs) );
+ a = mat.map( a );
+ TQRect r = a.boundingRect().normalize();
+ wd = r.width();
+ hd = r.height();
+ }
+
+ bool invertible;
+ mat = mat.invert( &invertible ); // invert matrix
+ if ( hd == 0 || wd == 0 || !invertible ) // error, return null image
+ return TQImage();
+
+ // create target image (some of the code is from TQImage::copy())
+ TQImage dImage( wd, hd, depth(), numColors(), bitOrder() );
+
+ // If the image allocation failed, we need to gracefully abort.
+ if (dImage.isNull())
+ return dImage;
+
+ memcpy( dImage.colorTable(), colorTable(), numColors()*sizeof(TQRgb) );
+ dImage.setAlphaBuffer( hasAlphaBuffer() );
+ dImage.data->dpmx = dotsPerMeterX();
+ dImage.data->dpmy = dotsPerMeterY();
+
+ switch ( bpp ) {
+ // initizialize the data
+ case 1:
+ memset( dImage.bits(), 0, dImage.numBytes() );
+ break;
+ case 8:
+ if ( dImage.data->ncols < 256 ) {
+ // colors are left in the color table, so pick that one as transparent
+ dImage.setNumColors( dImage.data->ncols+1 );
+ dImage.setColor( dImage.data->ncols-1, 0x00 );
+ memset( dImage.bits(), dImage.data->ncols-1, dImage.numBytes() );
+ } else {
+ memset( dImage.bits(), 0, dImage.numBytes() );
+ }
+ break;
+ case 16:
+ memset( dImage.bits(), 0xff, dImage.numBytes() );
+ break;
+ case 32:
+ memset( dImage.bits(), 0x00, dImage.numBytes() );
+ break;
+ }
+
+ int type;
+ if ( bitOrder() == BigEndian )
+ type = QT_XFORM_TYPE_MSBFIRST;
+ else
+ type = QT_XFORM_TYPE_LSBFIRST;
+ int dbpl = dImage.bytesPerLine();
+ qt_xForm_helper( mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl,
+ ws, hs );
+ return dImage;
+}
+#endif
+
+/*!
+ Builds and returns a 1-bpp mask from the alpha buffer in this
+ image. Returns a \link isNull() null\endlink image if \link
+ setAlphaBuffer() alpha buffer mode\endlink is disabled.
+
+ See TQPixmap::convertFromImage() for a description of the \a
+ conversion_flags argument.
+
+ The returned image has little-endian bit order, which you can
+ convert to big-endianness using convertBitOrder().
+
+ \sa createHeuristicMask() hasAlphaBuffer() setAlphaBuffer()
+*/
+#ifndef TQT_NO_IMAGE_DITHER_TO_1
+TQImage TQImage::createAlphaMask( int conversion_flags ) const
+{
+ if ( conversion_flags == 1 ) {
+ // Old code is passing "TRUE".
+ conversion_flags = TQt::DiffuseAlphaDither;
+ }
+
+ if ( isNull() || !hasAlphaBuffer() )
+ return TQImage();
+
+ if ( depth() == 1 ) {
+ // A monochrome pixmap, with alpha channels on those two colors.
+ // Pretty unlikely, so use less efficient solution.
+ return convertDepth(8, conversion_flags)
+ .createAlphaMask( conversion_flags );
+ }
+
+ TQImage mask1;
+ dither_to_1( this, &mask1, conversion_flags, TRUE );
+ return mask1;
+}
+#endif
+
+#ifndef TQT_NO_IMAGE_HEURISTIC_MASK
+/*!
+ Creates and returns a 1-bpp heuristic mask for this image. It
+ works by selecting a color from one of the corners, then chipping
+ away pixels of that color starting at all the edges.
+
+ The four corners vote for which color is to be masked away. In
+ case of a draw (this generally means that this function is not
+ applicable to the image), the result is arbitrary.
+
+ The returned image has little-endian bit order, which you can
+ convert to big-endianness using convertBitOrder().
+
+ If \a clipTight is TRUE the mask is just large enough to cover the
+ pixels; otherwise, the mask is larger than the data pixels.
+
+ This function disregards the \link hasAlphaBuffer() alpha buffer
+ \endlink.
+
+ \sa createAlphaMask()
+*/
+
+TQImage TQImage::createHeuristicMask( bool clipTight ) const
+{
+ if ( isNull() ) {
+ TQImage nullImage;
+ return nullImage;
+ }
+ if ( depth() != 32 ) {
+ TQImage img32 = convertDepth(32);
+ return img32.createHeuristicMask(clipTight);
+ }
+
+#define PIX(x,y) (*((TQRgb*)scanLine(y)+x) & 0x00ffffff)
+
+ int w = width();
+ int h = height();
+ TQImage m(w, h, 1, 2, TQImage::LittleEndian);
+ m.setColor( 0, 0xffffff );
+ m.setColor( 1, 0 );
+ m.fill( 0xff );
+
+ TQRgb background = PIX(0,0);
+ if ( background != PIX(w-1,0) &&
+ background != PIX(0,h-1) &&
+ background != PIX(w-1,h-1) ) {
+ background = PIX(w-1,0);
+ if ( background != PIX(w-1,h-1) &&
+ background != PIX(0,h-1) &&
+ PIX(0,h-1) == PIX(w-1,h-1) ) {
+ background = PIX(w-1,h-1);
+ }
+ }
+
+ int x,y;
+ bool done = FALSE;
+ uchar *ypp, *ypc, *ypn;
+ while( !done ) {
+ done = TRUE;
+ ypn = m.scanLine(0);
+ ypc = 0;
+ for ( y = 0; y < h; y++ ) {
+ ypp = ypc;
+ ypc = ypn;
+ ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+ TQRgb *p = (TQRgb *)scanLine(y);
+ for ( x = 0; x < w; x++ ) {
+ // slowness here - it's possible to do six of these tests
+ // together in one go. oh well.
+ if ( ( x == 0 || y == 0 || x == w-1 || y == h-1 ||
+ !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||
+ !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||
+ !(*(ypp + (x >> 3)) & (1 << (x & 7))) ||
+ !(*(ypn + (x >> 3)) & (1 << (x & 7))) ) &&
+ ( (*(ypc + (x >> 3)) & (1 << (x & 7))) ) &&
+ ( (*p & 0x00ffffff) == background ) ) {
+ done = FALSE;
+ *(ypc + (x >> 3)) &= ~(1 << (x & 7));
+ }
+ p++;
+ }
+ }
+ }
+
+ if ( !clipTight ) {
+ ypn = m.scanLine(0);
+ ypc = 0;
+ for ( y = 0; y < h; y++ ) {
+ ypp = ypc;
+ ypc = ypn;
+ ypn = (y == h-1) ? 0 : m.scanLine(y+1);
+ TQRgb *p = (TQRgb *)scanLine(y);
+ for ( x = 0; x < w; x++ ) {
+ if ( (*p & 0x00ffffff) != background ) {
+ if ( x > 0 )
+ *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));
+ if ( x < w-1 )
+ *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));
+ if ( y > 0 )
+ *(ypp + (x >> 3)) |= (1 << (x & 7));
+ if ( y < h-1 )
+ *(ypn + (x >> 3)) |= (1 << (x & 7));
+ }
+ p++;
+ }
+ }
+ }
+
+#undef PIX
+
+ return m;
+}
+#endif //TQT_NO_IMAGE_HEURISTIC_MASK
+
+#ifndef TQT_NO_IMAGE_MIRROR
+/*
+ This code is contributed by Philipp Lang,
+ GeneriCom Software Germany (www.generi.com)
+ under the terms of the TQPL, Version 1.0
+*/
+
+/*!
+ \overload
+
+ Returns a mirror of the image, mirrored in the horizontal and/or
+ the vertical direction depending on whether \a horizontal and \a
+ vertical are set to TRUE or FALSE. The original image is not
+ changed.
+
+ \sa smoothScale()
+*/
+TQImage TQImage::mirror(bool horizontal, bool vertical) const
+{
+ int w = width();
+ int h = height();
+ if ( (w <= 1 && h <= 1) || (!horizontal && !vertical) )
+ return copy();
+
+ // Create result image, copy colormap
+ TQImage result(w, h, depth(), numColors(), bitOrder());
+ memcpy(result.colorTable(), colorTable(), numColors()*sizeof(TQRgb));
+ result.setAlphaBuffer(hasAlphaBuffer());
+
+ if (depth() == 1)
+ w = (w+7)/8;
+ int dxi = horizontal ? -1 : 1;
+ int dxs = horizontal ? w-1 : 0;
+ int dyi = vertical ? -1 : 1;
+ int dy = vertical ? h-1: 0;
+
+ // 1 bit, 8 bit
+ if (depth() == 1 || depth() == 8) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ TQ_UINT8* ssl = (TQ_UINT8*)(data->bits[sy]);
+ TQ_UINT8* dsl = (TQ_UINT8*)(result.data->bits[dy]);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+#ifndef TQT_NO_IMAGE_16_BIT
+ // 16 bit
+ else if (depth() == 16) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ TQ_UINT16* ssl = (TQ_UINT16*)(data->bits[sy]);
+ TQ_UINT16* dsl = (TQ_UINT16*)(result.data->bits[dy]);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+#endif
+ // 32 bit
+ else if (depth() == 32) {
+ for (int sy = 0; sy < h; sy++, dy += dyi) {
+ TQ_UINT32* ssl = (TQ_UINT32*)(data->bits[sy]);
+ TQ_UINT32* dsl = (TQ_UINT32*)(result.data->bits[dy]);
+ int dx = dxs;
+ for (int sx = 0; sx < w; sx++, dx += dxi)
+ dsl[dx] = ssl[sx];
+ }
+ }
+#endif
+
+ // special handling of 1 bit images for horizontal mirroring
+ if (horizontal && depth() == 1) {
+ int shift = width() % 8;
+ for (int y = h-1; y >= 0; y--) {
+ TQ_UINT8* a0 = (TQ_UINT8*)(result.data->bits[y]);
+ // Swap bytes
+ TQ_UINT8* a = a0+dxs;
+ while (a >= a0) {
+ *a = bitflip[*a];
+ a--;
+ }
+ // Shift bits if unaligned
+ if (shift != 0) {
+ a = a0+dxs;
+ TQ_UINT8 c = 0;
+ if (bitOrder() == TQImage::LittleEndian) {
+ while (a >= a0) {
+ TQ_UINT8 nc = *a << shift;
+ *a = (*a >> (8-shift)) | c;
+ --a;
+ c = nc;
+ }
+ } else {
+ while (a >= a0) {
+ TQ_UINT8 nc = *a >> shift;
+ *a = (*a << (8-shift)) | c;
+ --a;
+ c = nc;
+ }
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+/*!
+ Returns a TQImage which is a vertically mirrored copy of this
+ image. The original TQImage is not changed.
+*/
+
+TQImage TQImage::mirror() const
+{
+ return mirror(FALSE,TRUE);
+}
+#endif //TQT_NO_IMAGE_MIRROR
+
+/*!
+ Returns a TQImage in which the values of the red and blue
+ components of all pixels have been swapped, effectively converting
+ an RGB image to a BGR image. The original TQImage is not changed.
+*/
+
+TQImage TQImage::swapRGB() const
+{
+ TQImage res = copy();
+ if ( !isNull() ) {
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ if ( depth() == 32 ) {
+ for ( int i=0; i < height(); i++ ) {
+ uint *p = (uint*)scanLine( i );
+ uint *q = (uint*)res.scanLine( i );
+ uint *end = p + width();
+ while ( p < end ) {
+ *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) |
+ (*p & 0xff00ff00);
+ p++;
+ q++;
+ }
+ }
+#ifndef TQT_NO_IMAGE_16_BIT
+ } else if ( depth() == 16 ) {
+ tqWarning( "TQImage::swapRGB not implemented for 16bpp" );
+#endif
+ } else
+#endif //TQT_NO_IMAGE_TRUECOLOR
+ {
+ uint* p = (uint*)colorTable();
+ uint* q = (uint*)res.colorTable();
+ if ( p && q ) {
+ for ( int i=0; i < numColors(); i++ ) {
+ *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) |
+ (*p & 0xff00ff00);
+ p++;
+ q++;
+ }
+ }
+ }
+ }
+ return res;
+}
+
+#ifndef TQT_NO_IMAGEIO
+/*!
+ Returns a string that specifies the image format of the file \a
+ fileName, or 0 if the file cannot be read or if the format is not
+ recognized.
+
+ The TQImageIO documentation lists the guaranteed supported image
+ formats, or use TQImage::inputFormats() and TQImage::outputFormats()
+ to get lists that include the installed formats.
+
+ \sa load() save()
+*/
+
+const char* TQImage::imageFormat( const TQString &fileName )
+{
+ return TQImageIO::imageFormat( fileName );
+}
+
+/*!
+ Returns a list of image formats that are supported for image
+ input.
+
+ \sa outputFormats() inputFormatList() TQImageIO
+*/
+TQStrList TQImage::inputFormats()
+{
+ return TQImageIO::inputFormats();
+}
+#ifndef TQT_NO_STRINGLIST
+/*!
+ Returns a list of image formats that are supported for image
+ input.
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \code
+ TQStringList list = myImage.inputFormatList();
+ TQStringList::Iterator it = list.begin();
+ while( it != list.end() ) {
+ myProcessing( *it );
+ ++it;
+ }
+ \endcode
+
+ \sa outputFormatList() inputFormats() TQImageIO
+*/
+TQStringList TQImage::inputFormatList()
+{
+ return TQStringList::fromStrList(TQImageIO::inputFormats());
+}
+
+
+/*!
+ Returns a list of image formats that are supported for image
+ output.
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \code
+ TQStringList list = myImage.outputFormatList();
+ TQStringList::Iterator it = list.begin();
+ while( it != list.end() ) {
+ myProcessing( *it );
+ ++it;
+ }
+ \endcode
+
+ \sa inputFormatList() outputFormats() TQImageIO
+*/
+TQStringList TQImage::outputFormatList()
+{
+ return TQStringList::fromStrList(TQImageIO::outputFormats());
+}
+#endif //TQT_NO_STRINGLIST
+
+/*!
+ Returns a list of image formats that are supported for image
+ output.
+
+ \sa inputFormats() outputFormatList() TQImageIO
+*/
+TQStrList TQImage::outputFormats()
+{
+ return TQImageIO::outputFormats();
+}
+
+
+/*!
+ Loads an image from the file \a fileName. Returns TRUE if the
+ image was successfully loaded; otherwise returns FALSE.
+
+ If \a format is specified, the loader attempts to read the image
+ using the specified format. If \a format is not specified (which
+ is the default), the loader reads a few bytes from the header to
+ guess the file format.
+
+ The TQImageIO documentation lists the supported image formats and
+ explains how to add extra formats.
+
+ \sa loadFromData() save() imageFormat() TQPixmap::load() TQImageIO
+*/
+
+bool TQImage::load( const TQString &fileName, const char* format )
+{
+ TQImageIO io( fileName, format );
+ bool result = io.read();
+ if ( result )
+ operator=( io.image() );
+ return result;
+}
+
+/*!
+ Loads an image from the first \a len bytes of binary data in \a
+ buf. Returns TRUE if the image was successfully loaded; otherwise
+ returns FALSE.
+
+ If \a format is specified, the loader attempts to read the image
+ using the specified format. If \a format is not specified (which
+ is the default), the loader reads a few bytes from the header to
+ guess the file format.
+
+ The TQImageIO documentation lists the supported image formats and
+ explains how to add extra formats.
+
+ \sa load() save() imageFormat() TQPixmap::loadFromData() TQImageIO
+*/
+
+bool TQImage::loadFromData( const uchar *buf, uint len, const char *format )
+{
+ TQByteArray a;
+ a.setRawData( (char *)buf, len );
+ TQBuffer b( a );
+ b.open( IO_ReadOnly );
+ TQImageIO io( &b, format );
+ bool result = io.read();
+ b.close();
+ a.resetRawData( (char *)buf, len );
+ if ( result )
+ operator=( io.image() );
+ return result;
+}
+
+/*!
+ \overload
+
+ Loads an image from the TQByteArray \a buf.
+*/
+bool TQImage::loadFromData( TQByteArray buf, const char *format )
+{
+ return loadFromData( (const uchar *)(buf.data()), buf.size(), format );
+}
+
+/*!
+ Saves the image to the file \a fileName, using the image file
+ format \a format and a quality factor of \a quality. \a quality
+ must be in the range 0..100 or -1. Specify 0 to obtain small
+ compressed files, 100 for large uncompressed files, and -1 (the
+ default) to use the default settings.
+
+ Returns TRUE if the image was successfully saved; otherwise
+ returns FALSE.
+
+ \sa load() loadFromData() imageFormat() TQPixmap::save() TQImageIO
+*/
+
+bool TQImage::save( const TQString &fileName, const char* format, int quality ) const
+{
+ if ( isNull() )
+ return FALSE; // nothing to save
+ TQImageIO io( fileName, format );
+ return doImageIO( &io, quality );
+}
+
+/*!
+ \overload
+
+ This function writes a TQImage to the TQIODevice, \a device. This
+ can be used, for example, to save an image directly into a
+ TQByteArray:
+ \code
+ TQImage image;
+ TQByteArray ba;
+ TQBuffer buffer( ba );
+ buffer.open( IO_WriteOnly );
+ image.save( &buffer, "PNG" ); // writes image into ba in PNG format
+ \endcode
+*/
+
+bool TQImage::save( TQIODevice* device, const char* format, int quality ) const
+{
+ if ( isNull() )
+ return FALSE; // nothing to save
+ TQImageIO io( device, format );
+ return doImageIO( &io, quality );
+}
+
+/* \internal
+*/
+
+bool TQImage::doImageIO( TQImageIO* io, int quality ) const
+{
+ if ( !io )
+ return FALSE;
+ io->setImage( *this );
+#if defined(QT_CHECK_RANGE)
+ if ( quality > 100 || quality < -1 )
+ tqWarning( "TQPixmap::save: quality out of range [-1,100]" );
+#endif
+ if ( quality >= 0 )
+ io->setQuality( TQMIN(quality,100) );
+ return io->write();
+}
+#endif //TQT_NO_IMAGEIO
+
+/*****************************************************************************
+ TQImage stream functions
+ *****************************************************************************/
+#if !defined(TQT_NO_DATASTREAM) && !defined(TQT_NO_IMAGEIO)
+/*!
+ \relates TQImage
+
+ Writes the image \a image to the stream \a s as a PNG image, or as a
+ BMP image if the stream's version is 1.
+
+ Note that writing the stream to a file will not produce a valid image file.
+
+ \sa TQImage::save()
+ \link datastreamformat.html Format of the TQDataStream operators \endlink
+*/
+
+TQDataStream &operator<<( TQDataStream &s, const TQImage &image )
+{
+ if ( s.version() >= 5 ) {
+ if ( image.isNull() ) {
+ s << (TQ_INT32) 0; // null image marker
+ return s;
+ } else {
+ s << (TQ_INT32) 1;
+ // continue ...
+ }
+ }
+ TQImageIO io;
+ io.setIODevice( s.device() );
+ if ( s.version() == 1 )
+ io.setFormat( "BMP" );
+ else
+ io.setFormat( "PNG" );
+
+ io.setImage( image );
+ io.write();
+ return s;
+}
+
+/*!
+ \relates TQImage
+
+ Reads an image from the stream \a s and stores it in \a image.
+
+ \sa TQImage::load()
+ \link datastreamformat.html Format of the TQDataStream operators \endlink
+*/
+
+TQDataStream &operator>>( TQDataStream &s, TQImage &image )
+{
+ if ( s.version() >= 5 ) {
+ TQ_INT32 nullMarker;
+ s >> nullMarker;
+ if ( !nullMarker ) {
+ image = TQImage(); // null image
+ return s;
+ }
+ }
+ TQImageIO io( s.device(), 0 );
+ if ( io.read() )
+ image = io.image();
+ return s;
+}
+#endif
+
+/*****************************************************************************
+ Standard image io handlers (defined below)
+ *****************************************************************************/
+
+// standard image io handlers (defined below)
+#ifndef TQT_NO_IMAGEIO_BMP
+static void read_bmp_image( TQImageIO * );
+static void write_bmp_image( TQImageIO * );
+#endif
+#ifndef TQT_NO_IMAGEIO_PPM
+static void read_pbm_image( TQImageIO * );
+static void write_pbm_image( TQImageIO * );
+#endif
+#ifndef TQT_NO_IMAGEIO_XBM
+static void read_xbm_image( TQImageIO * );
+static void write_xbm_image( TQImageIO * );
+#endif
+#ifndef TQT_NO_IMAGEIO_XPM
+static void read_xpm_image( TQImageIO * );
+static void write_xpm_image( TQImageIO * );
+#endif
+
+#ifndef TQT_NO_ASYNC_IMAGE_IO
+static void read_async_image( TQImageIO * ); // Not in table of handlers
+#endif
+
+/*****************************************************************************
+ Misc. utility functions
+ *****************************************************************************/
+#if !defined(TQT_NO_IMAGEIO_XPM) || !defined(TQT_NO_IMAGEIO_XBM)
+static TQString fbname( const TQString &fileName ) // get file basename (sort of)
+{
+ TQString s = fileName;
+ if ( !s.isEmpty() ) {
+ int i;
+ if ( (i = s.findRev('/')) >= 0 )
+ s = s.mid( i );
+ if ( (i = s.findRev('\\')) >= 0 )
+ s = s.mid( i );
+ TQRegExp r( TQString::fromLatin1("[a-zA-Z][a-zA-Z0-9_]*") );
+ int p = r.search( s );
+ if ( p == -1 )
+ s.truncate( 0 );
+ else
+ s = s.mid( p, r.matchedLength() );
+ }
+ if ( s.isEmpty() )
+ s = TQString::fromLatin1( "dummy" );
+ return s;
+}
+#endif
+
+#ifndef TQT_NO_IMAGEIO_BMP
+static void swapPixel01( TQImage *image ) // 1-bpp: swap 0 and 1 pixels
+{
+ int i;
+ if ( image->depth() == 1 && image->numColors() == 2 ) {
+ uint *p = (uint *)image->bits();
+ int nbytes = image->numBytes();
+ for ( i=0; i<nbytes/4; i++ ) {
+ *p = ~*p;
+ p++;
+ }
+ uchar *p2 = (uchar *)p;
+ for ( i=0; i<(nbytes&3); i++ ) {
+ *p2 = ~*p2;
+ p2++;
+ }
+ TQRgb t = image->color(0); // swap color 0 and 1
+ image->setColor( 0, image->color(1) );
+ image->setColor( 1, t );
+ }
+}
+#endif
+
+
+/*****************************************************************************
+ TQImageIO member functions
+ *****************************************************************************/
+
+/*!
+ \class TQImageIO tqimage.h
+
+ \brief The TQImageIO class contains parameters for loading and
+ saving images.
+
+ \ingroup images
+ \ingroup graphics
+ \ingroup io
+
+ TQImageIO contains a TQIODevice object that is used for image data
+ I/O. The programmer can install new image file formats in addition
+ to those that TQt provides.
+
+ TQt currently supports the following image file formats: PNG, BMP,
+ XBM, XPM and PNM. It may also support JPEG, MNG and GIF, if
+ specially configured during compilation. The different PNM formats
+ are: PBM (P1 or P4), PGM (P2 or P5), and PPM (P3 or P6).
+
+ You don't normally need to use this class; TQPixmap::load(),
+ TQPixmap::save(), and TQImage contain sufficient functionality.
+
+ For image files that contain sequences of images, only the first
+ is read. See TQMovie for loading multiple images.
+
+ PBM, PGM, and PPM format \e output is always in the more condensed
+ raw format. PPM and PGM files with more than 256 levels of
+ intensity are scaled down when reading.
+
+ \warning If you are in a country which recognizes software patents
+ and in which Unisys holds a patent on LZW compression and/or
+ decompression and you want to use GIF, Unisys may require you to
+ license the technology. Such countries include Canada, Japan, the
+ USA, France, Germany, Italy and the UK.
+
+ GIF support may be removed completely in a future version of TQt.
+ We recommend using the PNG format.
+
+ \sa TQImage TQPixmap TQFile TQMovie
+*/
+
+#ifndef TQT_NO_IMAGEIO
+struct TQImageIOData
+{
+ const char *parameters;
+ int quality;
+ float gamma;
+};
+
+/*!
+ Constructs a TQImageIO object with all parameters set to zero.
+*/
+
+TQImageIO::TQImageIO()
+{
+ init();
+}
+
+/*!
+ Constructs a TQImageIO object with the I/O device \a ioDevice and a
+ \a format tag.
+*/
+
+TQImageIO::TQImageIO( TQIODevice *ioDevice, const char *format )
+ : frmt(format)
+{
+ init();
+ iodev = ioDevice;
+}
+
+/*!
+ Constructs a TQImageIO object with the file name \a fileName and a
+ \a format tag.
+*/
+
+TQImageIO::TQImageIO( const TQString &fileName, const char* format )
+ : frmt(format), fname(fileName)
+{
+ init();
+}
+
+/*!
+ Contains initialization common to all TQImageIO constructors.
+*/
+
+void TQImageIO::init()
+{
+ d = new TQImageIOData();
+ d->parameters = 0;
+ d->quality = -1; // default quality of the current format
+ d->gamma=0.0f;
+ iostat = 0;
+ iodev = 0;
+}
+
+/*!
+ Destroys the object and all related data.
+*/
+
+TQImageIO::~TQImageIO()
+{
+ if ( d->parameters )
+ delete [] (char*)d->parameters;
+ delete d;
+}
+
+
+/*****************************************************************************
+ TQImageIO image handler functions
+ *****************************************************************************/
+
+class TQImageHandler
+{
+public:
+ TQImageHandler( const char *f, const char *h, const TQCString& fl,
+ image_io_handler r, image_io_handler w );
+ TQCString format; // image format
+ TQRegExp header; // image header pattern
+ enum TMode { Untranslated=0, TranslateIn, TranslateInOut } text_mode;
+ image_io_handler read_image; // image read function
+ image_io_handler write_image; // image write function
+ bool obsolete; // support not "published"
+};
+
+TQImageHandler::TQImageHandler( const char *f, const char *h, const TQCString& fl,
+ image_io_handler r, image_io_handler w )
+ : format(f), header(TQString::fromLatin1(h))
+{
+ text_mode = Untranslated;
+ if ( fl.contains('t') )
+ text_mode = TranslateIn;
+ else if ( fl.contains('T') )
+ text_mode = TranslateInOut;
+ obsolete = fl.contains('O');
+ read_image = r;
+ write_image = w;
+}
+
+typedef TQPtrList<TQImageHandler> TQIHList;// list of image handlers
+static TQIHList *imageHandlers = 0;
+#ifndef TQT_NO_COMPONENT
+static TQPluginManager<TQImageFormatInterface> *plugin_manager = 0;
+#else
+static void *plugin_manager = 0;
+#endif
+
+void tqt_init_image_plugins()
+{
+#ifndef TQT_NO_COMPONENT
+ if ( plugin_manager )
+ return;
+
+ plugin_manager = new TQPluginManager<TQImageFormatInterface>( IID_QImageFormat, TQApplication::libraryPaths(), "/imageformats" );
+
+ TQStringList features = plugin_manager->featureList();
+ TQStringList::Iterator it = features.begin();
+ while ( it != features.end() ) {
+ TQString str = *it;
+ ++it;
+ TQInterfacePtr<TQImageFormatInterface> iface;
+ plugin_manager->queryInterface( str, &iface );
+ if ( iface )
+ iface->installIOHandler( str );
+ }
+#endif
+}
+
+static void cleanup()
+{
+ // make sure that image handlers are delete before plugin manager
+ delete imageHandlers;
+ imageHandlers = 0;
+#ifndef TQT_NO_COMPONENT
+ delete plugin_manager;
+ plugin_manager = 0;
+#endif
+}
+
+void tqt_init_image_handlers() // initialize image handlers
+{
+ if ( !imageHandlers ) {
+ imageHandlers = new TQIHList;
+ TQ_CHECK_PTR( imageHandlers );
+ imageHandlers->setAutoDelete( TRUE );
+ tqAddPostRoutine( cleanup );
+#ifndef TQT_NO_IMAGEIO_BMP
+ TQImageIO::defineIOHandler( "BMP", "^BM", 0,
+ read_bmp_image, write_bmp_image );
+#endif
+#ifndef TQT_NO_IMAGEIO_PPM
+ TQImageIO::defineIOHandler( "PBM", "^P1", "t",
+ read_pbm_image, write_pbm_image );
+ TQImageIO::defineIOHandler( "PBMRAW", "^P4", "O",
+ read_pbm_image, write_pbm_image );
+ TQImageIO::defineIOHandler( "PGM", "^P2", "t",
+ read_pbm_image, write_pbm_image );
+ TQImageIO::defineIOHandler( "PGMRAW", "^P5", "O",
+ read_pbm_image, write_pbm_image );
+ TQImageIO::defineIOHandler( "PPM", "^P3", "t",
+ read_pbm_image, write_pbm_image );
+ TQImageIO::defineIOHandler( "PPMRAW", "^P6", "O",
+ read_pbm_image, write_pbm_image );
+#endif
+#ifndef TQT_NO_IMAGEIO_XBM
+ TQImageIO::defineIOHandler( "XBM", "^((/\\*(?!.XPM.\\*/))|#define)", "T",
+ read_xbm_image, write_xbm_image );
+#endif
+#ifndef TQT_NO_IMAGEIO_XPM
+ TQImageIO::defineIOHandler( "XPM", "/\\*.XPM.\\*/", "T",
+ read_xpm_image, write_xpm_image );
+#endif
+#ifndef TQT_NO_IMAGEIO_MNG
+ qInitMngIO();
+#endif
+#ifndef TQT_NO_IMAGEIO_PNG
+ qInitPngIO();
+#endif
+#ifndef TQT_NO_IMAGEIO_JPEG
+ qInitJpegIO();
+#endif
+ }
+}
+
+static TQImageHandler *get_image_handler( const char *format )
+{ // get pointer to handler
+ tqt_init_image_handlers();
+ tqt_init_image_plugins();
+ TQImageHandler *p = imageHandlers->first();
+ while ( p ) { // traverse list
+ if ( p->format == format )
+ return p;
+ p = imageHandlers->next();
+ }
+ return 0; // no such handler
+}
+
+
+/*!
+ Defines an image I/O handler for the image format called \a
+ format, which is recognized using the \link ntqregexp.html#details
+ regular expression\endlink \a header, read using \a readImage and
+ written using \a writeImage.
+
+ \a flags is a string of single-character flags for this format.
+ The only flag defined currently is T (upper case), so the only
+ legal value for \a flags are "T" and the empty string. The "T"
+ flag means that the image file is a text file, and TQt should treat
+ all newline conventions as equivalent. (XPM files and some PPM
+ files are text files for example.)
+
+ \a format is used to select a handler to write a TQImage; \a header
+ is used to select a handler to read an image file.
+
+ If \a readImage is a null pointer, the TQImageIO will not be able
+ to read images in \a format. If \a writeImage is a null pointer,
+ the TQImageIO will not be able to write images in \a format. If
+ both are null, the TQImageIO object is valid but useless.
+
+ Example:
+ \code
+ void readGIF( TQImageIO *image )
+ {
+ // read the image using the image->ioDevice()
+ }
+
+ void writeGIF( TQImageIO *image )
+ {
+ // write the image using the image->ioDevice()
+ }
+
+ // add the GIF image handler
+
+ TQImageIO::defineIOHandler( "GIF",
+ "^GIF[0-9][0-9][a-z]",
+ 0,
+ readGIF,
+ writeGIF );
+ \endcode
+
+ Before the regex test, all the 0 bytes in the file header are
+ converted to 1 bytes. This is done because when TQt was
+ ASCII-based, TQRegExp could not handle 0 bytes in strings.
+
+ The regexp is only applied on the first 14 bytes of the file.
+
+ Note that TQt assumes that there is only one handler per format; if
+ two handlers support the same format, TQt will choose one
+ arbitrarily. It is not possible to have one handler support
+ reading, and another support writing.
+*/
+
+void TQImageIO::defineIOHandler( const char *format,
+ const char *header,
+ const char *flags,
+ image_io_handler readImage,
+ image_io_handler writeImage )
+{
+ tqt_init_image_handlers();
+ TQImageHandler *p;
+ p = new TQImageHandler( format, header, flags,
+ readImage, writeImage );
+ TQ_CHECK_PTR( p );
+ imageHandlers->insert( 0, p );
+}
+
+
+/*****************************************************************************
+ TQImageIO normal member functions
+ *****************************************************************************/
+
+/*!
+ \fn const TQImage &TQImageIO::image() const
+
+ Returns the image currently set.
+
+ \sa setImage()
+*/
+
+/*!
+ \fn int TQImageIO::status() const
+
+ Returns the image's IO status. A non-zero value indicates an
+ error, whereas 0 means that the IO operation was successful.
+
+ \sa setStatus()
+*/
+
+/*!
+ \fn const char *TQImageIO::format() const
+
+ Returns the image format string or 0 if no format has been
+ explicitly set.
+*/
+
+/*!
+ \fn TQIODevice *TQImageIO::ioDevice() const
+
+ Returns the IO device currently set.
+
+ \sa setIODevice()
+*/
+
+/*!
+ \fn TQString TQImageIO::fileName() const
+
+ Returns the file name currently set.
+
+ \sa setFileName()
+*/
+
+/*!
+ \fn TQString TQImageIO::description() const
+
+ Returns the image description string.
+
+ \sa setDescription()
+*/
+
+
+/*!
+ Sets the image to \a image.
+
+ \sa image()
+*/
+
+void TQImageIO::setImage( const TQImage &image )
+{
+ im = image;
+}
+
+/*!
+ Sets the image IO status to \a status. A non-zero value indicates
+ an error, whereas 0 means that the IO operation was successful.
+
+ \sa status()
+*/
+
+void TQImageIO::setStatus( int status )
+{
+ iostat = status;
+}
+
+/*!
+ Sets the image format to \a format for the image to be read or
+ written.
+
+ It is necessary to specify a format before writing an image, but
+ it is not necessary to specify a format before reading an image.
+
+ If no format has been set, TQt guesses the image format before
+ reading it. If a format is set the image will only be read if it
+ has that format.
+
+ \sa read() write() format()
+*/
+
+void TQImageIO::setFormat( const char *format )
+{
+ frmt = format;
+}
+
+/*!
+ Sets the IO device to be used for reading or writing an image.
+
+ Setting the IO device allows images to be read/written to any
+ block-oriented TQIODevice.
+
+ If \a ioDevice is not null, this IO device will override file name
+ settings.
+
+ \sa setFileName()
+*/
+
+void TQImageIO::setIODevice( TQIODevice *ioDevice )
+{
+ iodev = ioDevice;
+}
+
+/*!
+ Sets the name of the file to read or write an image from to \a
+ fileName.
+
+ \sa setIODevice()
+*/
+
+void TQImageIO::setFileName( const TQString &fileName )
+{
+ fname = fileName;
+}
+
+/*!
+ Returns the quality of the written image, related to the
+ compression ratio.
+
+ \sa setQuality() TQImage::save()
+*/
+
+int TQImageIO::quality() const
+{
+ return d->quality;
+}
+
+/*!
+ Sets the quality of the written image to \a q, related to the
+ compression ratio.
+
+ \a q must be in the range -1..100. Specify 0 to obtain small
+ compressed files, 100 for large uncompressed files. (-1 signifies
+ the default compression.)
+
+ \sa quality() TQImage::save()
+*/
+
+void TQImageIO::setQuality( int q )
+{
+ d->quality = q;
+}
+
+/*!
+ Returns the image's parameters string.
+
+ \sa setParameters()
+*/
+
+const char *TQImageIO::parameters() const
+{
+ return d->parameters;
+}
+
+/*!
+ Sets the image's parameter string to \a parameters. This is for
+ image handlers that require special parameters.
+
+ Although the current image formats supported by TQt ignore the
+ parameters string, it may be used in future extensions or by
+ contributions (for example, JPEG).
+
+ \sa parameters()
+*/
+
+void TQImageIO::setParameters( const char *parameters )
+{
+ if ( d && d->parameters )
+ delete [] (char*)d->parameters;
+ d->parameters = tqstrdup( parameters );
+}
+
+/*!
+ Sets the gamma value at which the image will be viewed to \a
+ gamma. If the image format stores a gamma value for which the
+ image is intended to be used, then this setting will be used to
+ modify the image. Setting to 0.0 will disable gamma correction
+ (i.e. any specification in the file will be ignored).
+
+ The default value is 0.0.
+
+ \sa gamma()
+*/
+void TQImageIO::setGamma( float gamma )
+{
+ d->gamma=gamma;
+}
+
+/*!
+ Returns the gamma value at which the image will be viewed.
+
+ \sa setGamma()
+*/
+float TQImageIO::gamma() const
+{
+ return d->gamma;
+}
+
+/*!
+ Sets the image description string for image handlers that support
+ image descriptions to \a description.
+
+ Currently, no image format supported by TQt uses the description
+ string.
+*/
+
+void TQImageIO::setDescription( const TQString &description )
+{
+ descr = description;
+}
+
+
+/*!
+ Returns a string that specifies the image format of the file \a
+ fileName, or null if the file cannot be read or if the format is
+ not recognized.
+*/
+
+const char* TQImageIO::imageFormat( const TQString &fileName )
+{
+ TQFile file( fileName );
+ if ( !file.open(IO_ReadOnly) )
+ return 0;
+ const char* format = imageFormat( &file );
+ file.close();
+ return format;
+}
+
+/*!
+ \overload
+
+ Returns a string that specifies the image format of the image read
+ from IO device \a d, or 0 if the device cannot be read or if the
+ format is not recognized.
+
+ Make sure that \a d is at the right position in the device (for
+ example, at the beginning of the file).
+
+ \sa TQIODevice::at()
+*/
+
+const char *TQImageIO::imageFormat( TQIODevice *d )
+{
+ // if you change this change the documentation for defineIOHandler()
+ const int buflen = 14;
+
+ char buf[buflen];
+ char buf2[buflen];
+ tqt_init_image_handlers();
+ tqt_init_image_plugins();
+ int pos = d->at(); // save position
+ int rdlen = d->readBlock( buf, buflen ); // read a few bytes
+
+ if ( rdlen != buflen )
+ return 0;
+
+ memcpy( buf2, buf, buflen );
+
+ const char* format = 0;
+ for ( int n = 0; n < rdlen; n++ )
+ if ( buf[n] == '\0' )
+ buf[n] = '\001';
+ if ( d->status() == IO_Ok && rdlen > 0 ) {
+ buf[rdlen - 1] = '\0';
+ TQString bufStr = TQString::fromLatin1(buf);
+ TQImageHandler *p = imageHandlers->first();
+ int bestMatch = -1;
+ while ( p ) {
+ if ( p->read_image && p->header.search(bufStr) != -1 ) {
+ // try match with header if a read function is available
+ if (p->header.matchedLength() > bestMatch) {
+ // keep looking for best match
+ format = p->format;
+ bestMatch = p->header.matchedLength();
+ }
+ }
+ p = imageHandlers->next();
+ }
+ }
+ d->at( pos ); // restore position
+#ifndef TQT_NO_ASYNC_IMAGE_IO
+ if ( !format )
+ format = TQImageDecoder::formatName( (uchar*)buf2, rdlen );
+#endif
+
+ return format;
+}
+
+/*!
+ Returns a sorted list of image formats that are supported for
+ image input.
+*/
+TQStrList TQImageIO::inputFormats()
+{
+ TQStrList result;
+
+ tqt_init_image_handlers();
+ tqt_init_image_plugins();
+
+#ifndef TQT_NO_ASYNC_IMAGE_IO
+ // Include asynchronous loaders first.
+ result = TQImageDecoder::inputFormats();
+#endif
+
+ TQImageHandler *p = imageHandlers->first();
+ while ( p ) {
+ if ( p->read_image
+ && !p->obsolete
+ && !result.contains(p->format) )
+ {
+ result.inSort(p->format);
+ }
+ p = imageHandlers->next();
+ }
+
+ return result;
+}
+
+/*!
+ Returns a sorted list of image formats that are supported for
+ image output.
+*/
+TQStrList TQImageIO::outputFormats()
+{
+ TQStrList result;
+
+ tqt_init_image_handlers();
+ tqt_init_image_plugins();
+
+ // Include asynchronous writers (!) first.
+ // (None)
+
+ TQImageHandler *p = imageHandlers->first();
+ while ( p ) {
+ if ( p->write_image
+ && !p->obsolete
+ && !result.contains(p->format) )
+ {
+ result.inSort(p->format);
+ }
+ p = imageHandlers->next();
+ }
+
+ return result;
+}
+
+
+
+/*!
+ Reads an image into memory and returns TRUE if the image was
+ successfully read; otherwise returns FALSE.
+
+ Before reading an image you must set an IO device or a file name.
+ If both an IO device and a file name have been set, the IO device
+ will be used.
+
+ Setting the image file format string is optional.
+
+ Note that this function does \e not set the \link format()
+ format\endlink used to read the image. If you need that
+ information, use the imageFormat() static functions.
+
+ Example:
+
+ \code
+ TQImageIO iio;
+ TQPixmap pixmap;
+ iio.setFileName( "vegeburger.bmp" );
+ if ( image.read() ) // ok
+ pixmap = iio.image(); // convert to pixmap
+ \endcode
+
+ \sa setIODevice() setFileName() setFormat() write() TQPixmap::load()
+*/
+
+bool TQImageIO::read()
+{
+ TQFile file;
+ const char *image_format;
+ TQImageHandler *h;
+
+ if ( iodev ) { // read from io device
+ // ok, already open
+ } else if ( !fname.isEmpty() ) { // read from file
+ file.setName( fname );
+ if ( !file.open(IO_ReadOnly) )
+ return FALSE; // cannot open file
+ iodev = &file;
+ } else { // no file name or io device
+ return FALSE;
+ }
+ if (frmt.isEmpty()) {
+ // Try to guess format
+ image_format = imageFormat( iodev ); // get image format
+ if ( !image_format ) {
+ if ( file.isOpen() ) { // unknown format
+ file.close();
+ iodev = 0;
+ }
+ return FALSE;
+ }
+ } else {
+ image_format = frmt;
+ }
+
+ h = get_image_handler( image_format );
+ if ( file.isOpen() ) {
+#if !defined(Q_OS_UNIX)
+ if ( h && h->text_mode ) { // reopen in translated mode
+ file.close();
+ file.open( IO_ReadOnly | IO_Translate );
+ }
+ else
+#endif
+ file.at( 0 ); // position to start
+ }
+ iostat = 1; // assume error
+
+ if ( h && h->read_image ) {
+ (*h->read_image)( this );
+ }
+#ifndef TQT_NO_ASYNC_IMAGE_IO
+ else {
+ // Format name, but no handler - must be an asychronous reader
+ read_async_image( this );
+ }
+#endif
+
+ if ( file.isOpen() ) { // image was read using file
+ file.close();
+ iodev = 0;
+ }
+ return iostat == 0; // image successfully read?
+}
+
+
+/*!
+ Writes an image to an IO device and returns TRUE if the image was
+ successfully written; otherwise returns FALSE.
+
+ Before writing an image you must set an IO device or a file name.
+ If both an IO device and a file name have been set, the IO device
+ will be used.
+
+ The image will be written using the specified image format.
+
+ Example:
+ \code
+ TQImageIO iio;
+ TQImage im;
+ im = pixmap; // convert to image
+ iio.setImage( im );
+ iio.setFileName( "vegeburger.bmp" );
+ iio.setFormat( "BMP" );
+ if ( iio.write() )
+ // returned TRUE if written successfully
+ \endcode
+
+ \sa setIODevice() setFileName() setFormat() read() TQPixmap::save()
+*/
+
+bool TQImageIO::write()
+{
+ if ( frmt.isEmpty() )
+ return FALSE;
+ TQImageHandler *h = get_image_handler( frmt );
+ if ( !h && !plugin_manager) {
+ tqt_init_image_plugins();
+ h = get_image_handler( frmt );
+ }
+ if ( !h || !h->write_image ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImageIO::write: No such image format handler: %s",
+ format() );
+#endif
+ return FALSE;
+ }
+ TQFile file;
+ if ( !iodev && !fname.isEmpty() ) {
+ file.setName( fname );
+ bool translate = h->text_mode==TQImageHandler::TranslateInOut;
+ int fmode = translate ? IO_WriteOnly|IO_Translate : IO_WriteOnly;
+ if ( !file.open(fmode) ) // couldn't create file
+ return FALSE;
+ iodev = &file;
+ }
+ iostat = 1;
+ (*h->write_image)( this );
+ if ( file.isOpen() ) { // image was written using file
+ file.close();
+ iodev = 0;
+ }
+ return iostat == 0; // image successfully written?
+}
+#endif //TQT_NO_IMAGEIO
+
+#ifndef TQT_NO_IMAGEIO_BMP
+
+/*****************************************************************************
+ BMP (DIB) image read/write functions
+ *****************************************************************************/
+
+const int BMP_FILEHDR_SIZE = 14; // size of BMP_FILEHDR data
+
+struct BMP_FILEHDR { // BMP file header
+ char bfType[2]; // "BM"
+ TQ_INT32 bfSize; // size of file
+ TQ_INT16 bfReserved1;
+ TQ_INT16 bfReserved2;
+ TQ_INT32 bfOffBits; // pointer to the pixmap bits
+};
+
+TQDataStream &operator>>( TQDataStream &s, BMP_FILEHDR &bf )
+{ // read file header
+ s.readRawBytes( bf.bfType, 2 );
+ s >> bf.bfSize >> bf.bfReserved1 >> bf.bfReserved2 >> bf.bfOffBits;
+ return s;
+}
+
+TQDataStream &operator<<( TQDataStream &s, const BMP_FILEHDR &bf )
+{ // write file header
+ s.writeRawBytes( bf.bfType, 2 );
+ s << bf.bfSize << bf.bfReserved1 << bf.bfReserved2 << bf.bfOffBits;
+ return s;
+}
+
+
+const int BMP_OLD = 12; // old Windows/OS2 BMP size
+const int BMP_WIN = 40; // new Windows BMP size
+const int BMP_OS2 = 64; // new OS/2 BMP size
+
+const int BMP_RGB = 0; // no compression
+const int BMP_RLE8 = 1; // run-length encoded, 8 bits
+const int BMP_RLE4 = 2; // run-length encoded, 4 bits
+const int BMP_BITFIELDS = 3; // RGB values encoded in data as bit-fields
+
+struct BMP_INFOHDR { // BMP information header
+ TQ_INT32 biSize; // size of this struct
+ TQ_INT32 biWidth; // pixmap width
+ TQ_INT32 biHeight; // pixmap height
+ TQ_INT16 biPlanes; // should be 1
+ TQ_INT16 biBitCount; // number of bits per pixel
+ TQ_INT32 biCompression; // compression method
+ TQ_INT32 biSizeImage; // size of image
+ TQ_INT32 biXPelsPerMeter; // horizontal resolution
+ TQ_INT32 biYPelsPerMeter; // vertical resolution
+ TQ_INT32 biClrUsed; // number of colors used
+ TQ_INT32 biClrImportant; // number of important colors
+};
+
+
+TQDataStream &operator>>( TQDataStream &s, BMP_INFOHDR &bi )
+{
+ s >> bi.biSize;
+ if ( bi.biSize == BMP_WIN || bi.biSize == BMP_OS2 ) {
+ s >> bi.biWidth >> bi.biHeight >> bi.biPlanes >> bi.biBitCount;
+ s >> bi.biCompression >> bi.biSizeImage;
+ s >> bi.biXPelsPerMeter >> bi.biYPelsPerMeter;
+ s >> bi.biClrUsed >> bi.biClrImportant;
+ }
+ else { // probably old Windows format
+ TQ_INT16 w, h;
+ s >> w >> h >> bi.biPlanes >> bi.biBitCount;
+ bi.biWidth = w;
+ bi.biHeight = h;
+ bi.biCompression = BMP_RGB; // no compression
+ bi.biSizeImage = 0;
+ bi.biXPelsPerMeter = bi.biYPelsPerMeter = 0;
+ bi.biClrUsed = bi.biClrImportant = 0;
+ }
+ return s;
+}
+
+TQDataStream &operator<<( TQDataStream &s, const BMP_INFOHDR &bi )
+{
+ s << bi.biSize;
+ s << bi.biWidth << bi.biHeight;
+ s << bi.biPlanes;
+ s << bi.biBitCount;
+ s << bi.biCompression;
+ s << bi.biSizeImage;
+ s << bi.biXPelsPerMeter << bi.biYPelsPerMeter;
+ s << bi.biClrUsed << bi.biClrImportant;
+ return s;
+}
+
+static
+int calc_shift(int mask)
+{
+ int result = 0;
+ while (!(mask & 1)) {
+ result++;
+ mask >>= 1;
+ }
+ return result;
+}
+
+static
+bool read_dib( TQDataStream& s, int offset, int startpos, TQImage& image )
+{
+ BMP_INFOHDR bi;
+ TQIODevice* d = s.device();
+
+ s >> bi; // read BMP info header
+ if ( d->atEnd() ) // end of stream/file
+ return FALSE;
+#if 0
+ tqDebug( "offset...........%d", offset );
+ tqDebug( "startpos.........%d", startpos );
+ tqDebug( "biSize...........%d", bi.biSize );
+ tqDebug( "biWidth..........%d", bi.biWidth );
+ tqDebug( "biHeight.........%d", bi.biHeight );
+ tqDebug( "biPlanes.........%d", bi.biPlanes );
+ tqDebug( "biBitCount.......%d", bi.biBitCount );
+ tqDebug( "biCompression....%d", bi.biCompression );
+ tqDebug( "biSizeImage......%d", bi.biSizeImage );
+ tqDebug( "biXPelsPerMeter..%d", bi.biXPelsPerMeter );
+ tqDebug( "biYPelsPerMeter..%d", bi.biYPelsPerMeter );
+ tqDebug( "biClrUsed........%d", bi.biClrUsed );
+ tqDebug( "biClrImportant...%d", bi.biClrImportant );
+#endif
+ int w = bi.biWidth, h = bi.biHeight, nbits = bi.biBitCount;
+ int t = bi.biSize, comp = bi.biCompression;
+ int red_mask, green_mask, blue_mask;
+ int red_shift = 0;
+ int green_shift = 0;
+ int blue_shift = 0;
+ int red_scale = 0;
+ int green_scale = 0;
+ int blue_scale = 0;
+
+ if ( !(nbits == 1 || nbits == 4 || nbits == 8 || nbits == 16 || nbits == 24 || nbits == 32) ||
+ bi.biPlanes != 1 || comp > BMP_BITFIELDS )
+ return FALSE; // weird BMP image
+ if ( !(comp == BMP_RGB || (nbits == 4 && comp == BMP_RLE4) ||
+ (nbits == 8 && comp == BMP_RLE8) || ((nbits == 16 || nbits == 32) && comp == BMP_BITFIELDS)) )
+ return FALSE; // weird compression type
+ if ((w < 0) || ((w * abs(h)) > (16384 * 16384)))
+ return FALSE;
+
+ int ncols;
+ int depth;
+ switch ( nbits ) {
+ case 32:
+ case 24:
+ case 16:
+ depth = 32;
+ break;
+ case 8:
+ case 4:
+ depth = 8;
+ break;
+ default:
+ depth = 1;
+ }
+ if ( depth == 32 ) // there's no colormap
+ ncols = 0;
+ else // # colors used
+ ncols = bi.biClrUsed ? bi.biClrUsed : 1 << nbits;
+
+ image.create( w, h, depth, ncols, nbits == 1 ?
+ TQImage::BigEndian : TQImage::IgnoreEndian );
+ if ( image.isNull() ) // could not create image
+ return FALSE;
+
+ image.setDotsPerMeterX( bi.biXPelsPerMeter );
+ image.setDotsPerMeterY( bi.biYPelsPerMeter );
+
+ d->at( startpos + BMP_FILEHDR_SIZE + bi.biSize ); // goto start of colormap
+
+ if ( ncols > 0 ) { // read color table
+ uchar rgb[4];
+ int rgb_len = t == BMP_OLD ? 3 : 4;
+ for ( int i=0; i<ncols; i++ ) {
+ if ( d->readBlock( (char *)rgb, rgb_len ) != rgb_len )
+ return FALSE;
+ image.setColor( i, tqRgb(rgb[2],rgb[1],rgb[0]) );
+ if ( d->atEnd() ) // truncated file
+ return FALSE;
+ }
+ } else if (comp == BMP_BITFIELDS && (nbits == 16 || nbits == 32)) {
+ if ( (TQ_ULONG)d->readBlock( (char *)&red_mask, sizeof(red_mask) ) != sizeof(red_mask) )
+ return FALSE;
+ if ( (TQ_ULONG)d->readBlock( (char *)&green_mask, sizeof(green_mask) ) != sizeof(green_mask) )
+ return FALSE;
+ if ( (TQ_ULONG)d->readBlock( (char *)&blue_mask, sizeof(blue_mask) ) != sizeof(blue_mask) )
+ return FALSE;
+ red_shift = calc_shift(red_mask);
+ if (((red_mask >> red_shift) + 1) == 0)
+ return FALSE;
+ red_scale = 256 / ((red_mask >> red_shift) + 1);
+ green_shift = calc_shift(green_mask);
+ if (((green_mask >> green_shift) + 1) == 0)
+ return FALSE;
+ green_scale = 256 / ((green_mask >> green_shift) + 1);
+ blue_shift = calc_shift(blue_mask);
+ if (((blue_mask >> blue_shift) + 1) == 0)
+ return FALSE;
+ blue_scale = 256 / ((blue_mask >> blue_shift) + 1);
+ } else if (comp == BMP_RGB && (nbits == 24 || nbits == 32)) {
+ blue_mask = 0x000000ff;
+ green_mask = 0x0000ff00;
+ red_mask = 0x00ff0000;
+ blue_shift = 0;
+ green_shift = 8;
+ red_shift = 16;
+ blue_scale = green_scale = red_scale = 1;
+ } else if (comp == BMP_RGB && nbits == 16) // don't support RGB values for 15/16 bpp
+ return FALSE;
+
+ // offset can be bogus, be careful
+ if (offset>=0 && startpos + offset > (TQ_LONG)d->at() )
+ d->at( startpos + offset ); // start of image data
+
+ int bpl = image.bytesPerLine();
+#ifdef TQ_WS_QWS
+ //
+ // Guess the number of bytes-per-line if we don't know how much
+ // image data is in the file (bogus image ?).
+ //
+ int bmpbpl = bi.biSizeImage > 0 ?
+ bi.biSizeImage / bi.biHeight :
+ (d->size() - offset) / bi.biHeight;
+ int pad = bmpbpl-bpl;
+#endif
+ uchar **line = image.jumpTable();
+
+ if ( nbits == 1 ) { // 1 bit BMP image
+ while ( --h >= 0 ) {
+ if ( d->readBlock((char*)line[h],bpl) != bpl )
+ break;
+#ifdef TQ_WS_QWS
+ if ( pad > 0 )
+ d->at(d->at()+pad);
+#endif
+ }
+ if ( ncols == 2 && tqGray(image.color(0)) < tqGray(image.color(1)) )
+ swapPixel01( &image ); // pixel 0 is white!
+ }
+
+ else if ( nbits == 4 ) { // 4 bit BMP image
+ int buflen = ((w+7)/8)*4;
+ uchar *buf = new uchar[buflen];
+ TQ_CHECK_PTR( buf );
+ if ( comp == BMP_RLE4 ) { // run length compression
+ int x=0, y=0, b, c, i;
+ uchar *p = line[h-1];
+ uchar *endp = line[h-1]+w;
+ while ( y < h ) {
+ if ( (b=d->getch()) == EOF )
+ break;
+ if ( b == 0 ) { // escape code
+ switch ( (b=d->getch()) ) {
+ case 0: // end of line
+ x = 0;
+ y++;
+ p = line[h-y-1];
+ break;
+ case 1: // end of image
+ case EOF: // end of file
+ y = h; // exit loop
+ break;
+ case 2: // delta (jump)
+ x += d->getch();
+ y += d->getch();
+
+ // Protection
+ if ( (uint)x >= (uint)w )
+ x = w-1;
+ if ( (uint)y >= (uint)h )
+ y = h-1;
+
+ p = line[h-y-1] + x;
+ break;
+ default: // absolute mode
+ // Protection
+ if ( p + b > endp )
+ b = endp-p;
+
+ i = (c = b)/2;
+ while ( i-- ) {
+ b = d->getch();
+ *p++ = b >> 4;
+ *p++ = b & 0x0f;
+ }
+ if ( c & 1 )
+ *p++ = d->getch() >> 4;
+ if ( (((c & 3) + 1) & 2) == 2 )
+ d->getch(); // align on word boundary
+ x += c;
+ }
+ } else { // encoded mode
+ // Protection
+ if ( p + b > endp )
+ b = endp-p;
+
+ i = (c = b)/2;
+ b = d->getch(); // 2 pixels to be repeated
+ while ( i-- ) {
+ *p++ = b >> 4;
+ *p++ = b & 0x0f;
+ }
+ if ( c & 1 )
+ *p++ = b >> 4;
+ x += c;
+ }
+ }
+ } else if ( comp == BMP_RGB ) { // no compression
+ while ( --h >= 0 ) {
+ if ( d->readBlock((char*)buf,buflen) != buflen )
+ break;
+ uchar *p = line[h];
+ uchar *b = buf;
+ for ( int i=0; i<w/2; i++ ) { // convert nibbles to bytes
+ *p++ = *b >> 4;
+ *p++ = *b++ & 0x0f;
+ }
+ if ( w & 1 ) // the last nibble
+ *p = *b >> 4;
+ }
+ }
+ delete [] buf;
+ }
+
+ else if ( nbits == 8 ) { // 8 bit BMP image
+ if ( comp == BMP_RLE8 ) { // run length compression
+ int x=0, y=0, b;
+ uchar *p = line[h-1];
+ const uchar *endp = line[h-1]+w;
+ while ( y < h ) {
+ if ( (b=d->getch()) == EOF )
+ break;
+ if ( b == 0 ) { // escape code
+ switch ( (b=d->getch()) ) {
+ case 0: // end of line
+ x = 0;
+ y++;
+ p = line[h-y-1];
+ break;
+ case 1: // end of image
+ case EOF: // end of file
+ y = h; // exit loop
+ break;
+ case 2: // delta (jump)
+ x += d->getch();
+ y += d->getch();
+
+ // Protection
+ if ( (uint)x >= (uint)w )
+ x = w-1;
+ if ( (uint)y >= (uint)h )
+ y = h-1;
+
+ p = line[h-y-1] + x;
+ break;
+ default: // absolute mode
+ // Protection
+ if ( p + b > endp )
+ b = endp-p;
+
+ if ( d->readBlock( (char *)p, b ) != b )
+ return FALSE;
+ if ( (b & 1) == 1 )
+ d->getch(); // align on word boundary
+ x += b;
+ p += b;
+ }
+ } else { // encoded mode
+ // Protection
+ if ( p + b > endp )
+ b = endp-p;
+
+ memset( p, d->getch(), b ); // repeat pixel
+ x += b;
+ p += b;
+ }
+ }
+ } else if ( comp == BMP_RGB ) { // uncompressed
+ while ( --h >= 0 ) {
+ if ( d->readBlock((char *)line[h],bpl) != bpl )
+ break;
+#ifdef TQ_WS_QWS
+ if ( pad > 0 )
+ d->at(d->at()+pad);
+#endif
+ }
+ }
+ }
+
+ else if ( nbits == 16 || nbits == 24 || nbits == 32 ) { // 16,24,32 bit BMP image
+ TQRgb *p;
+ TQRgb *end;
+ uchar *buf24 = new uchar[bpl];
+ int bpl24 = ((w*nbits+31)/32)*4;
+ uchar *b;
+ int c;
+
+ while ( --h >= 0 ) {
+ p = (TQRgb *)line[h];
+ end = p + w;
+ if ( d->readBlock( (char *)buf24,bpl24) != bpl24 )
+ break;
+ b = buf24;
+ while ( p < end ) {
+ c = *(uchar*)b | (*(uchar*)(b+1)<<8);
+ if (nbits != 16)
+ c |= *(uchar*)(b+2)<<16;
+ *p++ = tqRgb(((c & red_mask) >> red_shift) * red_scale,
+ ((c & green_mask) >> green_shift) * green_scale,
+ ((c & blue_mask) >> blue_shift) * blue_scale);
+ b += nbits/8;
+ }
+ }
+ delete[] buf24;
+ }
+
+ return TRUE;
+}
+
+bool qt_read_dib( TQDataStream& s, TQImage& image )
+{
+ return read_dib(s,-1,-BMP_FILEHDR_SIZE,image);
+}
+
+
+static void read_bmp_image( TQImageIO *iio )
+{
+ TQIODevice *d = iio->ioDevice();
+ TQDataStream s( d );
+ BMP_FILEHDR bf;
+ int startpos = d->at();
+
+ s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order
+ s >> bf; // read BMP file header
+
+ if ( tqstrncmp(bf.bfType,"BM",2) != 0 ) // not a BMP image
+ return;
+
+ TQImage image;
+ if (read_dib( s, bf.bfOffBits, startpos, image )) {
+ iio->setImage( image );
+ iio->setStatus( 0 ); // image ok
+ }
+}
+
+bool qt_write_dib( TQDataStream& s, TQImage image )
+{
+ int nbits;
+ int bpl_bmp;
+ int bpl = image.bytesPerLine();
+
+ TQIODevice* d = s.device();
+
+ if ( image.depth() == 8 && image.numColors() <= 16 ) {
+ bpl_bmp = (((bpl+1)/2+3)/4)*4;
+ nbits = 4;
+ } else if ( image.depth() == 32 ) {
+ bpl_bmp = ((image.width()*24+31)/32)*4;
+ nbits = 24;
+#ifdef TQ_WS_QWS
+ } else if ( image.depth() == 1 || image.depth() == 8 ) {
+ // TQt/E doesn't word align.
+ bpl_bmp = ((image.width()*image.depth()+31)/32)*4;
+ nbits = image.depth();
+#endif
+ } else {
+ bpl_bmp = bpl;
+ nbits = image.depth();
+ }
+
+ BMP_INFOHDR bi;
+ bi.biSize = BMP_WIN; // build info header
+ bi.biWidth = image.width();
+ bi.biHeight = image.height();
+ bi.biPlanes = 1;
+ bi.biBitCount = nbits;
+ bi.biCompression = BMP_RGB;
+ bi.biSizeImage = bpl_bmp*image.height();
+ bi.biXPelsPerMeter = image.dotsPerMeterX() ? image.dotsPerMeterX()
+ : 2834; // 72 dpi default
+ bi.biYPelsPerMeter = image.dotsPerMeterY() ? image.dotsPerMeterY() : 2834;
+ bi.biClrUsed = image.numColors();
+ bi.biClrImportant = image.numColors();
+ s << bi; // write info header
+
+ if ( image.depth() != 32 ) { // write color table
+ uchar *color_table = new uchar[4*image.numColors()];
+ uchar *rgb = color_table;
+ TQRgb *c = image.colorTable();
+ for ( int i=0; i<image.numColors(); i++ ) {
+ *rgb++ = tqBlue ( c[i] );
+ *rgb++ = tqGreen( c[i] );
+ *rgb++ = tqRed ( c[i] );
+ *rgb++ = 0;
+ }
+ d->writeBlock( (char *)color_table, 4*image.numColors() );
+ delete [] color_table;
+ }
+
+ if ( image.depth() == 1 && image.bitOrder() != TQImage::BigEndian )
+ image = image.convertBitOrder( TQImage::BigEndian );
+
+ int y;
+
+ if ( nbits == 1 || nbits == 8 ) { // direct output
+#ifdef TQ_WS_QWS
+ // TQt/E doesn't word align.
+ int pad = bpl_bmp - bpl;
+ char padding[4];
+#endif
+ for ( y=image.height()-1; y>=0; y-- ) {
+ d->writeBlock( (char*)image.scanLine(y), bpl );
+#ifdef TQ_WS_QWS
+ d->writeBlock( padding, pad );
+#endif
+ }
+ return TRUE;
+ }
+
+ uchar *buf = new uchar[bpl_bmp];
+ uchar *b, *end;
+ uchar *p;
+
+ memset( buf, 0, bpl_bmp );
+ for ( y=image.height()-1; y>=0; y-- ) { // write the image bits
+ if ( nbits == 4 ) { // convert 8 -> 4 bits
+ p = image.scanLine(y);
+ b = buf;
+ end = b + image.width()/2;
+ while ( b < end ) {
+ *b++ = (*p << 4) | (*(p+1) & 0x0f);
+ p += 2;
+ }
+ if ( image.width() & 1 )
+ *b = *p << 4;
+ } else { // 32 bits
+ TQRgb *p = (TQRgb *)image.scanLine( y );
+ TQRgb *end = p + image.width();
+ b = buf;
+ while ( p < end ) {
+ *b++ = tqBlue(*p);
+ *b++ = tqGreen(*p);
+ *b++ = tqRed(*p);
+ p++;
+ }
+ }
+ if ( bpl_bmp != d->writeBlock( (char*)buf, bpl_bmp ) ) {
+ delete[] buf;
+ return FALSE;
+ }
+ }
+ delete[] buf;
+ return TRUE;
+}
+
+
+static void write_bmp_image( TQImageIO *iio )
+{
+ TQIODevice *d = iio->ioDevice();
+ TQImage image = iio->image();
+ TQDataStream s( d );
+ BMP_FILEHDR bf;
+ int bpl_bmp;
+ int bpl = image.bytesPerLine();
+
+ // Code partially repeated in qt_write_dib
+ if ( image.depth() == 8 && image.numColors() <= 16 ) {
+ bpl_bmp = (((bpl+1)/2+3)/4)*4;
+ } else if ( image.depth() == 32 ) {
+ bpl_bmp = ((image.width()*24+31)/32)*4;
+ } else {
+ bpl_bmp = bpl;
+ }
+
+ iio->setStatus( 0 );
+ s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order
+ strncpy( bf.bfType, "BM", 2 ); // build file header
+ bf.bfReserved1 = bf.bfReserved2 = 0; // reserved, should be zero
+ bf.bfOffBits = BMP_FILEHDR_SIZE + BMP_WIN + image.numColors()*4;
+ bf.bfSize = bf.bfOffBits + bpl_bmp*image.height();
+ s << bf; // write file header
+
+ if ( !qt_write_dib( s, image ) )
+ iio->setStatus( 1 );
+
+}
+
+#endif // TQT_NO_IMAGEIO_BMP
+
+#ifndef TQT_NO_IMAGEIO_PPM
+
+/*****************************************************************************
+ PBM/PGM/PPM (ASCII and RAW) image read/write functions
+ *****************************************************************************/
+
+static int read_pbm_int( TQIODevice *d )
+{
+ int c;
+ int val = -1;
+ bool digit;
+ const int buflen = 100;
+ char buf[buflen];
+ for ( ;; ) {
+ if ( (c=d->getch()) == EOF ) // end of file
+ break;
+ digit = isdigit( (uchar) c );
+ if ( val != -1 ) {
+ if ( digit ) {
+ val = 10*val + c - '0';
+ continue;
+ } else {
+ if ( c == '#' ) // comment
+ d->readLine( buf, buflen );
+ break;
+ }
+ }
+ if ( digit ) // first digit
+ val = c - '0';
+ else if ( isspace((uchar) c) )
+ continue;
+ else if ( c == '#' )
+ d->readLine( buf, buflen );
+ else
+ break;
+ }
+ return val;
+}
+
+static void read_pbm_image( TQImageIO *iio ) // read PBM image data
+{
+ const int buflen = 300;
+ char buf[buflen];
+ TQIODevice *d = iio->ioDevice();
+ int w, h, nbits, mcc, y;
+ int pbm_bpl;
+ char type;
+ bool raw;
+ TQImage image;
+
+ if ( d->readBlock( buf, 3 ) != 3 ) // read P[1-6]<white-space>
+ return;
+ if ( !(buf[0] == 'P' && isdigit((uchar) buf[1]) && isspace((uchar) buf[2])) )
+ return;
+ switch ( (type=buf[1]) ) {
+ case '1': // ascii PBM
+ case '4': // raw PBM
+ nbits = 1;
+ break;
+ case '2': // ascii PGM
+ case '5': // raw PGM
+ nbits = 8;
+ break;
+ case '3': // ascii PPM
+ case '6': // raw PPM
+ nbits = 32;
+ break;
+ default:
+ return;
+ }
+ raw = type >= '4';
+ w = read_pbm_int( d ); // get image width
+ h = read_pbm_int( d ); // get image height
+ if ( nbits == 1 )
+ mcc = 1; // ignore max color component
+ else
+ mcc = read_pbm_int( d ); // get max color component
+ if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 || mcc <= 0 || mcc > 0xffff )
+ return; // weird P.M image
+
+ int maxc = mcc;
+ if ( maxc > 255 )
+ maxc = 255;
+ image.create( w, h, nbits, 0,
+ nbits == 1 ? TQImage::BigEndian : TQImage::IgnoreEndian );
+ if ( image.isNull() )
+ return;
+
+ pbm_bpl = (nbits*w+7)/8; // bytes per scanline in PBM
+
+ if ( raw ) { // read raw data
+ if ( nbits == 32 ) { // type 6
+ pbm_bpl = 3*w;
+ uchar *buf24 = new uchar[pbm_bpl], *b;
+ TQRgb *p;
+ TQRgb *end;
+ for ( y=0; y<h; y++ ) {
+ if ( d->readBlock( (char *)buf24, pbm_bpl ) != pbm_bpl ) {
+ delete[] buf24;
+ return;
+ }
+ p = (TQRgb *)image.scanLine( y );
+ end = p + w;
+ b = buf24;
+ while ( p < end ) {
+ *p++ = tqRgb(b[0],b[1],b[2]);
+ b += 3;
+ }
+ }
+ delete[] buf24;
+ } else { // type 4,5
+ for ( y=0; y<h; y++ ) {
+ if ( d->readBlock( (char *)image.scanLine(y), pbm_bpl )
+ != pbm_bpl )
+ return;
+ }
+ }
+ } else { // read ascii data
+ uchar *p;
+ int n;
+ for ( y=0; y<h; y++ ) {
+ p = image.scanLine( y );
+ n = pbm_bpl;
+ if ( nbits == 1 ) {
+ int b;
+ while ( n-- ) {
+ b = 0;
+ for ( int i=0; i<8; i++ )
+ b = (b << 1) | (read_pbm_int(d) & 1);
+ *p++ = b;
+ }
+ } else if ( nbits == 8 ) {
+ if ( mcc == maxc ) {
+ while ( n-- ) {
+ *p++ = read_pbm_int( d );
+ }
+ } else {
+ while ( n-- ) {
+ *p++ = read_pbm_int( d ) * maxc / mcc;
+ }
+ }
+ } else { // 32 bits
+ n /= 4;
+ int r, g, b;
+ if ( mcc == maxc ) {
+ while ( n-- ) {
+ r = read_pbm_int( d );
+ g = read_pbm_int( d );
+ b = read_pbm_int( d );
+ *((TQRgb*)p) = tqRgb( r, g, b );
+ p += 4;
+ }
+ } else {
+ while ( n-- ) {
+ r = read_pbm_int( d ) * maxc / mcc;
+ g = read_pbm_int( d ) * maxc / mcc;
+ b = read_pbm_int( d ) * maxc / mcc;
+ *((TQRgb*)p) = tqRgb( r, g, b );
+ p += 4;
+ }
+ }
+ }
+ }
+ }
+
+ if ( nbits == 1 ) { // bitmap
+ image.setNumColors( 2 );
+ image.setColor( 0, tqRgb(255,255,255) ); // white
+ image.setColor( 1, tqRgb(0,0,0) ); // black
+ } else if ( nbits == 8 ) { // graymap
+ image.setNumColors( maxc+1 );
+ for ( int i=0; i<=maxc; i++ )
+ image.setColor( i, tqRgb(i*255/maxc,i*255/maxc,i*255/maxc) );
+ }
+
+ iio->setImage( image );
+ iio->setStatus( 0 ); // image ok
+}
+
+
+static void write_pbm_image( TQImageIO *iio )
+{
+ TQIODevice* out = iio->ioDevice();
+ TQCString str;
+
+ TQImage image = iio->image();
+ TQCString format = iio->format();
+ format = format.left(3); // ignore RAW part
+ bool gray = format == "PGM";
+
+ if ( format == "PBM" ) {
+ image = image.convertDepth(1);
+ } else if ( image.depth() == 1 ) {
+ image = image.convertDepth(8);
+ }
+
+ if ( image.depth() == 1 && image.numColors() == 2 ) {
+ if ( tqGray(image.color(0)) < tqGray(image.color(1)) ) {
+ // 0=dark/black, 1=light/white - invert
+ image.detach();
+ for ( int y=0; y<image.height(); y++ ) {
+ uchar *p = image.scanLine(y);
+ uchar *end = p + image.bytesPerLine();
+ while ( p < end )
+ *p++ ^= 0xff;
+ }
+ }
+ }
+
+ uint w = image.width();
+ uint h = image.height();
+
+ str.sprintf("P\n%d %d\n", w, h);
+
+ switch (image.depth()) {
+ case 1: {
+ str.insert(1, '4');
+ if ((uint)out->writeBlock(str, str.length()) != str.length()) {
+ iio->setStatus(1);
+ return;
+ }
+ w = (w+7)/8;
+ for (uint y=0; y<h; y++) {
+ uchar* line = image.scanLine(y);
+ if ( w != (uint)out->writeBlock((char*)line, w) ) {
+ iio->setStatus(1);
+ return;
+ }
+ }
+ }
+ break;
+
+ case 8: {
+ str.insert(1, gray ? '5' : '6');
+ str.append("255\n");
+ if ((uint)out->writeBlock(str, str.length()) != str.length()) {
+ iio->setStatus(1);
+ return;
+ }
+ TQRgb *color = image.colorTable();
+ uint bpl = w*(gray ? 1 : 3);
+ uchar *buf = new uchar[bpl];
+ for (uint y=0; y<h; y++) {
+ uchar *b = image.scanLine(y);
+ uchar *p = buf;
+ uchar *end = buf+bpl;
+ if ( gray ) {
+ while ( p < end ) {
+ uchar g = (uchar)tqGray(color[*b++]);
+ *p++ = g;
+ }
+ } else {
+ while ( p < end ) {
+ TQRgb rgb = color[*b++];
+ *p++ = tqRed(rgb);
+ *p++ = tqGreen(rgb);
+ *p++ = tqBlue(rgb);
+ }
+ }
+ if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) {
+ iio->setStatus(1);
+ return;
+ }
+ }
+ delete [] buf;
+ }
+ break;
+
+ case 32: {
+ str.insert(1, gray ? '5' : '6');
+ str.append("255\n");
+ if ((uint)out->writeBlock(str, str.length()) != str.length()) {
+ iio->setStatus(1);
+ return;
+ }
+ uint bpl = w*(gray ? 1 : 3);
+ uchar *buf = new uchar[bpl];
+ for (uint y=0; y<h; y++) {
+ TQRgb *b = (TQRgb*)image.scanLine(y);
+ uchar *p = buf;
+ uchar *end = buf+bpl;
+ if ( gray ) {
+ while ( p < end ) {
+ uchar g = (uchar)tqGray(*b++);
+ *p++ = g;
+ }
+ } else {
+ while ( p < end ) {
+ TQRgb rgb = *b++;
+ *p++ = tqRed(rgb);
+ *p++ = tqGreen(rgb);
+ *p++ = tqBlue(rgb);
+ }
+ }
+ if ( bpl != (uint)out->writeBlock((char*)buf, bpl) ) {
+ iio->setStatus(1);
+ return;
+ }
+ }
+ delete [] buf;
+ }
+ }
+
+ iio->setStatus(0);
+}
+
+#endif // TQT_NO_IMAGEIO_PPM
+
+#ifndef TQT_NO_ASYNC_IMAGE_IO
+
+class TQImageIOFrameGrabber : public TQImageConsumer {
+public:
+ TQImageIOFrameGrabber() : framecount(0) { }
+ virtual ~TQImageIOFrameGrabber() { }
+
+ TQImageDecoder *decoder;
+ int framecount;
+
+ void changed(const TQRect&) { }
+ void end() { }
+ void frameDone(const TQPoint&, const TQRect&) { framecount++; }
+ void frameDone() { framecount++; }
+ void setLooping(int) { }
+ void setFramePeriod(int) { }
+ void setSize(int, int) { }
+};
+
+static void read_async_image( TQImageIO *iio )
+{
+ const int buf_len = 2048;
+ uchar buffer[buf_len];
+ TQIODevice *d = iio->ioDevice();
+ TQImageIOFrameGrabber* consumer = new TQImageIOFrameGrabber();
+ TQImageDecoder *decoder = new TQImageDecoder(consumer);
+ consumer->decoder = decoder;
+ int startAt = d->at();
+ int totLen = 0;
+
+ for (;;) {
+ int length = d->readBlock((char*)buffer, buf_len);
+ if ( length <= 0 ) {
+ iio->setStatus(length);
+ break;
+ }
+ uchar* b = buffer;
+ int r = -1;
+ while (length > 0 && consumer->framecount==0) {
+ r = decoder->decode(b, length);
+ if ( r <= 0 ) break;
+ b += r;
+ totLen += r;
+ length -= r;
+ }
+ if ( consumer->framecount ) {
+ // Stopped after first frame
+ if ( d->isDirectAccess() )
+ d->at( startAt + totLen );
+ else {
+ // ### We have (probably) read too much from the stream into
+ // the buffer, and there is no way to put it back!
+ }
+ iio->setImage(decoder->image());
+ iio->setStatus(0);
+ break;
+ }
+ if ( r <= 0 ) {
+ iio->setStatus(r);
+ break;
+ }
+ }
+
+ consumer->decoder = 0;
+ delete decoder;
+ delete consumer;
+}
+
+#endif // TQT_NO_ASYNC_IMAGE_IO
+
+#ifndef TQT_NO_IMAGEIO_XBM
+
+/*****************************************************************************
+ X bitmap image read/write functions
+ *****************************************************************************/
+
+static inline int hex2byte( char *p )
+{
+ return ( (isdigit((uchar) *p) ? *p - '0' : toupper((uchar) *p) - 'A' + 10) << 4 ) |
+ ( isdigit((uchar) *(p+1)) ? *(p+1) - '0' : toupper((uchar) *(p+1)) - 'A' + 10 );
+}
+
+static void read_xbm_image( TQImageIO *iio )
+{
+ const int buflen = 300;
+ const int maxlen = 4096;
+ char buf[buflen];
+ TQRegExp r1, r2;
+ TQIODevice *d = iio->ioDevice();
+ int w=-1, h=-1;
+ TQImage image;
+ TQ_INT64 readBytes = 0;
+ TQ_INT64 totalReadBytes = 0;
+
+ r1 = TQString::fromLatin1("^#define[ \t]+[a-zA-Z0-9._]+[ \t]+");
+ r2 = TQString::fromLatin1("[0-9]+");
+
+ buf[0] = '\0';
+ while (buf[0] != '#') { //skip leading comment, if any
+ readBytes = d->readLine(buf, buflen);
+
+ // if readBytes >= buflen, it's very probably not a C file
+ if ((readBytes <= 0) || (readBytes >= (buflen-1)))
+ return;
+
+ // limit xbm headers to the first 4k in the file to prevent
+ // excessive reads on non-xbm files
+ totalReadBytes += readBytes;
+ if (totalReadBytes >= maxlen)
+ return;
+ }
+
+ TQString sbuf;
+ sbuf = TQString::fromLatin1(buf);
+
+ if ( r1.search(sbuf) == 0 &&
+ r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() )
+ w = atoi( &buf[r1.matchedLength()] );
+
+ readBytes = d->readLine(buf, buflen ); // "#define .._height <num>"
+ if (readBytes <= 0) {
+ return;
+ }
+ sbuf = TQString::fromLatin1(buf);
+
+ if ( r1.search(sbuf) == 0 &&
+ r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() )
+ h = atoi( &buf[r1.matchedLength()] );
+
+ if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 )
+ return; // format error
+
+ for ( ;; ) { // scan for data
+ readBytes = d->readLine(buf, buflen);
+ if (readBytes <= 0) { // end of file
+ return;
+ }
+ buf[readBytes] = '\0';
+ if ( strstr(buf,"0x") != 0 ) // does line contain data?
+ break;
+ }
+
+ image.create( w, h, 1, 2, TQImage::LittleEndian );
+ if ( image.isNull() )
+ return;
+
+ image.setColor( 0, tqRgb(255,255,255) ); // white
+ image.setColor( 1, tqRgb(0,0,0) ); // black
+
+ int x = 0, y = 0;
+ uchar *b = image.scanLine(0);
+ char *p = strstr( buf, "0x" );
+ w = (w+7)/8; // byte width
+
+ while ( y < h ) { // for all encoded bytes...
+ if (p && (p < (buf + readBytes - 3))) { // p = "0x.."
+ if (!isxdigit(p[2]) || !isxdigit(p[3])) {
+ return;
+ }
+ *b++ = hex2byte(p+2);
+ p += 2;
+ if ( ++x == w && ++y < h ) {
+ b = image.scanLine(y);
+ x = 0;
+ }
+ p = strstr( p, "0x" );
+ } else { // read another line
+ readBytes = d->readLine(buf, buflen);
+ if (readBytes <= 0) // EOF ==> truncated image
+ break;
+ buf[readBytes] = '\0';
+ p = strstr( buf, "0x" );
+ }
+ }
+
+ iio->setImage( image );
+ iio->setStatus( 0 ); // image ok
+}
+
+
+static void write_xbm_image( TQImageIO *iio )
+{
+ TQIODevice *d = iio->ioDevice();
+ TQImage image = iio->image();
+ int w = image.width();
+ int h = image.height();
+ int i;
+ TQString s = fbname(iio->fileName()); // get file base name
+ char *buf = new char[s.length() + 100];
+
+ sprintf( buf, "#define %s_width %d\n", s.ascii(), w );
+ d->writeBlock( buf, tqstrlen(buf) );
+ sprintf( buf, "#define %s_height %d\n", s.ascii(), h );
+ d->writeBlock( buf, tqstrlen(buf) );
+ sprintf( buf, "static char %s_bits[] = {\n ", s.ascii() );
+ d->writeBlock( buf, tqstrlen(buf) );
+
+ iio->setStatus( 0 );
+
+ if ( image.depth() != 1 )
+ image = image.convertDepth( 1 ); // dither
+ if ( image.bitOrder() != TQImage::LittleEndian )
+ image = image.convertBitOrder( TQImage::LittleEndian );
+
+ bool invert = tqGray(image.color(0)) < tqGray(image.color(1));
+ char hexrep[16];
+ for ( i=0; i<10; i++ )
+ hexrep[i] = '0' + i;
+ for ( i=10; i<16; i++ )
+ hexrep[i] = 'a' -10 + i;
+ if ( invert ) {
+ char t;
+ for ( i=0; i<8; i++ ) {
+ t = hexrep[15-i];
+ hexrep[15-i] = hexrep[i];
+ hexrep[i] = t;
+ }
+ }
+ int bcnt = 0;
+ char *p = buf;
+ int bpl = (w+7)/8;
+ for (int y = 0; y < h; ++y) {
+ uchar *b = image.scanLine(y);
+ for (i = 0; i < bpl; ++i) {
+ *p++ = '0'; *p++ = 'x';
+ *p++ = hexrep[*b >> 4];
+ *p++ = hexrep[*b++ & 0xf];
+
+ if ( i < bpl - 1 || y < h - 1 ) {
+ *p++ = ',';
+ if ( ++bcnt > 14 ) {
+ *p++ = '\n';
+ *p++ = ' ';
+ *p = '\0';
+ if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) {
+ iio->setStatus( 1 );
+ delete [] buf;
+ return;
+ }
+ p = buf;
+ bcnt = 0;
+ }
+ }
+ }
+ }
+ strcpy( p, " };\n" );
+ if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) )
+ iio->setStatus( 1 );
+ delete [] buf;
+}
+
+#endif // TQT_NO_IMAGEIO_XBM
+
+
+#ifndef TQT_NO_IMAGEIO_XPM
+
+/*****************************************************************************
+ XPM image read/write functions
+ *****************************************************************************/
+
+
+// Skip until ", read until the next ", return the rest in *buf
+// Returns FALSE on error, TRUE on success
+
+static bool read_xpm_string( TQCString &buf, TQIODevice *d,
+ const char * const *source, int &index )
+{
+ if ( source ) {
+ buf = source[index++];
+ return TRUE;
+ }
+
+ if ( buf.size() < 69 ) //# just an approximation
+ buf.resize( 123 );
+
+ buf[0] = '\0';
+ int c;
+ int i;
+ while ( (c=d->getch()) != EOF && c != '"' ) { }
+ if ( c == EOF ) {
+ return FALSE;
+ }
+ i = 0;
+ while ( (c=d->getch()) != EOF && c != '"' ) {
+ if ( i == (int)buf.size() )
+ buf.resize( i*2+42 );
+ buf[i++] = c;
+ }
+ if ( c == EOF ) {
+ return FALSE;
+ }
+
+ if ( i == (int)buf.size() ) // always use a 0 terminator
+ buf.resize( i+1 );
+ buf[i] = '\0';
+ return TRUE;
+}
+
+
+
+static int nextColorSpec(const TQCString & buf)
+{
+ int i = buf.find(" c ");
+ if (i < 0)
+ i = buf.find(" g ");
+ if (i < 0)
+ i = buf.find(" g4 ");
+ if (i < 0)
+ i = buf.find(" m ");
+ if (i < 0)
+ i = buf.find(" s ");
+ return i;
+}
+
+//
+// INTERNAL
+//
+// Reads an .xpm from either the TQImageIO or from the TQString *.
+// One of the two HAS to be 0, the other one is used.
+//
+
+static void read_xpm_image_or_array( TQImageIO * iio, const char * const * source,
+ TQImage & image)
+{
+ TQCString buf;
+ TQIODevice *d = 0;
+ buf.resize( 200 );
+
+ int i, cpp, ncols, w, h, index = 0;
+
+ if ( iio ) {
+ iio->setStatus( 1 );
+ d = iio ? iio->ioDevice() : 0;
+ d->readLine( buf.data(), buf.size() ); // "/* XPM */"
+ TQRegExp r( TQString::fromLatin1("/\\*.XPM.\\*/") );
+ if ( buf.find(r) == -1 )
+ return; // bad magic
+ } else if ( !source ) {
+ return;
+ }
+
+ if ( !read_xpm_string( buf, d, source, index ) )
+ return;
+
+ if ( sscanf( buf, "%d %d %d %d", &w, &h, &ncols, &cpp ) < 4 )
+ return; // < 4 numbers parsed
+
+ if ( cpp > 15 )
+ return;
+
+ if ( ncols > 256 ) {
+ image.create( w, h, 32 );
+ } else {
+ image.create( w, h, 8, ncols );
+ }
+
+ if (image.isNull())
+ return;
+
+ TQMap<TQString, int> colorMap;
+ int currentColor;
+
+ for( currentColor=0; currentColor < ncols; ++currentColor ) {
+ if ( !read_xpm_string( buf, d, source, index ) ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage: XPM color specification missing");
+#endif
+ return;
+ }
+ TQString index;
+ index = buf.left( cpp );
+ buf = buf.mid( cpp ).simplifyWhiteSpace().lower();
+ buf.prepend( " " );
+ i = nextColorSpec(buf);
+ if ( i < 0 ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage: XPM color specification is missing: %s", buf.data());
+#endif
+ return; // no c/g/g4/m/s specification at all
+ }
+ buf = buf.mid( i+3 );
+ // Strip any other colorspec
+ int end = nextColorSpec(buf);
+ if (end != -1)
+ buf.truncate(end);
+ buf = buf.stripWhiteSpace();
+ if ( buf == "none" ) {
+ image.setAlphaBuffer( TRUE );
+ int transparentColor = currentColor;
+ if ( image.depth() == 8 ) {
+ image.setColor( transparentColor,
+ TQT_RGB_MASK & tqRgb(198,198,198) );
+ colorMap.insert( index, transparentColor );
+ } else {
+ TQRgb rgb = TQT_RGB_MASK & tqRgb(198,198,198);
+ colorMap.insert( index, rgb );
+ }
+ } else {
+ if ( ((buf.length()-1) % 3) && (buf[0] == '#') ) {
+ buf.truncate (((buf.length()-1) / 4 * 3) + 1); // remove alpha channel left by imagemagick
+ }
+ TQColor c( buf.data() );
+ if ( image.depth() == 8 ) {
+ image.setColor( currentColor, 0xff000000 | c.rgb() );
+ colorMap.insert( index, currentColor );
+ } else {
+ TQRgb rgb = 0xff000000 | c.rgb();
+ colorMap.insert( index, rgb );
+ }
+ }
+ }
+
+ // Read pixels
+ for( int y=0; y<h; y++ ) {
+ if ( !read_xpm_string( buf, d, source, index ) ) {
+#if defined(QT_CHECK_RANGE)
+ tqWarning( "TQImage: XPM pixels missing on image line %d", y);
+#endif
+ return;
+ }
+ if ( image.depth() == 8 ) {
+ uchar *p = image.scanLine(y);
+ uchar *d = (uchar *)buf.data();
+ uchar *end = d + buf.length();
+ int x;
+ if ( cpp == 1 ) {
+ char b[2];
+ b[1] = '\0';
+ for ( x=0; x<w && d<end; x++ ) {
+ b[0] = *d++;
+ *p++ = (uchar)colorMap[b];
+ }
+ } else {
+ char b[16];
+ b[cpp] = '\0';
+ for ( x=0; x<w && d<end; x++ ) {
+ strncpy( b, (char *)d, cpp );
+ *p++ = (uchar)colorMap[b];
+ d += cpp;
+ }
+ }
+ } else {
+ TQRgb *p = (TQRgb*)image.scanLine(y);
+ uchar *d = (uchar *)buf.data();
+ uchar *end = d + buf.length();
+ int x;
+ char b[16];
+ b[cpp] = '\0';
+ for ( x=0; x<w && d<end; x++ ) {
+ strncpy( b, (char *)d, cpp );
+ *p++ = (TQRgb)colorMap[b];
+ d += cpp;
+ }
+ }
+ }
+ if ( iio ) {
+ iio->setImage( image );
+ iio->setStatus( 0 ); // image ok
+ }
+}
+
+
+static void read_xpm_image( TQImageIO * iio )
+{
+ TQImage i;
+ (void)read_xpm_image_or_array( iio, 0, i );
+ return;
+}
+
+
+static const char* xpm_color_name( int cpp, int index )
+{
+ static char returnable[5];
+ static const char code[] = ".#abcdefghijklmnopqrstuvwxyzABCD"
+ "EFGHIJKLMNOPQRSTUVWXYZ0123456789";
+ // cpp is limited to 4 and index is limited to 64^cpp
+ if ( cpp > 1 ) {
+ if ( cpp > 2 ) {
+ if ( cpp > 3 ) {
+ returnable[3] = code[index % 64];
+ index /= 64;
+ } else
+ returnable[3] = '\0';
+ returnable[2] = code[index % 64];
+ index /= 64;
+ } else
+ returnable[2] = '\0';
+ // the following 4 lines are a joke!
+ if ( index == 0 )
+ index = 64*44+21;
+ else if ( index == 64*44+21 )
+ index = 0;
+ returnable[1] = code[index % 64];
+ index /= 64;
+ } else
+ returnable[1] = '\0';
+ returnable[0] = code[index];
+
+ return returnable;
+}
+
+
+// write XPM image data
+static void write_xpm_image( TQImageIO * iio )
+{
+ if ( iio )
+ iio->setStatus( 1 );
+ else
+ return;
+
+ // ### 8-bit case could be made faster
+ TQImage image;
+ if ( iio->image().depth() != 32 )
+ image = iio->image().convertDepth( 32 );
+ else
+ image = iio->image();
+
+ TQMap<TQRgb, int> colorMap;
+
+ int w = image.width(), h = image.height(), ncolors = 0;
+ int x, y;
+
+ // build color table
+ for( y=0; y<h; y++ ) {
+ TQRgb * yp = (TQRgb *)image.scanLine( y );
+ for( x=0; x<w; x++ ) {
+ TQRgb color = *(yp + x);
+ if ( !colorMap.contains(color) )
+ colorMap.insert( color, ncolors++ );
+ }
+ }
+
+ // number of 64-bit characters per pixel needed to encode all colors
+ int cpp = 1;
+ for ( int k = 64; ncolors > k; k *= 64 ) {
+ ++cpp;
+ // limit to 4 characters per pixel
+ // 64^4 colors is enough for a 4096x4096 image
+ if ( cpp > 4)
+ break;
+ }
+
+ TQString line;
+
+ // write header
+ TQTextStream s( iio->ioDevice() );
+ s << "/* XPM */" << endl
+ << "static char *" << fbname(iio->fileName()) << "[]={" << endl
+ << "\"" << w << " " << h << " " << ncolors << " " << cpp << "\"";
+
+ // write palette
+ TQMap<TQRgb, int>::Iterator c = colorMap.begin();
+ while ( c != colorMap.end() ) {
+ TQRgb color = c.key();
+ if ( image.hasAlphaBuffer() && color == (color & TQT_RGB_MASK) )
+ line.sprintf( "\"%s c None\"",
+ xpm_color_name(cpp, *c) );
+ else
+ line.sprintf( "\"%s c #%02x%02x%02x\"",
+ xpm_color_name(cpp, *c),
+ tqRed(color),
+ tqGreen(color),
+ tqBlue(color) );
+ ++c;
+ s << "," << endl << line;
+ }
+
+ // write pixels, limit to 4 characters per pixel
+ line.truncate( cpp*w );
+ for( y=0; y<h; y++ ) {
+ TQRgb * yp = (TQRgb *) image.scanLine( y );
+ int cc = 0;
+ for( x=0; x<w; x++ ) {
+ int color = (int)(*(yp + x));
+ TQCString chars = xpm_color_name( cpp, colorMap[color] );
+ line[cc++] = chars[0];
+ if ( cpp > 1 ) {
+ line[cc++] = chars[1];
+ if ( cpp > 2 ) {
+ line[cc++] = chars[2];
+ if ( cpp > 3 ) {
+ line[cc++] = chars[3];
+ }
+ }
+ }
+ }
+ s << "," << endl << "\"" << line << "\"";
+ }
+ s << "};" << endl;
+
+ iio->setStatus( 0 );
+}
+
+#endif // TQT_NO_IMAGEIO_XPM
+
+/*!
+ Returns an image with depth \a d, using the \a palette_count
+ colors pointed to by \a palette. If \a d is 1 or 8, the returned
+ image will have its color table ordered the same as \a palette.
+
+ If the image needs to be modified to fit in a lower-resolution
+ result (e.g. converting from 32-bit to 8-bit), use the \a
+ conversion_flags to specify how you'd prefer this to happen.
+
+ Note: currently no closest-color search is made. If colors are
+ found that are not in the palette, the palette may not be used at
+ all. This result should not be considered valid because it may
+ change in future implementations.
+
+ Currently inefficient for non-32-bit images.
+
+ \sa TQt::ImageConversionFlags
+*/
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+TQImage TQImage::convertDepthWithPalette( int d, TQRgb* palette, int palette_count, int conversion_flags ) const
+{
+ if ( depth() == 1 ) {
+ return convertDepth( 8, conversion_flags )
+ .convertDepthWithPalette( d, palette, palette_count, conversion_flags );
+ } else if ( depth() == 8 ) {
+ // ### this could be easily made more efficient
+ return convertDepth( 32, conversion_flags )
+ .convertDepthWithPalette( d, palette, palette_count, conversion_flags );
+ } else {
+ TQImage result;
+ convert_32_to_8( this, &result,
+ (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither,
+ palette, palette_count );
+ return result.convertDepth( d );
+ }
+}
+#endif
+static
+bool
+haveSamePalette(const TQImage& a, const TQImage& b)
+{
+ if (a.depth() != b.depth()) return FALSE;
+ if (a.numColors() != b.numColors()) return FALSE;
+ TQRgb* ca = a.colorTable();
+ TQRgb* cb = b.colorTable();
+ for (int i=a.numColors(); i--; ) {
+ if (*ca++ != *cb++) return FALSE;
+ }
+ return TRUE;
+}
+
+/*!
+ \relates TQImage
+
+ Copies a block of pixels from \a src to \a dst. The pixels
+ copied from source (src) are converted according to
+ \a conversion_flags if it is incompatible with the destination
+ (\a dst).
+
+ \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy
+ is the top-left position in \a dst and \a sw, \a sh is the
+ size of the copied block.
+
+ The copying is clipped if areas outside \a src or \a dst are
+ specified.
+
+ If \a sw is -1, it is adjusted to src->width(). Similarly, if \a
+ sh is -1, it is adjusted to src->height().
+
+ Currently inefficient for non 32-bit images.
+*/
+void bitBlt( TQImage* dst, int dx, int dy, const TQImage* src,
+ int sx, int sy, int sw, int sh, int conversion_flags )
+{
+ // Parameter correction
+ if ( sw < 0 ) sw = src->width();
+ if ( sh < 0 ) sh = src->height();
+ if ( sx < 0 ) { dx -= sx; sw += sx; sx = 0; }
+ if ( sy < 0 ) { dy -= sy; sh += sy; sy = 0; }
+ if ( dx < 0 ) { sx -= dx; sw += dx; dx = 0; }
+ if ( dy < 0 ) { sy -= dy; sh += dy; dy = 0; }
+ if ( sx + sw > src->width() ) sw = src->width() - sx;
+ if ( sy + sh > src->height() ) sh = src->height() - sy;
+ if ( dx + sw > dst->width() ) sw = dst->width() - dx;
+ if ( dy + sh > dst->height() ) sh = dst->height() - dy;
+ if ( sw <= 0 || sh <= 0 ) return; // Nothing left to copy
+ if ( (dst->data == src->data) && dx==sx && dy==sy ) return; // Same pixels
+
+ // "Easy" to copy if both same depth and one of:
+ // - 32 bit
+ // - 8 bit, identical palette
+ // - 1 bit, identical palette and byte-aligned area
+ //
+ if ( haveSamePalette(*dst,*src)
+ && ( (dst->depth() != 1) ||
+ (!( (dx&7) || (sx&7) ||
+ (((sw&7) && (sx+sw < src->width())) ||
+ (dx+sw < dst->width()) ) )) ) )
+ {
+ // easy to copy
+ } else if ( dst->depth() != 32 ) {
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+
+ TQImage dstconv = dst->convertDepth( 32 );
+ bitBlt( &dstconv, dx, dy, src, sx, sy, sw, sh,
+ (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither );
+ *dst = dstconv.convertDepthWithPalette( dst->depth(),
+ dst->colorTable(), dst->numColors() );
+#endif
+ return;
+ }
+
+ // Now assume palette can be ignored
+
+ if ( dst->depth() != src->depth() ) {
+ if ( ((sw == src->width()) && (sh == src->height())) || (dst->depth()==32) ) {
+ TQImage srcconv = src->convertDepth( dst->depth(), conversion_flags );
+ bitBlt( dst, dx, dy, &srcconv, sx, sy, sw, sh, conversion_flags );
+ } else {
+ TQImage srcconv = src->copy( sx, sy, sw, sh ); // ie. bitBlt
+ bitBlt( dst, dx, dy, &srcconv, 0, 0, sw, sh, conversion_flags );
+ }
+ return;
+ }
+
+ // Now assume both are the same depth.
+
+ // Now assume both are 32-bit or 8-bit with compatible palettes.
+
+ // "Easy"
+
+ switch ( dst->depth() ) {
+ case 1:
+ {
+ uchar* d = dst->scanLine(dy) + dx/8;
+ uchar* s = src->scanLine(sy) + sx/8;
+ const int bw = (sw+7)/8;
+ if ( bw < 64 ) {
+ // Trust ourselves
+ const int dd = dst->bytesPerLine() - bw;
+ const int ds = src->bytesPerLine() - bw;
+ while ( sh-- ) {
+ for ( int t=bw; t--; )
+ *d++ = *s++;
+ d += dd;
+ s += ds;
+ }
+ } else {
+ // Trust libc
+ const int dd = dst->bytesPerLine();
+ const int ds = src->bytesPerLine();
+ while ( sh-- ) {
+ memcpy( d, s, bw );
+ d += dd;
+ s += ds;
+ }
+ }
+ }
+ break;
+ case 8:
+ {
+ uchar* d = dst->scanLine(dy) + dx;
+ uchar* s = src->scanLine(sy) + sx;
+ if ( sw < 64 ) {
+ // Trust ourselves
+ const int dd = dst->bytesPerLine() - sw;
+ const int ds = src->bytesPerLine() - sw;
+ while ( sh-- ) {
+ for ( int t=sw; t--; )
+ *d++ = *s++;
+ d += dd;
+ s += ds;
+ }
+ } else {
+ // Trust libc
+ const int dd = dst->bytesPerLine();
+ const int ds = src->bytesPerLine();
+ while ( sh-- ) {
+ memcpy( d, s, sw );
+ d += dd;
+ s += ds;
+ }
+ }
+ }
+ break;
+#ifndef TQT_NO_IMAGE_TRUECOLOR
+ case 32:
+ if ( src->hasAlphaBuffer() ) {
+ TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx;
+ TQRgb* s = (TQRgb*)src->scanLine(sy) + sx;
+ const int dd = dst->width() - sw;
+ const int ds = src->width() - sw;
+ while ( sh-- ) {
+ for ( int t=sw; t--; ) {
+ unsigned char a = tqAlpha(*s);
+ if ( a == 255 )
+ *d++ = *s++;
+ else if ( a == 0 )
+ ++d,++s; // nothing
+ else {
+ unsigned char r = ((tqRed(*s)-tqRed(*d)) * a) / 256 + tqRed(*d);
+ unsigned char g = ((tqGreen(*s)-tqGreen(*d)) * a) / 256 + tqGreen(*d);
+ unsigned char b = ((tqBlue(*s)-tqBlue(*d)) * a) / 256 + tqBlue(*d);
+ a = TQMAX(tqAlpha(*d),a); // alternatives...
+ *d++ = tqRgba(r,g,b,a);
+ ++s;
+ }
+ }
+ d += dd;
+ s += ds;
+ }
+ } else {
+ TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx;
+ TQRgb* s = (TQRgb*)src->scanLine(sy) + sx;
+ if ( sw < 64 ) {
+ // Trust ourselves
+ const int dd = dst->width() - sw;
+ const int ds = src->width() - sw;
+ while ( sh-- ) {
+ for ( int t=sw; t--; )
+ *d++ = *s++;
+ d += dd;
+ s += ds;
+ }
+ } else {
+ // Trust libc
+ const int dd = dst->width();
+ const int ds = src->width();
+ const int b = sw*sizeof(TQRgb);
+ while ( sh-- ) {
+ memcpy( d, s, b );
+ d += dd;
+ s += ds;
+ }
+ }
+ }
+ break;
+#endif // TQT_NO_IMAGE_TRUECOLOR
+ }
+}
+
+
+/*!
+ Returns TRUE if this image and image \a i have the same contents;
+ otherwise returns FALSE. The comparison can be slow, unless there
+ is some obvious difference, such as different widths, in which
+ case the function will return quickly.
+
+ \sa operator=()
+*/
+
+bool TQImage::operator==( const TQImage & i ) const
+{
+ // same object, or shared?
+ if ( i.data == data )
+ return TRUE;
+ // obviously different stuff?
+ if ( i.data->h != data->h ||
+ i.data->w != data->w )
+ return FALSE;
+ // not equal if one has alphabuffer and the other does not
+ if ( i.hasAlphaBuffer() != hasAlphaBuffer() )
+ return FALSE;
+ // that was the fast bit...
+ TQImage i1 = convertDepth( 32 );
+ TQImage i2 = i.convertDepth( 32 );
+ int l;
+ // if no alpha buffer used, there might still be junk in the
+ // alpha bits; thus, we can't do memcmp-style comparison of scanlines
+ if ( !hasAlphaBuffer() ) {
+ int m;
+ TQRgb *i1line;
+ TQRgb *i2line;
+ for( l=0; l < data->h; l++ ) {
+ i1line = (uint *)i1.scanLine( l );
+ i2line = (uint *)i2.scanLine( l );
+ // compare pixels of scanline individually
+ for ( m=0; m < data->w; m++ )
+ if ( (i1line[m] ^ i2line[m]) & 0x00FFFFFF )
+ return FALSE;
+ }
+ } else {
+ // yay, we can do fast binary comparison on entire scanlines
+ for( l=0; l < data->h; l++ )
+ if ( memcmp( i1.scanLine( l ), i2.scanLine( l ), 4*data->w ) )
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+/*!
+ Returns TRUE if this image and image \a i have different contents;
+ otherwise returns FALSE. The comparison can be slow, unless there
+ is some obvious difference, such as different widths, in which
+ case the function will return quickly.
+
+ \sa operator=()
+*/
+
+bool TQImage::operator!=( const TQImage & i ) const
+{
+ return !(*this == i);
+}
+
+
+
+
+/*!
+ \fn int TQImage::dotsPerMeterX() const
+
+ Returns the number of pixels that fit horizontally in a physical
+ meter. This and dotsPerMeterY() define the intended scale and
+ aspect ratio of the image.
+
+ \sa setDotsPerMeterX()
+*/
+
+/*!
+ \fn int TQImage::dotsPerMeterY() const
+
+ Returns the number of pixels that fit vertically in a physical
+ meter. This and dotsPerMeterX() define the intended scale and
+ aspect ratio of the image.
+
+ \sa setDotsPerMeterY()
+*/
+
+/*!
+ Sets the value returned by dotsPerMeterX() to \a x.
+*/
+void TQImage::setDotsPerMeterX(int x)
+{
+ data->dpmx = x;
+}
+
+/*!
+ Sets the value returned by dotsPerMeterY() to \a y.
+*/
+void TQImage::setDotsPerMeterY(int y)
+{
+ data->dpmy = y;
+}
+
+/*!
+ \fn TQPoint TQImage::offset() const
+
+ Returns the number of pixels by which the image is intended to be
+ offset by when positioning relative to other images.
+*/
+
+/*!
+ Sets the value returned by offset() to \a p.
+*/
+void TQImage::setOffset(const TQPoint& p)
+{
+ data->offset = p;
+}
+#ifndef TQT_NO_IMAGE_TEXT
+/*!
+ \internal
+
+ Returns the internal TQImageDataMisc object. This object will be
+ created if it doesn't already exist.
+*/
+TQImageDataMisc& TQImage::misc() const
+{
+ if ( !data->misc )
+ data->misc = new TQImageDataMisc;
+ return *data->misc;
+}
+
+/*!
+ Returns the string recorded for the keyword \a key in language \a
+ lang, or in a default language if \a lang is 0.
+*/
+TQString TQImage::text(const char* key, const char* lang) const
+{
+ TQImageTextKeyLang x(key,lang);
+ return misc().text_lang[x];
+}
+
+/*!
+ \overload
+
+ Returns the string recorded for the keyword and language \a kl.
+*/
+TQString TQImage::text(const TQImageTextKeyLang& kl) const
+{
+ return misc().text_lang[kl];
+}
+
+/*!
+ Returns the language identifiers for which some texts are
+ recorded.
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \code
+ TQStringList list = myImage.textLanguages();
+ TQStringList::Iterator it = list.begin();
+ while( it != list.end() ) {
+ myProcessing( *it );
+ ++it;
+ }
+ \endcode
+
+ \sa textList() text() setText() textKeys()
+*/
+TQStringList TQImage::textLanguages() const
+{
+ if ( !data->misc )
+ return TQStringList();
+ return misc().languages();
+}
+
+/*!
+ Returns the keywords for which some texts are recorded.
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \code
+ TQStringList list = myImage.textKeys();
+ TQStringList::Iterator it = list.begin();
+ while( it != list.end() ) {
+ myProcessing( *it );
+ ++it;
+ }
+ \endcode
+
+ \sa textList() text() setText() textLanguages()
+*/
+TQStringList TQImage::textKeys() const
+{
+ if ( !data->misc )
+ return TQStringList();
+ return misc().keys();
+}
+
+/*!
+ Returns a list of TQImageTextKeyLang objects that enumerate all the
+ texts key/language pairs set by setText() for this image.
+
+ Note that if you want to iterate over the list, you should iterate
+ over a copy, e.g.
+ \code
+ TQValueList<TQImageTextKeyLang> list = myImage.textList();
+ TQValueList<TQImageTextKeyLang>::Iterator it = list.begin();
+ while( it != list.end() ) {
+ myProcessing( *it );
+ ++it;
+ }
+ \endcode
+*/
+TQValueList<TQImageTextKeyLang> TQImage::textList() const
+{
+ if ( !data->misc )
+ return TQValueList<TQImageTextKeyLang>();
+ return misc().list();
+}
+
+/*!
+ Records string \a s for the keyword \a key. The \a key should be a
+ portable keyword recognizable by other software - some suggested
+ values can be found in \link
+ http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text
+ the PNG specification \endlink. \a s can be any text. \a lang
+ should specify the language code (see
+ \link http://www.rfc-editor.org/rfc/rfc1766.txt RFC 1766 \endlink) or 0.
+*/
+void TQImage::setText(const char* key, const char* lang, const TQString& s)
+{
+ TQImageTextKeyLang x(key,lang);
+ misc().text_lang.replace(x,s);
+}
+
+#endif // TQT_NO_IMAGE_TEXT
+
+#ifdef TQ_WS_QWS
+/*!
+ \internal
+*/
+TQGfx * TQImage::graphicsContext()
+{
+ TQGfx * ret=0;
+ if(depth()) {
+ int w = qt_screen->mapToDevice( TQSize(width(),height()) ).width();
+ int h = qt_screen->mapToDevice( TQSize(width(),height()) ).height();
+ ret=TQGfx::createGfx(depth(),bits(),w,h,bytesPerLine());
+ } else {
+ tqDebug("Trying to create image for null depth");
+ return 0;
+ }
+ if(depth()<=8) {
+ TQRgb * tmp=colorTable();
+ int nc=numColors();
+ if(tmp==0) {
+ static TQRgb table[2] = { tqRgb(255,255,255), tqRgb(0,0,0) };
+ tmp=table;
+ nc=2;
+ }
+ ret->setClut(tmp,nc);
+ }
+ return ret;
+}
+
+#endif