/**************************************************************************** ** ** Implementation of TQImage and TQImageIO classes ** ** Created : 950207 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the kernel module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "tqimage.h" #include "tqregexp.h" #include "tqfile.h" #include "tqdatastream.h" #include "tqtextstream.h" #include "tqbuffer.h" #include "tqptrlist.h" #include "ntqasyncimageio.h" #include "tqpngio.h" #include "ntqmngio.h" #include "ntqjpegio.h" #include "tqmap.h" #include #include "tqimageformatinterface_p.h" #include "tqwmatrix.h" #include "ntqapplication.h" #include "tqmime.h" #include "tqdragobject.h" #include #include // 16bpp images on supported #if !defined(TQT_NO_IMAGE_16_BIT) #define TQT_NO_IMAGE_16_BIT #endif /*! \class TQImage \brief The TQImage class provides a hardware-independent pixmap representation with direct access to the pixel data. \ingroup images \ingroup graphics \ingroup shared \mainclass It is one of the two classes TQt provides for dealing with images, the other being TQPixmap. TQImage is designed and optimized for I/O and for direct pixel access/manipulation. TQPixmap is designed and optimized for drawing. There are (slow) functions to convert between TQImage and TQPixmap: TQPixmap::convertToImage() and TQPixmap::convertFromImage(). An image has the parameters \link width() width\endlink, \link height() height\endlink and \link depth() depth\endlink (bits per pixel, bpp), a color table and the actual \link bits() pixels\endlink. TQImage supports 1-bpp, 8-bpp and 32-bpp image data. 1-bpp and 8-bpp images use a color lookup table; the pixel value is a color table index. 32-bpp images encode an RGB value in 24 bits and ignore the color table. The most significant byte is used for the \link setAlphaBuffer() alpha buffer\endlink. An entry in the color table is an RGB triplet encoded as a \c uint. Use the \link ::tqRed() tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink functions (\c tqcolor.h) to access the components, and \link ::tqRgb() tqRgb\endlink to make an RGB triplet (see the TQColor class documentation). 1-bpp (monochrome) images have a color table with a most two colors. There are two different formats: big endian (MSB first) or little endian (LSB first) bit order. To access a single bit you will must do some bit shifts: \code TQImage image; // sets bit at (x,y) to 1 if ( image.bitOrder() == TQImage::LittleEndian ) *(image.scanLine(y) + (x >> 3)) |= 1 << (x & 7); else *(image.scanLine(y) + (x >> 3)) |= 1 << (7 - (x & 7)); \endcode If this looks complicated, it might be a good idea to convert the 1-bpp image to an 8-bpp image using convertDepth(). 8-bpp images are much easier to work with than 1-bpp images because they have a single byte per pixel: \code TQImage image; // set entry 19 in the color table to yellow image.setColor( 19, tqRgb(255,255,0) ); // set 8 bit pixel at (x,y) to value yellow (in color table) *(image.scanLine(y) + x) = 19; \endcode 32-bpp images ignore the color table; instead, each pixel contains the RGB triplet. 24 bits contain the RGB value; the most significant byte is reserved for the alpha buffer. \code TQImage image; // sets 32 bit pixel at (x,y) to yellow. uint *p = (uint *)image.scanLine(y) + x; *p = tqRgb(255,255,0); \endcode The scanlines are 32-bit aligned for all depths. The constructor taking a \c{uchar*} argument always expects 32-bit aligned data. TQImage supports a variety of methods for getting information about the image, for example, colorTable(), allGray(), isGrayscale(), bitOrder(), bytesPerLine(), depth(), dotsPerMeterX() and dotsPerMeterY(), hasAlphaBuffer(), numBytes(), numColors(), and width() and height(). Pixel colors are retrieved with pixel() and set with setPixel(). TQImage also supports a number of functions for creating a new image that is a transformed version of the original. For example, copy(), convertBitOrder(), convertDepth(), createAlphaMask(), createHeuristicMask(), mirror(), scale(), smoothScale(), swapRGB() and xForm(). There are also functions for changing attributes of an image in-place, for example, setAlphaBuffer(), setColor(), setDotsPerMeterX() and setDotsPerMeterY() and setNumColors(). Images can be loaded and saved in the supported formats. Images are saved to a file with save(). Images are loaded from a file with load() (or in the constructor) or from an array of data with loadFromData(). The lists of supported formats are available from inputFormatList() and outputFormatList(). Strings of text may be added to images using setText(). The TQImage class uses explicit \link shclass.html sharing\endlink, similar to that used by TQMemArray. New image formats can be added as \link plugins-howto.html plugins\endlink. \sa TQImageIO TQPixmap \link shclass.html Shared Classes\endlink */ /*! \enum TQImage::Endian This enum type is used to describe the endianness of the CPU and graphics hardware. \value IgnoreEndian Endianness does not matter. Useful for some operations that are independent of endianness. \value BigEndian Network byte order, as on SPARC and Motorola CPUs. \value LittleEndian PC/Alpha byte order. */ /*! \enum TQt::ImageConversionFlags The conversion flag is a bitwise-OR of the following values. The options marked "(default)" are set if no other values from the list are included (since the defaults are zero): Color/Mono preference (ignored for TQBitmap) \value AutoColor (default) - If the image has \link TQImage::depth() depth\endlink 1 and contains only black and white pixels, the pixmap becomes monochrome. \value ColorOnly The pixmap is dithered/converted to the \link TQPixmap::defaultDepth() native display depth\endlink. \value MonoOnly The pixmap becomes monochrome. If necessary, it is dithered using the chosen dithering algorithm. Dithering mode preference for RGB channels \value DiffuseDither (default) - A high-quality dither. \value OrderedDither A faster, more ordered dither. \value ThresholdDither No dithering; closest color is used. Dithering mode preference for alpha channel \value ThresholdAlphaDither (default) - No dithering. \value OrderedAlphaDither A faster, more ordered dither. \value DiffuseAlphaDither A high-quality dither. \value NoAlpha Not supported. Color matching versus dithering preference \value PreferDither (default when converting to a pixmap) - Always dither 32-bit images when the image is converted to 8 bits. \value AvoidDither (default when converting for the purpose of saving to file) - Dither 32-bit images only if the image has more than 256 colors and it is being converted to 8 bits. \value AutoDither Not supported. The following are not values that are used directly, but masks for the above classes: \value ColorMode_Mask Mask for the color mode. \value Dither_Mask Mask for the dithering mode for RGB channels. \value AlphaDither_Mask Mask for the dithering mode for the alpha channel. \value DitherMode_Mask Mask for the mode that determines the preference of color matching versus dithering. Using 0 as the conversion flag sets all the default options. */ #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) #pragma message disable narrowptr #endif #ifndef TQT_NO_IMAGE_TEXT class TQImageDataMisc { public: TQImageDataMisc() { } TQImageDataMisc( const TQImageDataMisc& o ) : text_lang(o.text_lang) { } TQImageDataMisc& operator=(const TQImageDataMisc& o) { text_lang = o.text_lang; return *this; } TQValueList list() { return text_lang.keys(); } TQStringList languages() { TQStringList r; TQMap::Iterator it = text_lang.begin(); for ( ; it != text_lang.end(); ++it ) { r.remove( it.key().lang ); r.append( it.key().lang ); } return r; } TQStringList keys() { TQStringList r; TQMap::Iterator it = text_lang.begin(); for ( ; it != text_lang.end(); ++it ) { r.remove( it.key().key ); r.append( it.key().key ); } return r; } TQMap text_lang; }; #endif // TQT_NO_IMAGE_TEXT /***************************************************************************** TQImage member functions *****************************************************************************/ // table to flip bits static const uchar bitflip[256] = { /* open OUT, "| fmt"; for $i (0..255) { print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) | (($i >> 3) & 0x04) | (($i >> 1) & 0x08) | (($i << 7) & 0x80) | (($i << 5) & 0x40) | (($i << 3) & 0x20) | (($i << 1) & 0x10), ", "; } close OUT; */ 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 }; const uchar *qt_get_bitflip_array() // called from TQPixmap code { return bitflip; } /*! Constructs a null image. \sa isNull() */ TQImage::TQImage() { init(); } /*! Constructs an image with \a w width, \a h height, \a depth bits per pixel, \a numColors colors and bit order \a bitOrder. Using this constructor is the same as first constructing a null image and then calling the create() function. \sa create() */ TQImage::TQImage( int w, int h, int depth, int numColors, Endian bitOrder ) { init(); create( w, h, depth, numColors, bitOrder ); } /*! Constructs an image with size \a size pixels, depth \a depth bits, \a numColors and \a bitOrder endianness. Using this constructor is the same as first constructing a null image and then calling the create() function. \sa create() */ TQImage::TQImage( const TQSize& size, int depth, int numColors, Endian bitOrder ) { init(); create( size, depth, numColors, bitOrder ); } #ifndef TQT_NO_IMAGEIO /*! Constructs an image and tries to load the image from the file \a fileName. If \a format is specified, the loader attempts to read the image using the specified format. If \a format is not specified (which is the default), the loader reads a few bytes from the header to guess the file format. If the loading of the image failed, this object is a \link isNull() null\endlink image. The TQImageIO documentation lists the supported image formats and explains how to add extra formats. \sa load() isNull() TQImageIO */ TQImage::TQImage( const TQString &fileName, const char* format ) { init(); load( fileName, format ); } #ifndef TQT_NO_IMAGEIO_XPM // helper static void read_xpm_image_or_array( TQImageIO *, const char * const *, TQImage & ); #endif /*! Constructs an image from \a xpm, which must be a valid XPM image. Errors are silently ignored. Note that it's possible to squeeze the XPM variable a little bit by using an unusual declaration: \code static const char * const start_xpm[]={ "16 15 8 1", "a c #cec6bd", .... \endcode The extra \c const makes the entire definition read-only, which is slightly more efficient (e.g. when the code is in a shared library) and ROMable when the application is to be stored in ROM. */ TQImage::TQImage( const char * const xpm[] ) { init(); #ifndef TQT_NO_IMAGEIO_XPM read_xpm_image_or_array( 0, xpm, *this ); #else // We use a tqFatal rather than disabling the whole function, as this // constructor may be ambiguous. tqFatal("XPM not supported"); #endif } /*! Constructs an image from the binary data \a array. It tries to guess the file format. If the loading of the image failed, this object is a \link isNull() null\endlink image. \sa loadFromData() isNull() imageFormat() */ TQImage::TQImage( const TQByteArray &array ) { init(); loadFromData(array); } #endif //TQT_NO_IMAGEIO /*! Constructs a \link shclass.html shallow copy\endlink of \a image. */ TQImage::TQImage( const TQImage &image ) { data = image.data; data->ref(); } /*! Constructs an image \a w pixels wide, \a h pixels high with a color depth of \a depth, that uses an existing memory buffer, \a yourdata. The buffer must remain valid throughout the life of the TQImage. The image does not delete the buffer at destruction. If \a colortable is 0, a color table sufficient for \a numColors will be allocated (and destructed later). Note that \a yourdata must be 32-bit aligned. The endianness is given in \a bitOrder. */ TQImage::TQImage( uchar* yourdata, int w, int h, int depth, TQRgb* colortable, int numColors, Endian bitOrder ) { init(); int bpl = ((w*depth+31)/32)*4; // bytes per scanline if ( w <= 0 || h <= 0 || depth <= 0 || numColors < 0 || INT_MAX / sizeof(uchar *) < uint(h) || INT_MAX / uint(depth) < uint(w) || bpl <= 0 || INT_MAX / uint(bpl) < uint(h) ) return; // invalid parameter(s) data->w = w; data->h = h; data->d = depth; data->ncols = depth != 32 ? numColors : 0; if ( !yourdata ) return; // Image header info can be saved without needing to allocate memory. data->nbytes = bpl*h; if ( colortable || !data->ncols ) { data->ctbl = colortable; data->ctbl_mine = FALSE; } else { // calloc since we realloc, etc. later (ick) data->ctbl = (TQRgb*)calloc( data->ncols*sizeof(TQRgb), data->ncols ); TQ_CHECK_PTR(data->ctbl); data->ctbl_mine = TRUE; } uchar** jt = (uchar**)malloc(h*sizeof(uchar*)); TQ_CHECK_PTR(jt); for (int j=0; jbits = jt; data->bitordr = bitOrder; } /*! Destroys the image and cleans up. */ TQImage::~TQImage() { if ( data && data->deref() ) { reset(); delete data; } } /*! Convenience function. Gets the data associated with the absolute name \a abs_name from the default mime source factory and decodes it to an image. \sa TQMimeSourceFactory, TQImage::fromMimeSource(), TQImageDrag::decode() */ #ifndef TQT_NO_MIME TQImage TQImage::fromMimeSource( const TQString &abs_name ) { const TQMimeSource *m = TQMimeSourceFactory::defaultFactory()->data( abs_name ); if ( !m ) { #if defined(QT_CHECK_STATE) tqWarning("TQImage::fromMimeSource: Cannot find image \"%s\" in the mime source factory", abs_name.latin1() ); #endif return TQImage(); } TQImage img; TQImageDrag::decode( m, img ); return img; } #endif /*! Assigns a \link shclass.html shallow copy\endlink of \a image to this image and returns a reference to this image. \sa copy() */ TQImage &TQImage::operator=( const TQImage &image ) { image.data->ref(); // avoid 'x = x' if ( data->deref() ) { reset(); delete data; } data = image.data; return *this; } /*! \overload Sets the image bits to the \a pixmap contents and returns a reference to the image. If the image shares data with other images, it will first dereference the shared data. Makes a call to TQPixmap::convertToImage(). */ TQImage &TQImage::operator=( const TQPixmap &pixmap ) { *this = pixmap.convertToImage(); return *this; } /*! Detaches from shared image data and makes sure that this image is the only one referring to the data. If multiple images share common data, this image makes a copy of the data and detaches itself from the sharing mechanism. Nothing is done if there is just a single reference. \sa copy() */ void TQImage::detach() { if ( data->count != 1 ) *this = copy(); } /*! Returns a \link shclass.html deep copy\endlink of the image. \sa detach() */ TQImage TQImage::copy() const { if ( isNull() ) { // maintain the fields of invalid TQImages when copied return TQImage( 0, width(), height(), depth(), colorTable(), numColors(), bitOrder() ); } else { TQImage image; image.create( width(), height(), depth(), numColors(), bitOrder() ); memcpy( image.bits(), bits(), numBytes() ); memcpy( image.colorTable(), colorTable(), numColors() * sizeof(TQRgb) ); image.setAlphaBuffer( hasAlphaBuffer() ); image.data->dpmx = dotsPerMeterX(); image.data->dpmy = dotsPerMeterY(); image.data->offset = offset(); #ifndef TQT_NO_IMAGE_TEXT if ( data->misc ) { image.data->misc = new TQImageDataMisc; *image.data->misc = misc(); } #endif return image; } } /*! \overload Returns a \link shclass.html deep copy\endlink of a sub-area of the image. The returned image is always \a w by \a h pixels in size, and is copied from position \a x, \a y in this image. In areas beyond this image pixels are filled with pixel 0. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a conversion_flags to specify how you'd prefer this to happen. \sa bitBlt() TQt::ImageConversionFlags */ TQImage TQImage::copy(int x, int y, int w, int h, int conversion_flags) const { int dx = 0; int dy = 0; if ( w <= 0 || h <= 0 ) return TQImage(); // Nothing to copy TQImage image( w, h, depth(), numColors(), bitOrder() ); if ( x < 0 || y < 0 || x + w > width() || y + h > height() ) { // bitBlt will not cover entire image - clear it. // ### should deal with each side separately for efficiency image.fill(0); if ( x < 0 ) { dx = -x; x = 0; } if ( y < 0 ) { dy = -y; y = 0; } } bool has_alpha = hasAlphaBuffer(); if ( has_alpha ) { // alpha channel should be only copied, not used by bitBlt(), and // this is mutable, we will restore the image state before returning TQImage *that = (TQImage *) this; that->setAlphaBuffer( FALSE ); } memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); bitBlt( &image, dx, dy, this, x, y, -1, -1, conversion_flags ); if ( has_alpha ) { // restore image state TQImage *that = (TQImage *) this; that->setAlphaBuffer( TRUE ); } image.setAlphaBuffer(hasAlphaBuffer()); image.data->dpmx = dotsPerMeterX(); image.data->dpmy = dotsPerMeterY(); image.data->offset = offset(); #ifndef TQT_NO_IMAGE_TEXT if ( data->misc ) { image.data->misc = new TQImageDataMisc; *image.data->misc = misc(); } #endif return image; } /*! \overload TQImage TQImage::copy(const TQRect& r) const Returns a \link shclass.html deep copy\endlink of a sub-area of the image. The returned image always has the size of the rectangle \a r. In areas beyond this image pixels are filled with pixel 0. */ /*! \fn bool TQImage::isNull() const Returns TRUE if it is a null image; otherwise returns FALSE. A null image has all parameters set to zero and no allocated data. */ /*! \fn int TQImage::width() const Returns the width of the image. \sa height() size() rect() */ /*! \fn int TQImage::height() const Returns the height of the image. \sa width() size() rect() */ /*! \fn TQSize TQImage::size() const Returns the size of the image, i.e. its width and height. \sa width() height() rect() */ /*! \fn TQRect TQImage::rect() const Returns the enclosing rectangle (0, 0, width(), height()) of the image. \sa width() height() size() */ /*! \fn int TQImage::depth() const Returns the depth of the image. The image depth is the number of bits used to encode a single pixel, also called bits per pixel (bpp) or bit planes of an image. The supported depths are 1, 8 and 32. \sa convertDepth() */ /*! \fn int TQImage::numColors() const Returns the size of the color table for the image. Notice that numColors() returns 0 for 32-bpp images because these images do not use color tables, but instead encode pixel values as RGB triplets. \sa setNumColors() colorTable() */ /*! \fn TQImage::Endian TQImage::bitOrder() const Returns the bit order for the image. If it is a 1-bpp image, this function returns either TQImage::BigEndian or TQImage::LittleEndian. If it is not a 1-bpp image, this function returns TQImage::IgnoreEndian. \sa depth() */ /*! \fn uchar **TQImage::jumpTable() const Returns a pointer to the scanline pointer table. This is the beginning of the data block for the image. \sa bits() scanLine() */ /*! \fn TQRgb *TQImage::colorTable() const Returns a pointer to the color table. \sa numColors() */ /*! \fn int TQImage::numBytes() const Returns the number of bytes occupied by the image data. \sa bytesPerLine() bits() */ /*! \fn int TQImage::bytesPerLine() const Returns the number of bytes per image scanline. This is equivalent to numBytes()/height(). \sa numBytes() scanLine() */ /*! \fn TQRgb TQImage::color( int i ) const Returns the color in the color table at index \a i. The first color is at index 0. A color value is an RGB triplet. Use the \link ::tqRed() tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink functions (defined in \c tqcolor.h) to get the color value components. \sa setColor() numColors() TQColor */ /*! \fn void TQImage::setColor( int i, TQRgb c ) Sets a color in the color table at index \a i to \a c. A color value is an RGB triplet. Use the \link ::tqRgb() tqRgb()\endlink function (defined in \c tqcolor.h) to make RGB triplets. \sa color() setNumColors() numColors() */ /*! \fn uchar *TQImage::scanLine( int i ) const Returns a pointer to the pixel data at the scanline with index \a i. The first scanline is at index 0. The scanline data is aligned on a 32-bit boundary. \warning If you are accessing 32-bpp image data, cast the returned pointer to \c{TQRgb*} (TQRgb has a 32-bit size) and use it to read/write the pixel value. You cannot use the \c{uchar*} pointer directly, because the pixel format depends on the byte order on the underlying platform. Hint: use \link ::tqRed() tqRed()\endlink, \link ::tqGreen() tqGreen()\endlink and \link ::tqBlue() tqBlue()\endlink, etc. (tqcolor.h) to access the pixels. \sa bytesPerLine() bits() jumpTable() */ /*! \fn uchar *TQImage::bits() const Returns a pointer to the first pixel data. This is equivalent to scanLine(0). \sa numBytes() scanLine() jumpTable() */ void TQImage::warningIndexRange( const char *func, int i ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::%s: Index %d out of range", func, i ); #else Q_UNUSED( func ) Q_UNUSED( i ) #endif } /*! Resets all image parameters and deallocates the image data. */ void TQImage::reset() { freeBits(); setNumColors( 0 ); #ifndef TQT_NO_IMAGE_TEXT delete data->misc; #endif reinit(); } /*! Fills the entire image with the pixel value \a pixel. If the \link depth() depth\endlink of this image is 1, only the lowest bit is used. If you say fill(0), fill(2), etc., the image is filled with 0s. If you say fill(1), fill(3), etc., the image is filled with 1s. If the depth is 8, the lowest 8 bits are used. If the depth is 32 and the image has no alpha buffer, the \a pixel value is written to each pixel in the image. If the image has an alpha buffer, only the 24 RGB bits are set and the upper 8 bits (alpha value) are left unchanged. Note: TQImage::pixel() returns the color of the pixel at the given coordinates; TQColor::pixel() returns the pixel value of the underlying window system (essentially an index value), so normally you will want to use TQImage::pixel() to use a color from an existing image or TQColor::rgb() to use a specific color. \sa invertPixels() depth() hasAlphaBuffer() create() */ void TQImage::fill( uint pixel ) { if ( depth() == 1 || depth() == 8 ) { if ( depth() == 1 ) { if ( pixel & 1 ) pixel = 0xffffffff; else pixel = 0; } else { uint c = pixel & 0xff; pixel = c | ((c << 8) & 0xff00) | ((c << 16) & 0xff0000) | ((c << 24) & 0xff000000); } int bpl = bytesPerLine(); for ( int i=0; i // needed for systemBitOrder #include #include #if defined(Q_OS_WIN32) #undef open #undef close #undef read #undef write #endif #endif // POSIX Large File Support redefines open -> open64 #if defined(open) # undef open #endif // POSIX Large File Support redefines truncate -> truncate64 #if defined(truncate) # undef truncate #endif /*! Determines the bit order of the display hardware. Returns TQImage::LittleEndian (LSB first) or TQImage::BigEndian (MSB first). \sa systemByteOrder() */ TQImage::Endian TQImage::systemBitOrder() { #if defined(TQ_WS_X11) return BitmapBitOrder(tqt_xdisplay()) == MSBFirst ? BigEndian :LittleEndian; #else return BigEndian; #endif } /*! Resizes the color table to \a numColors colors. If the color table is expanded all the extra colors will be set to black (RGB 0,0,0). \sa numColors() color() setColor() colorTable() */ void TQImage::setNumColors( int numColors ) { if ( numColors == data->ncols ) return; if ( numColors == 0 ) { // use no color table if ( data->ctbl ) { if ( data->ctbl_mine ) free( data->ctbl ); else data->ctbl_mine = TRUE; data->ctbl = 0; } data->ncols = 0; return; } if ( data->ctbl && data->ctbl_mine ) { // already has color table data->ctbl = (TQRgb*)realloc( data->ctbl, numColors*sizeof(TQRgb) ); if ( data->ctbl && numColors > data->ncols ) memset( (char *)&data->ctbl[data->ncols], 0, (numColors-data->ncols)*sizeof(TQRgb) ); } else { // create new color table data->ctbl = (TQRgb*)calloc( numColors*sizeof(TQRgb), 1 ); TQ_CHECK_PTR(data->ctbl); data->ctbl_mine = TRUE; } data->ncols = data->ctbl == 0 ? 0 : numColors; } /*! \fn bool TQImage::hasAlphaBuffer() const Returns TRUE if alpha buffer mode is enabled; otherwise returns FALSE. \sa setAlphaBuffer() */ /*! Enables alpha buffer mode if \a enable is TRUE, otherwise disables it. The default setting is disabled. An 8-bpp image has 8-bit pixels. A pixel is an index into the \link color() color table\endlink, which contains 32-bit color values. In a 32-bpp image, the 32-bit pixels are the color values. This 32-bit value is encoded as follows: The lower 24 bits are used for the red, green, and blue components. The upper 8 bits contain the alpha component. The alpha component specifies the transparency of a pixel. 0 means completely transparent and 255 means opaque. The alpha component is ignored if you do not enable alpha buffer mode. The alpha buffer is used to set a mask when a TQImage is translated to a TQPixmap. \sa hasAlphaBuffer() createAlphaMask() */ void TQImage::setAlphaBuffer( bool enable ) { data->alpha = enable; } /*! Sets the image \a width, \a height, \a depth, its number of colors (in \a numColors), and bit order. Returns TRUE if successful, or FALSE if the parameters are incorrect or if memory cannot be allocated. The \a width and \a height is limited to 32767. \a depth must be 1, 8, or 32. If \a depth is 1, \a bitOrder must be set to either TQImage::LittleEndian or TQImage::BigEndian. For other depths \a bitOrder must be TQImage::IgnoreEndian. This function allocates a color table and a buffer for the image data. The image data is not initialized. The image buffer is allocated as a single block that consists of a table of \link scanLine() scanline\endlink pointers (jumpTable()) and the image data (bits()). \sa fill() width() height() depth() numColors() bitOrder() jumpTable() scanLine() bits() bytesPerLine() numBytes() */ bool TQImage::create( int width, int height, int depth, int numColors, Endian bitOrder ) { reset(); // reset old data if ( width <= 0 || height <= 0 || depth <= 0 || numColors < 0 ) return FALSE; // invalid parameter(s) if ( depth == 1 && bitOrder == IgnoreEndian ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::create: Bit order is required for 1 bpp images" ); #endif return FALSE; } if ( depth != 1 ) bitOrder = IgnoreEndian; #if defined(QT_CHECK_RANGE) if ( depth == 24 ) tqWarning( "TQImage::create: 24-bpp images no longer supported, " "use 32-bpp instead" ); #endif switch ( depth ) { case 1: case 8: #ifndef TQT_NO_IMAGE_16_BIT case 16: #endif #ifndef TQT_NO_IMAGE_TRUECOLOR case 32: #endif break; default: // invalid depth return FALSE; } if ( depth == 32 ) numColors = 0; setNumColors( numColors ); if ( data->ncols != numColors ) // could not alloc color table return FALSE; if ( INT_MAX / uint(depth) < uint(width) ) { // sanity check for potential overflow setNumColors( 0 ); return FALSE; } const int bpl = ((width*depth+31)/32)*4; // bytes per scanline // #### WWA: shouldn't this be (width*depth+7)/8: const int pad = bpl - (width*depth)/8; // pad with zeros if ( INT_MAX / uint(bpl) < uint(height) || bpl < 0 || INT_MAX / sizeof(uchar *) < uint(height) ) { // sanity check for potential overflow setNumColors( 0 ); return FALSE; } int nbytes = bpl*height; // image size int ptbl = height*sizeof(uchar*); // pointer table size int size = nbytes + ptbl; // total size of data block uchar **p = (uchar **)malloc( size ); // alloc image bits TQ_CHECK_PTR(p); if ( !p ) { // no memory setNumColors( 0 ); return FALSE; } data->w = width; data->h = height; data->d = depth; data->nbytes = nbytes; data->bitordr = bitOrder; data->bits = p; // set image pointer //uchar *d = (uchar*)p + ptbl; // setup scanline pointers uchar *d = (uchar*)(p + height); // setup scanline pointers while ( height-- ) { *p++ = d; if ( pad ) memset( d+bpl-pad, 0, pad ); d += bpl; } return TRUE; } /*! \overload bool TQImage::create( const TQSize&, int depth, int numColors, Endian bitOrder ) */ bool TQImage::create( const TQSize& size, int depth, int numColors, TQImage::Endian bitOrder ) { return create(size.width(), size.height(), depth, numColors, bitOrder); } /*! \internal Initializes the image data structure. */ void TQImage::init() { data = new TQImageData; TQ_CHECK_PTR( data ); reinit(); } void TQImage::reinit() { data->w = data->h = data->d = data->ncols = 0; data->nbytes = 0; data->ctbl = 0; data->bits = 0; data->bitordr = TQImage::IgnoreEndian; data->alpha = FALSE; #ifndef TQT_NO_IMAGE_TEXT data->misc = 0; #endif data->dpmx = 0; data->dpmy = 0; data->offset = TQPoint(0,0); } /*! \internal Deallocates the image data and sets the bits pointer to 0. */ void TQImage::freeBits() { if ( data->bits ) { // dealloc image bits free( data->bits ); data->bits = 0; } } /***************************************************************************** Internal routines for converting image depth. *****************************************************************************/ // // convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit // image with a colormap. If the 32 bit image has more than 256 colors, // we convert the red,green and blue bytes into a single byte encoded // as 6 shades of each of red, green and blue. // // if dithering is needed, only 1 color at most is available for alpha. // #ifndef TQT_NO_IMAGE_TRUECOLOR struct TQRgbMap { TQRgbMap() : rgb(0xffffffff) { } bool used() const { return rgb!=0xffffffff; } uchar pix; TQRgb rgb; }; static bool convert_32_to_8( const TQImage *src, TQImage *dst, int conversion_flags, TQRgb* palette=0, int palette_count=0 ) { TQRgb *p; uchar *b; bool do_quant = FALSE; int y, x; if ( !dst->create(src->width(), src->height(), 8, 256) ) return FALSE; const int tablesize = 997; // prime TQRgbMap table[tablesize]; int pix=0; TQRgb amask = src->hasAlphaBuffer() ? 0xffffffff : 0x00ffffff; if ( src->hasAlphaBuffer() ) dst->setAlphaBuffer(TRUE); if ( palette ) { // Preload palette into table. p = palette; // Almost same code as pixel insertion below while ( palette_count-- > 0 ) { // Find in table... int hash = (*p & amask) % tablesize; for (;;) { if ( table[hash].used() ) { if ( table[hash].rgb == (*p & amask) ) { // Found previous insertion - use it break; } else { // Keep searching... if (++hash == tablesize) hash = 0; } } else { // Cannot be in table Q_ASSERT ( pix != 256 ); // too many colors // Insert into table at this unused position dst->setColor( pix, (*p & amask) ); table[hash].pix = pix++; table[hash].rgb = *p & amask; break; } } p++; } } if ( (conversion_flags & TQt::DitherMode_Mask) == TQt::PreferDither ) { do_quant = TRUE; } else { for ( y=0; yheight(); y++ ) { // check if <= 256 colors p = (TQRgb *)src->scanLine(y); b = dst->scanLine(y); x = src->width(); while ( x-- ) { // Find in table... int hash = (*p & amask) % tablesize; for (;;) { if ( table[hash].used() ) { if ( table[hash].rgb == (*p & amask) ) { // Found previous insertion - use it break; } else { // Keep searching... if (++hash == tablesize) hash = 0; } } else { // Cannot be in table if ( pix == 256 ) { // too many colors do_quant = TRUE; // Break right out x = 0; y = src->height(); } else { // Insert into table at this unused position dst->setColor( pix, (*p & amask) ); table[hash].pix = pix++; table[hash].rgb = (*p & amask); } break; } } *b++ = table[hash].pix; // May occur once incorrectly p++; } } } int ncols = do_quant ? 256 : pix; static uint bm[16][16]; static int init=0; if (!init) { // Build a Bayer Matrix for dithering init = 1; int n, i, j; bm[0][0]=0; for (n=1; n<16; n*=2) { for (i=0; isetNumColors( ncols ); if ( do_quant ) { // quantization needed #define MAX_R 5 #define MAX_G 5 #define MAX_B 5 #define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b)) int rc, gc, bc; for ( rc=0; rc<=MAX_R; rc++ ) // build 6x6x6 color cube for ( gc=0; gc<=MAX_G; gc++ ) for ( bc=0; bc<=MAX_B; bc++ ) { dst->setColor( INDEXOF(rc,gc,bc), (amask&0xff000000) | tqRgb( rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B ) ); } int sw = src->width(); int* line1[3]; int* line2[3]; int* pv[3]; if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::DiffuseDither ) { line1[0] = new int[sw]; line2[0] = new int[sw]; line1[1] = new int[sw]; line2[1] = new int[sw]; line1[2] = new int[sw]; line2[2] = new int[sw]; pv[0] = new int[sw]; pv[1] = new int[sw]; pv[2] = new int[sw]; } for ( y=0; y < src->height(); y++ ) { p = (TQRgb *)src->scanLine(y); b = dst->scanLine(y); TQRgb *end = p + sw; // perform quantization if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) { #define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255)) while ( p < end ) { rc = tqRed( *p ); gc = tqGreen( *p ); bc = tqBlue( *p ); *b++ = INDEXOF( DITHER(rc, MAX_R), DITHER(gc, MAX_G), DITHER(bc, MAX_B) ); p++; } #undef DITHER } else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) { #define DITHER(p,d,m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) / 65536 )) int x = 0; while ( p < end ) { uint d = bm[y&15][x&15]; rc = tqRed( *p ); gc = tqGreen( *p ); bc = tqBlue( *p ); *b++ = INDEXOF( DITHER(rc, d, MAX_R), DITHER(gc, d, MAX_G), DITHER(bc, d, MAX_B) ); p++; x++; } #undef DITHER } else { // Diffuse int endian = (TQImage::systemByteOrder() == TQImage::BigEndian); int x; uchar* q = src->scanLine(y); uchar* q2 = src->scanLine(y+1 < src->height() ? y + 1 : 0); for (int chan = 0; chan < 3; chan++) { b = dst->scanLine(y); int *l1 = (y&1) ? line2[chan] : line1[chan]; int *l2 = (y&1) ? line1[chan] : line2[chan]; if ( y == 0 ) { for (int i=0; iheight() ) { for (int i=0; i>4; l2[x+1] += err>>4; } l2[x]+=(err*5)>>4; if (x>1) l2[x-1]+=(err*3)>>4; } } else { for (x=sw; x-->0; ) { int pix = TQMAX(TQMIN(5, (l1[x] * 5 + 128)/ 255), 0); int err = l1[x] - pix * 255 / 5; pv[chan][x] = pix; // Spread the error around... if ( x > 0 ) { l1[x-1] += (err*7)>>4; l2[x-1] += err>>4; } l2[x]+=(err*5)>>4; if (x+1 < sw) l2[x+1]+=(err*3)>>4; } } } if (endian) { for (x=0; xhasAlphaBuffer() ) { const int trans = 216; dst->setColor(trans, 0x00000000); // transparent TQImage mask = src->createAlphaMask(conversion_flags); uchar* m; for ( y=0; y < src->height(); y++ ) { uchar bit = 0x80; m = mask.scanLine(y); b = dst->scanLine(y); int w = src->width(); for ( x = 0; x>= 1)) { bit = 0x80; while ( xcreate(src->width(), src->height(), 32) ) return FALSE; // create failed dst->setAlphaBuffer( src->hasAlphaBuffer() ); for ( int y=0; yheight(); y++ ) { // for each scan line... uint *p = (uint *)dst->scanLine(y); uchar *b = src->scanLine(y); uint *end = p + dst->width(); while ( p < end ) *p++ = src->color(*b++); } return TRUE; } static bool convert_1_to_32( const TQImage *src, TQImage *dst ) { if ( !dst->create(src->width(), src->height(), 32) ) return FALSE; // could not create dst->setAlphaBuffer( src->hasAlphaBuffer() ); for ( int y=0; yheight(); y++ ) { // for each scan line... uint *p = (uint *)dst->scanLine(y); uchar *b = src->scanLine(y); int x; if ( src->bitOrder() == TQImage::BigEndian ) { for ( x=0; xwidth(); x++ ) { *p++ = src->color( (*b >> (7 - (x & 7))) & 1 ); if ( (x & 7) == 7 ) b++; } } else { for ( x=0; xwidth(); x++ ) { *p++ = src->color( (*b >> (x & 7)) & 1 ); if ( (x & 7) == 7 ) b++; } } } return TRUE; } #endif // TQT_NO_IMAGE_TRUECOLOR static bool convert_1_to_8( const TQImage *src, TQImage *dst ) { if ( !dst->create(src->width(), src->height(), 8, 2) ) return FALSE; // something failed dst->setAlphaBuffer( src->hasAlphaBuffer() ); if (src->numColors() >= 2) { dst->setColor( 0, src->color(0) ); // copy color table dst->setColor( 1, src->color(1) ); } else { // Unlikely, but they do exist if (src->numColors() >= 1) dst->setColor( 0, src->color(0) ); else dst->setColor( 0, 0xffffffff ); dst->setColor( 1, 0xff000000 ); } for ( int y=0; yheight(); y++ ) { // for each scan line... uchar *p = dst->scanLine(y); uchar *b = src->scanLine(y); int x; if ( src->bitOrder() == TQImage::BigEndian ) { for ( x=0; xwidth(); x++ ) { *p++ = (*b >> (7 - (x & 7))) & 1; if ( (x & 7) == 7 ) b++; } } else { for ( x=0; xwidth(); x++ ) { *p++ = (*b >> (x & 7)) & 1; if ( (x & 7) == 7 ) b++; } } } return TRUE; } #ifndef TQT_NO_IMAGE_DITHER_TO_1 // // dither_to_1: Uses selected dithering algorithm. // static bool dither_to_1( const TQImage *src, TQImage *dst, int conversion_flags, bool fromalpha ) { if ( !dst->create(src->width(), src->height(), 1, 2, TQImage::BigEndian) ) return FALSE; // something failed enum { Threshold, Ordered, Diffuse } dithermode; if ( fromalpha ) { if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::DiffuseAlphaDither ) dithermode = Diffuse; else if ( ( conversion_flags & TQt::AlphaDither_Mask ) == TQt::OrderedAlphaDither ) dithermode = Ordered; else dithermode = Threshold; } else { if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::ThresholdDither ) dithermode = Threshold; else if ( ( conversion_flags & TQt::Dither_Mask ) == TQt::OrderedDither ) dithermode = Ordered; else dithermode = Diffuse; } dst->setColor( 0, tqRgb(255, 255, 255) ); dst->setColor( 1, tqRgb( 0, 0, 0) ); int w = src->width(); int h = src->height(); int d = src->depth(); uchar gray[256]; // gray map for 8 bit images bool use_gray = d == 8; if ( use_gray ) { // make gray map if ( fromalpha ) { // Alpha 0x00 -> 0 pixels (white) // Alpha 0xFF -> 1 pixels (black) for ( int i=0; inumColors(); i++ ) gray[i] = (255 - (src->color(i) >> 24)); } else { // Pixel 0x00 -> 1 pixels (black) // Pixel 0xFF -> 0 pixels (white) for ( int i=0; inumColors(); i++ ) gray[i] = tqGray( src->color(i) & 0x00ffffff ); } } switch ( dithermode ) { case Diffuse: { int *line1 = new int[w]; int *line2 = new int[w]; int bmwidth = (w+7)/8; if ( !(line1 && line2) ) return FALSE; uchar *p; uchar *end; int *b1, *b2; int wbytes = w * (d/8); p = src->bits(); end = p + wbytes; b2 = line2; if ( use_gray ) { // 8 bit image while ( p < end ) *b2++ = gray[*p++]; #ifndef TQT_NO_IMAGE_TRUECOLOR } else { // 32 bit image if ( fromalpha ) { while ( p < end ) { *b2++ = 255 - (*(uint*)p >> 24); p += 4; } } else { while ( p < end ) { *b2++ = tqGray(*(uint*)p); p += 4; } } #endif } int x, y; for ( y=0; yscanLine(y+1); end = p + wbytes; b2 = line2; if ( use_gray ) { // 8 bit image while ( p < end ) *b2++ = gray[*p++]; #ifndef TQT_NO_IMAGE_TRUECOLOR } else { // 24 bit image if ( fromalpha ) { while ( p < end ) { *b2++ = 255 - (*(uint*)p >> 24); p += 4; } } else { while ( p < end ) { *b2++ = tqGray(*(uint*)p); p += 4; } } #endif } } int err; p = dst->scanLine( y ); memset( p, 0, bmwidth ); b1 = line1; b2 = line2; int bit = 7; for ( x=1; x<=w; x++ ) { if ( *b1 < 128 ) { // black pixel err = *b1++; *p |= 1 << bit; } else { // white pixel err = *b1++ - 255; } if ( bit == 0 ) { p++; bit = 7; } else { bit--; } if ( x < w ) *b1 += (err*7)>>4; // spread error to right pixel if ( not_last_line ) { b2[0] += (err*5)>>4; // pixel below if ( x > 1 ) b2[-1] += (err*3)>>4; // pixel below left if ( x < w ) b2[1] += err>>4; // pixel below right } b2++; } } delete [] line1; delete [] line2; } break; case Ordered: { static uint bm[16][16]; static int init=0; if (!init) { // Build a Bayer Matrix for dithering init = 1; int n, i, j; bm[0][0]=0; for (n=1; n<16; n*=2) { for (i=0; ifill( 0 ); uchar** mline = dst->jumpTable(); #ifndef TQT_NO_IMAGE_TRUECOLOR if ( d == 32 ) { uint** line = (uint**)src->jumpTable(); for ( int i=0; i> 24) >= bm[j++&15][i&15] ) *m |= 1 << bit; if ( bit == 0 ) { m++; bit = 7; } else { bit--; } } } else { while ( p < end ) { if ( (uint)tqGray(*p++) < bm[j++&15][i&15] ) *m |= 1 << bit; if ( bit == 0 ) { m++; bit = 7; } else { bit--; } } } } } else #endif // TQT_NO_IMAGE_TRUECOLOR /* ( d == 8 ) */ { uchar** line = src->jumpTable(); for ( int i=0; ifill( 0 ); uchar** mline = dst->jumpTable(); #ifndef TQT_NO_IMAGE_TRUECOLOR if ( d == 32 ) { uint** line = (uint**)src->jumpTable(); for ( int i=0; i> 24) >= 128 ) *m |= 1 << bit; // Set mask "on" if ( bit == 0 ) { m++; bit = 7; } else { bit--; } } } else { while ( p < end ) { if ( tqGray(*p++) < 128 ) *m |= 1 << bit; // Set pixel "black" if ( bit == 0 ) { m++; bit = 7; } else { bit--; } } } } } else #endif //TQT_NO_IMAGE_TRUECOLOR if ( d == 8 ) { uchar** line = src->jumpTable(); for ( int i=0; i> 11; int g=(c & 0x07e0) >> 6; //green/2 int b=(c & 0x001f); return r == g && g == b; } static bool convert_16_to_32( const TQImage *src, TQImage *dst ) { if ( !dst->create(src->width(), src->height(), 32) ) return FALSE; // create failed dst->setAlphaBuffer( src->hasAlphaBuffer() ); for ( int y=0; yheight(); y++ ) { // for each scan line... uint *p = (uint *)dst->scanLine(y); ushort *s = (ushort*)src->scanLine(y); uint *end = p + dst->width(); while ( p < end ) *p++ = qt_conv16ToRgb( *s++ ); } return TRUE; } static bool convert_32_to_16( const TQImage *src, TQImage *dst ) { if ( !dst->create(src->width(), src->height(), 16) ) return FALSE; // create failed dst->setAlphaBuffer( src->hasAlphaBuffer() ); for ( int y=0; yheight(); y++ ) { // for each scan line... ushort *p = (ushort *)dst->scanLine(y); uint *s = (uint*)src->scanLine(y); ushort *end = p + dst->width(); while ( p < end ) *p++ = qt_convRgbTo16( *s++ ); } return TRUE; } #endif /*! Converts the depth (bpp) of the image to \a depth and returns the converted image. The original image is not changed. The \a depth argument must be 1, 8 or 32. Returns \c *this if \a depth is equal to the image depth, or a \link isNull() null\endlink image if this image cannot be converted. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a conversion_flags to specify how you'd prefer this to happen. \sa TQt::ImageConversionFlags depth() isNull() */ TQImage TQImage::convertDepth( int depth, int conversion_flags ) const { TQImage image; if ( data->d == depth ) image = *this; // no conversion #ifndef TQT_NO_IMAGE_DITHER_TO_1 else if ( (data->d == 8 || data->d == 32) && depth == 1 ) // dither dither_to_1( this, &image, conversion_flags, FALSE ); #endif #ifndef TQT_NO_IMAGE_TRUECOLOR else if ( data->d == 32 && depth == 8 ) // 32 -> 8 convert_32_to_8( this, &image, conversion_flags ); else if ( data->d == 8 && depth == 32 ) // 8 -> 32 convert_8_to_32( this, &image ); #endif else if ( data->d == 1 && depth == 8 ) // 1 -> 8 convert_1_to_8( this, &image ); #ifndef TQT_NO_IMAGE_TRUECOLOR else if ( data->d == 1 && depth == 32 ) // 1 -> 32 convert_1_to_32( this, &image ); #endif #ifndef TQT_NO_IMAGE_16_BIT else if ( data->d == 16 && depth != 16 ) { TQImage tmp; convert_16_to_32( this, &tmp ); image = tmp.convertDepth( depth, conversion_flags ); } else if ( data->d != 16 && depth == 16 ) { TQImage tmp = convertDepth( 32, conversion_flags ); convert_32_to_16( &tmp, &image ); } #endif else { #if defined(QT_CHECK_RANGE) if ( isNull() ) tqWarning( "TQImage::convertDepth: Image is a null image" ); else tqWarning( "TQImage::convertDepth: Depth %d not supported", depth ); #endif } return image; } /*! \overload */ TQImage TQImage::convertDepth( int depth ) const { return convertDepth( depth, 0 ); } /*! Returns TRUE if ( \a x, \a y ) is a valid coordinate in the image; otherwise returns FALSE. \sa width() height() pixelIndex() */ bool TQImage::valid( int x, int y ) const { return x >= 0 && x < width() && y >= 0 && y < height(); } /*! Returns the pixel index at the given coordinates. If (\a x, \a y) is not \link valid() valid\endlink, or if the image is not a paletted image (depth() \> 8), the results are undefined. \sa valid() depth() */ int TQImage::pixelIndex( int x, int y ) const { #if defined(QT_CHECK_RANGE) if ( x < 0 || x >= width() ) { tqWarning( "TQImage::pixel: x=%d out of range", x ); return -12345; } #endif uchar * s = scanLine( y ); switch( depth() ) { case 1: if ( bitOrder() == TQImage::LittleEndian ) return (*(s + (x >> 3)) >> (x & 7)) & 1; else return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; case 8: return (int)s[x]; #ifndef TQT_NO_IMAGE_TRUECOLOR #ifndef TQT_NO_IMAGE_16_BIT case 16: #endif case 32: #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::pixelIndex: Not applicable for %d-bpp images " "(no palette)", depth() ); #endif return 0; #endif //TQT_NO_IMAGE_TRUECOLOR } return 0; } /*! Returns the color of the pixel at the coordinates (\a x, \a y). If (\a x, \a y) is not \link valid() on the image\endlink, the results are undefined. \sa setPixel() tqRed() tqGreen() tqBlue() valid() */ TQRgb TQImage::pixel( int x, int y ) const { #if defined(QT_CHECK_RANGE) if ( x < 0 || x >= width() ) { tqWarning( "TQImage::pixel: x=%d out of range", x ); return 12345; } #endif uchar * s = scanLine( y ); switch( depth() ) { case 1: if ( bitOrder() == TQImage::LittleEndian ) return color( (*(s + (x >> 3)) >> (x & 7)) & 1 ); else return color( (*(s + (x >> 3)) >> (7- (x & 7))) & 1 ); case 8: return color( (int)s[x] ); #ifndef TQT_NO_IMAGE_16_BIT case 16: return qt_conv16ToRgb(((ushort*)s)[x]); #endif #ifndef TQT_NO_IMAGE_TRUECOLOR case 32: return ((TQRgb*)s)[x]; #endif default: return 100367; } } /*! Sets the pixel index or color at the coordinates (\a x, \a y) to \a index_or_rgb. If (\a x, \a y) is not \link valid() valid\endlink, the result is undefined. If the image is a paletted image (depth() \<= 8) and \a index_or_rgb \>= numColors(), the result is undefined. \sa pixelIndex() pixel() tqRgb() tqRgba() valid() */ void TQImage::setPixel( int x, int y, uint index_or_rgb ) { if ( x < 0 || x >= width() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::setPixel: x=%d out of range", x ); #endif return; } if ( depth() == 1 ) { uchar * s = scanLine( y ); if ( index_or_rgb > 1) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::setPixel: index=%d out of range", index_or_rgb ); #endif } else if ( bitOrder() == TQImage::LittleEndian ) { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (x & 7)); else *(s + (x >> 3)) |= (1 << (x & 7)); } else { if (index_or_rgb==0) *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); else *(s + (x >> 3)) |= (1 << (7-(x & 7))); } } else if ( depth() == 8 ) { if (index_or_rgb > (uint)numColors()) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::setPixel: index=%d out of range", index_or_rgb ); #endif return; } uchar * s = scanLine( y ); s[x] = index_or_rgb; #ifndef TQT_NO_IMAGE_16_BIT } else if ( depth() == 16 ) { ushort * s = (ushort*)scanLine( y ); s[x] = qt_convRgbTo16(index_or_rgb); #endif #ifndef TQT_NO_IMAGE_TRUECOLOR } else if ( depth() == 32 ) { TQRgb * s = (TQRgb*)scanLine( y ); s[x] = index_or_rgb; #endif } } /*! Converts the bit order of the image to \a bitOrder and returns the converted image. The original image is not changed. Returns \c *this if the \a bitOrder is equal to the image bit order, or a \link isNull() null\endlink image if this image cannot be converted. \sa bitOrder() systemBitOrder() isNull() */ TQImage TQImage::convertBitOrder( Endian bitOrder ) const { if ( isNull() || data->d != 1 || // invalid argument(s) !(bitOrder == BigEndian || bitOrder == LittleEndian) ) { TQImage nullImage; return nullImage; } if ( data->bitordr == bitOrder ) // nothing to do return copy(); TQImage image( data->w, data->h, 1, data->ncols, bitOrder ); int bpl = (width() + 7) / 8; for ( int y = 0; y < data->h; y++ ) { uchar *p = jumpTable()[y]; uchar *end = p + bpl; uchar *b = image.jumpTable()[y]; while ( p < end ) *b++ = bitflip[*p++]; } memcpy( image.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); return image; } // ### Candidate (renamed) for tqcolor.h static bool isGray(TQRgb c) { return tqRed(c) == tqGreen(c) && tqRed(c) == tqBlue(c); } /*! Returns TRUE if all the colors in the image are shades of gray (i.e. their red, green and blue components are equal); otherwise returns FALSE. This function is slow for large 32-bit images. \sa isGrayscale() */ bool TQImage::allGray() const { #ifndef TQT_NO_IMAGE_TRUECOLOR if (depth()==32) { int p = width()*height(); TQRgb* b = (TQRgb*)bits(); while (p--) if (!isGray(*b++)) return FALSE; #ifndef TQT_NO_IMAGE_16_BIT } else if (depth()==16) { int p = width()*height(); ushort* b = (ushort*)bits(); while (p--) if (!is16BitGray(*b++)) return FALSE; #endif } else #endif //TQT_NO_IMAGE_TRUECOLOR { if (!data->ctbl) return TRUE; for (int i=0; ictbl[i])) return FALSE; } return TRUE; } /*! For 32-bit images, this function is equivalent to allGray(). For 8-bpp images, this function returns TRUE if color(i) is TQRgb(i,i,i) for all indices of the color table; otherwise returns FALSE. \sa allGray() depth() */ bool TQImage::isGrayscale() const { switch (depth()) { #ifndef TQT_NO_IMAGE_TRUECOLOR case 32: #ifndef TQT_NO_IMAGE_16_BIT case 16: #endif return allGray(); #endif //TQT_NO_IMAGE_TRUECOLOR case 8: { for (int i=0; ictbl[i] != tqRgb(i,i,i)) return FALSE; return TRUE; } } return FALSE; } #ifndef TQT_NO_IMAGE_SMOOTHSCALE static void pnmscale(const TQImage& src, TQImage& dst) { TQRgb* xelrow = 0; TQRgb* tempxelrow = 0; TQRgb* xP; TQRgb* nxP; int rows, cols, rowsread, newrows, newcols; int row, col, needtoreadrow; const uchar maxval = 255; double xscale, yscale; long sxscale, syscale; long fracrowtofill, fracrowleft; long* as; long* rs; long* gs; long* bs; int rowswritten = 0; cols = src.width(); rows = src.height(); newcols = dst.width(); newrows = dst.height(); long SCALE; long HALFSCALE; if (cols > 4096) { SCALE = 4096; HALFSCALE = 2048; } else { int fac = 4096; while (cols * fac > 4096) { fac /= 2; } SCALE = fac * cols; HALFSCALE = fac * cols / 2; } xscale = (double) newcols / (double) cols; yscale = (double) newrows / (double) rows; sxscale = (long)(xscale * SCALE); syscale = (long)(yscale * SCALE); if ( newrows != rows ) /* shortcut Y scaling if possible */ tempxelrow = new TQRgb[cols]; if ( src.hasAlphaBuffer() ) { dst.setAlphaBuffer(TRUE); as = new long[cols]; for ( col = 0; col < cols; ++col ) as[col] = HALFSCALE; } else { as = 0; } rs = new long[cols]; gs = new long[cols]; bs = new long[cols]; rowsread = 0; fracrowleft = syscale; needtoreadrow = 1; for ( col = 0; col < cols; ++col ) rs[col] = gs[col] = bs[col] = HALFSCALE; fracrowtofill = SCALE; for ( row = 0; row < newrows; ++row ) { /* First scale Y from xelrow into tempxelrow. */ if ( newrows == rows ) { /* shortcut Y scaling if possible */ tempxelrow = xelrow = (TQRgb*)src.scanLine(rowsread++); } else { while ( fracrowleft < fracrowtofill ) { if ( needtoreadrow && rowsread < rows ) xelrow = (TQRgb*)src.scanLine(rowsread++); for ( col = 0, xP = xelrow; col < cols; ++col, ++xP ) { if (as) { as[col] += fracrowleft * tqAlpha( *xP ); rs[col] += fracrowleft * tqRed( *xP ) * tqAlpha( *xP ) / 255; gs[col] += fracrowleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255; bs[col] += fracrowleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255; } else { rs[col] += fracrowleft * tqRed( *xP ); gs[col] += fracrowleft * tqGreen( *xP ); bs[col] += fracrowleft * tqBlue( *xP ); } } fracrowtofill -= fracrowleft; fracrowleft = syscale; needtoreadrow = 1; } /* Now fracrowleft is >= fracrowtofill, so we can produce a row. */ if ( needtoreadrow && rowsread < rows ) { xelrow = (TQRgb*)src.scanLine(rowsread++); needtoreadrow = 0; } long a=0; for ( col = 0, xP = xelrow, nxP = tempxelrow; col < cols; ++col, ++xP, ++nxP ) { long r, g, b; if ( as ) { r = rs[col] + fracrowtofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; g = gs[col] + fracrowtofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; b = bs[col] + fracrowtofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; a = as[col] + fracrowtofill * tqAlpha( *xP ); if ( a ) { r = r * 255 / a * SCALE; g = g * 255 / a * SCALE; b = b * 255 / a * SCALE; } } else { r = rs[col] + fracrowtofill * tqRed( *xP ); g = gs[col] + fracrowtofill * tqGreen( *xP ); b = bs[col] + fracrowtofill * tqBlue( *xP ); } r /= SCALE; if ( r > maxval ) r = maxval; g /= SCALE; if ( g > maxval ) g = maxval; b /= SCALE; if ( b > maxval ) b = maxval; if ( as ) { a /= SCALE; if ( a > maxval ) a = maxval; *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); as[col] = HALFSCALE; } else { *nxP = tqRgb( (int)r, (int)g, (int)b ); } rs[col] = gs[col] = bs[col] = HALFSCALE; } fracrowleft -= fracrowtofill; if ( fracrowleft == 0 ) { fracrowleft = syscale; needtoreadrow = 1; } fracrowtofill = SCALE; } /* Now scale X from tempxelrow into dst and write it out. */ if ( newcols == cols ) { /* shortcut X scaling if possible */ memcpy(dst.scanLine(rowswritten++), tempxelrow, newcols*4); } else { long a, r, g, b; long fraccoltofill, fraccolleft = 0; int needcol; nxP = (TQRgb*)dst.scanLine(rowswritten++); fraccoltofill = SCALE; a = r = g = b = HALFSCALE; needcol = 0; for ( col = 0, xP = tempxelrow; col < cols; ++col, ++xP ) { fraccolleft = sxscale; while ( fraccolleft >= fraccoltofill ) { if ( needcol ) { ++nxP; a = r = g = b = HALFSCALE; } if ( as ) { r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; a += fraccoltofill * tqAlpha( *xP ); if ( a ) { r = r * 255 / a * SCALE; g = g * 255 / a * SCALE; b = b * 255 / a * SCALE; } } else { r += fraccoltofill * tqRed( *xP ); g += fraccoltofill * tqGreen( *xP ); b += fraccoltofill * tqBlue( *xP ); } r /= SCALE; if ( r > maxval ) r = maxval; g /= SCALE; if ( g > maxval ) g = maxval; b /= SCALE; if ( b > maxval ) b = maxval; if (as) { a /= SCALE; if ( a > maxval ) a = maxval; *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); } else { *nxP = tqRgb( (int)r, (int)g, (int)b ); } fraccolleft -= fraccoltofill; fraccoltofill = SCALE; needcol = 1; } if ( fraccolleft > 0 ) { if ( needcol ) { ++nxP; a = r = g = b = HALFSCALE; needcol = 0; } if (as) { a += fraccolleft * tqAlpha( *xP ); r += fraccolleft * tqRed( *xP ) * tqAlpha( *xP ) / 255; g += fraccolleft * tqGreen( *xP ) * tqAlpha( *xP ) / 255; b += fraccolleft * tqBlue( *xP ) * tqAlpha( *xP ) / 255; } else { r += fraccolleft * tqRed( *xP ); g += fraccolleft * tqGreen( *xP ); b += fraccolleft * tqBlue( *xP ); } fraccoltofill -= fraccolleft; } } if ( fraccoltofill > 0 ) { --xP; if (as) { a += fraccolleft * tqAlpha( *xP ); r += fraccoltofill * tqRed( *xP ) * tqAlpha( *xP ) / 255; g += fraccoltofill * tqGreen( *xP ) * tqAlpha( *xP ) / 255; b += fraccoltofill * tqBlue( *xP ) * tqAlpha( *xP ) / 255; if ( a ) { r = r * 255 / a * SCALE; g = g * 255 / a * SCALE; b = b * 255 / a * SCALE; } } else { r += fraccoltofill * tqRed( *xP ); g += fraccoltofill * tqGreen( *xP ); b += fraccoltofill * tqBlue( *xP ); } } if ( ! needcol ) { r /= SCALE; if ( r > maxval ) r = maxval; g /= SCALE; if ( g > maxval ) g = maxval; b /= SCALE; if ( b > maxval ) b = maxval; if (as) { a /= SCALE; if ( a > maxval ) a = maxval; *nxP = tqRgba( (int)r, (int)g, (int)b, (int)a ); } else { *nxP = tqRgb( (int)r, (int)g, (int)b ); } } } } if ( newrows != rows && tempxelrow )// Robust, tempxelrow might be 0 1 day delete [] tempxelrow; if ( as ) // Avoid purify complaint delete [] as; if ( rs ) // Robust, rs might be 0 one day delete [] rs; if ( gs ) // Robust, gs might be 0 one day delete [] gs; if ( bs ) // Robust, bs might be 0 one day delete [] bs; } #endif /*! \enum TQImage::ScaleMode The functions scale() and smoothScale() use different modes for scaling the image. The purpose of these modes is to retain the ratio of the image if this is required. \img scaling.png \value ScaleFree The image is scaled freely: the resulting image fits exactly into the specified size; the ratio will not necessarily be preserved. \value ScaleMin The ratio of the image is preserved and the resulting image is guaranteed to fit into the specified size (it is as large as possible within these constraints) - the image might be smaller than the requested size. \value ScaleMax The ratio of the image is preserved and the resulting image fills the whole specified rectangle (it is as small as possible within these constraints) - the image might be larger than the requested size. */ #ifndef TQT_NO_IMAGE_SMOOTHSCALE /*! Returns a smoothly scaled copy of the image. The returned image has a size of width \a w by height \a h pixels if \a mode is \c ScaleFree. The modes \c ScaleMin and \c ScaleMax may be used to preserve the ratio of the image: if \a mode is \c ScaleMin, the returned image is guaranteed to fit into the rectangle specified by \a w and \a h (it is as large as possible within the constraints); if \a mode is \c ScaleMax, the returned image fits at least into the specified rectangle (it is a small as possible within the constraints). For 32-bpp images and 1-bpp/8-bpp color images the result will be 32-bpp, whereas \link allGray() all-gray \endlink images (including black-and-white 1-bpp) will produce 8-bit \link isGrayscale() grayscale \endlink images with the palette spanning 256 grays from black to white. This function uses code based on pnmscale.c by Jef Poskanzer. pnmscale.c - read a portable anymap and scale it \legalese Copyright (C) 1989, 1991 by Jef Poskanzer. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. This software is provided "as is" without express or implied warranty. \sa scale() mirror() */ TQImage TQImage::smoothScale( int w, int h, ScaleMode mode ) const { return smoothScale( TQSize( w, h ), mode ); } #endif #ifndef TQT_NO_IMAGE_SMOOTHSCALE /*! \overload The requested size of the image is \a s. */ TQImage TQImage::smoothScale( const TQSize& s, ScaleMode mode ) const { if ( isNull() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::smoothScale: Image is a null image" ); #endif return copy(); } TQSize newSize = size(); newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0 if ( newSize == size() ) return copy(); if ( depth() == 32 ) { TQImage img( newSize, 32 ); // 32-bpp to 32-bpp pnmscale( *this, img ); return img; } else if ( depth() != 16 && allGray() && !hasAlphaBuffer() ) { // Inefficient return convertDepth(32).smoothScale(newSize, mode).convertDepth(8); } else { // Inefficient return convertDepth(32).smoothScale(newSize, mode); } } #endif /*! Returns a copy of the image scaled to a rectangle of width \a w and height \a h according to the ScaleMode \a mode. \list \i If \a mode is \c ScaleFree, the image is scaled to (\a w, \a h). \i If \a mode is \c ScaleMin, the image is scaled to a rectangle as large as possible inside (\a w, \a h), preserving the aspect ratio. \i If \a mode is \c ScaleMax, the image is scaled to a rectangle as small as possible outside (\a w, \a h), preserving the aspect ratio. \endlist If either the width \a w or the height \a h is 0 or negative, this function returns a \link isNull() null\endlink image. This function uses a simple, fast algorithm. If you need better quality, use smoothScale() instead. \sa scaleWidth() scaleHeight() smoothScale() xForm() */ #ifndef TQT_NO_IMAGE_TRANSFORMATION TQImage TQImage::scale( int w, int h, ScaleMode mode ) const { return scale( TQSize( w, h ), mode ); } #endif /*! \overload The requested size of the image is \a s. */ #ifndef TQT_NO_IMAGE_TRANSFORMATION TQImage TQImage::scale( const TQSize& s, ScaleMode mode ) const { if ( isNull() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::scale: Image is a null image" ); #endif return copy(); } if ( s.isEmpty() ) return TQImage(); TQSize newSize = size(); newSize.scale( s, (TQSize::ScaleMode)mode ); // ### remove cast in TQt 4.0 if ( newSize == size() ) return copy(); TQImage img; TQWMatrix wm; wm.scale( (double)newSize.width() / width(), (double)newSize.height() / height() ); img = xForm( wm ); // ### I should test and resize the image if it has not the right size // if ( img.width() != newSize.width() || img.height() != newSize.height() ) // img.resize( newSize.width(), newSize.height() ); return img; } #endif /*! Returns a scaled copy of the image. The returned image has a width of \a w pixels. This function automatically calculates the height of the image so that the ratio of the image is preserved. If \a w is 0 or negative a \link isNull() null\endlink image is returned. \sa scale() scaleHeight() smoothScale() xForm() */ #ifndef TQT_NO_IMAGE_TRANSFORMATION TQImage TQImage::scaleWidth( int w ) const { if ( isNull() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::scaleWidth: Image is a null image" ); #endif return copy(); } if ( w <= 0 ) return TQImage(); TQWMatrix wm; double factor = (double) w / width(); wm.scale( factor, factor ); return xForm( wm ); } #endif /*! Returns a scaled copy of the image. The returned image has a height of \a h pixels. This function automatically calculates the width of the image so that the ratio of the image is preserved. If \a h is 0 or negative a \link isNull() null\endlink image is returned. \sa scale() scaleWidth() smoothScale() xForm() */ #ifndef TQT_NO_IMAGE_TRANSFORMATION TQImage TQImage::scaleHeight( int h ) const { if ( isNull() ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage::scaleHeight: Image is a null image" ); #endif return copy(); } if ( h <= 0 ) return TQImage(); TQWMatrix wm; double factor = (double) h / height(); wm.scale( factor, factor ); return xForm( wm ); } #endif /*! Returns a copy of the image that is transformed using the transformation matrix, \a matrix. The transformation \a matrix is internally adjusted to compensate for unwanted translation, i.e. xForm() returns the smallest image that contains all the transformed points of the original image. \sa scale() TQPixmap::xForm() TQPixmap::trueMatrix() TQWMatrix */ #ifndef TQT_NO_IMAGE_TRANSFORMATION TQImage TQImage::xForm( const TQWMatrix &matrix ) const { // This function uses the same algorithm as (and steals quite some // code from) TQPixmap::xForm(). if ( isNull() ) return copy(); if ( depth() == 16 ) { // inefficient return convertDepth( 32 ).xForm( matrix ); } // source image data int ws = width(); int hs = height(); int sbpl = bytesPerLine(); uchar *sptr = bits(); // target image data int wd; int hd; int bpp = depth(); // compute size of target image TQWMatrix mat = TQPixmap::trueMatrix( matrix, ws, hs ); if ( mat.m12() == 0.0F && mat.m21() == 0.0F ) { if ( mat.m11() == 1.0F && mat.m22() == 1.0F ) // identity matrix return copy(); hd = tqRound( mat.m22() * hs ); wd = tqRound( mat.m11() * ws ); hd = TQABS( hd ); wd = TQABS( wd ); } else { // rotation or shearing TQPointArray a( TQRect(0, 0, ws, hs) ); a = mat.map( a ); TQRect r = a.boundingRect().normalize(); wd = r.width(); hd = r.height(); } bool invertible; mat = mat.invert( &invertible ); // invert matrix if ( hd == 0 || wd == 0 || !invertible ) // error, return null image return TQImage(); // create target image (some of the code is from TQImage::copy()) TQImage dImage( wd, hd, depth(), numColors(), bitOrder() ); // If the image allocation failed, we need to gracefully abort. if (dImage.isNull()) return dImage; memcpy( dImage.colorTable(), colorTable(), numColors()*sizeof(TQRgb) ); dImage.setAlphaBuffer( hasAlphaBuffer() ); dImage.data->dpmx = dotsPerMeterX(); dImage.data->dpmy = dotsPerMeterY(); switch ( bpp ) { // initizialize the data case 1: memset( dImage.bits(), 0, dImage.numBytes() ); break; case 8: if ( dImage.data->ncols < 256 ) { // colors are left in the color table, so pick that one as transparent dImage.setNumColors( dImage.data->ncols+1 ); dImage.setColor( dImage.data->ncols-1, 0x00 ); memset( dImage.bits(), dImage.data->ncols-1, dImage.numBytes() ); } else { memset( dImage.bits(), 0, dImage.numBytes() ); } break; case 16: memset( dImage.bits(), 0xff, dImage.numBytes() ); break; case 32: memset( dImage.bits(), 0x00, dImage.numBytes() ); break; } int type; if ( bitOrder() == BigEndian ) type = QT_XFORM_TYPE_MSBFIRST; else type = QT_XFORM_TYPE_LSBFIRST; int dbpl = dImage.bytesPerLine(); qt_xForm_helper( mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs ); return dImage; } #endif /*! Builds and returns a 1-bpp mask from the alpha buffer in this image. Returns a \link isNull() null\endlink image if \link setAlphaBuffer() alpha buffer mode\endlink is disabled. See TQPixmap::convertFromImage() for a description of the \a conversion_flags argument. The returned image has little-endian bit order, which you can convert to big-endianness using convertBitOrder(). \sa createHeuristicMask() hasAlphaBuffer() setAlphaBuffer() */ #ifndef TQT_NO_IMAGE_DITHER_TO_1 TQImage TQImage::createAlphaMask( int conversion_flags ) const { if ( conversion_flags == 1 ) { // Old code is passing "TRUE". conversion_flags = TQt::DiffuseAlphaDither; } if ( isNull() || !hasAlphaBuffer() ) return TQImage(); if ( depth() == 1 ) { // A monochrome pixmap, with alpha channels on those two colors. // Pretty unlikely, so use less efficient solution. return convertDepth(8, conversion_flags) .createAlphaMask( conversion_flags ); } TQImage mask1; dither_to_1( this, &mask1, conversion_flags, TRUE ); return mask1; } #endif #ifndef TQT_NO_IMAGE_HEURISTIC_MASK /*! Creates and returns a 1-bpp heuristic mask for this image. It works by selecting a color from one of the corners, then chipping away pixels of that color starting at all the edges. The four corners vote for which color is to be masked away. In case of a draw (this generally means that this function is not applicable to the image), the result is arbitrary. The returned image has little-endian bit order, which you can convert to big-endianness using convertBitOrder(). If \a clipTight is TRUE the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data pixels. This function disregards the \link hasAlphaBuffer() alpha buffer \endlink. \sa createAlphaMask() */ TQImage TQImage::createHeuristicMask( bool clipTight ) const { if ( isNull() ) { TQImage nullImage; return nullImage; } if ( depth() != 32 ) { TQImage img32 = convertDepth(32); return img32.createHeuristicMask(clipTight); } #define PIX(x,y) (*((TQRgb*)scanLine(y)+x) & 0x00ffffff) int w = width(); int h = height(); TQImage m(w, h, 1, 2, TQImage::LittleEndian); m.setColor( 0, 0xffffff ); m.setColor( 1, 0 ); m.fill( 0xff ); TQRgb background = PIX(0,0); if ( background != PIX(w-1,0) && background != PIX(0,h-1) && background != PIX(w-1,h-1) ) { background = PIX(w-1,0); if ( background != PIX(w-1,h-1) && background != PIX(0,h-1) && PIX(0,h-1) == PIX(w-1,h-1) ) { background = PIX(w-1,h-1); } } int x,y; bool done = FALSE; uchar *ypp, *ypc, *ypn; while( !done ) { done = TRUE; ypn = m.scanLine(0); ypc = 0; for ( y = 0; y < h; y++ ) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); TQRgb *p = (TQRgb *)scanLine(y); for ( x = 0; x < w; x++ ) { // slowness here - it's possible to do six of these tests // together in one go. oh well. if ( ( x == 0 || y == 0 || x == w-1 || y == h-1 || !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || !(*(ypp + (x >> 3)) & (1 << (x & 7))) || !(*(ypn + (x >> 3)) & (1 << (x & 7))) ) && ( (*(ypc + (x >> 3)) & (1 << (x & 7))) ) && ( (*p & 0x00ffffff) == background ) ) { done = FALSE; *(ypc + (x >> 3)) &= ~(1 << (x & 7)); } p++; } } } if ( !clipTight ) { ypn = m.scanLine(0); ypc = 0; for ( y = 0; y < h; y++ ) { ypp = ypc; ypc = ypn; ypn = (y == h-1) ? 0 : m.scanLine(y+1); TQRgb *p = (TQRgb *)scanLine(y); for ( x = 0; x < w; x++ ) { if ( (*p & 0x00ffffff) != background ) { if ( x > 0 ) *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); if ( x < w-1 ) *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); if ( y > 0 ) *(ypp + (x >> 3)) |= (1 << (x & 7)); if ( y < h-1 ) *(ypn + (x >> 3)) |= (1 << (x & 7)); } p++; } } } #undef PIX return m; } #endif //TQT_NO_IMAGE_HEURISTIC_MASK #ifndef TQT_NO_IMAGE_MIRROR /* This code is contributed by Philipp Lang, GeneriCom Software Germany (www.generi.com) under the terms of the TQPL, Version 1.0 */ /*! \overload Returns a mirror of the image, mirrored in the horizontal and/or the vertical direction depending on whether \a horizontal and \a vertical are set to TRUE or FALSE. The original image is not changed. \sa smoothScale() */ TQImage TQImage::mirror(bool horizontal, bool vertical) const { int w = width(); int h = height(); if ( (w <= 1 && h <= 1) || (!horizontal && !vertical) ) return copy(); // Create result image, copy colormap TQImage result(w, h, depth(), numColors(), bitOrder()); memcpy(result.colorTable(), colorTable(), numColors()*sizeof(TQRgb)); result.setAlphaBuffer(hasAlphaBuffer()); if (depth() == 1) w = (w+7)/8; int dxi = horizontal ? -1 : 1; int dxs = horizontal ? w-1 : 0; int dyi = vertical ? -1 : 1; int dy = vertical ? h-1: 0; // 1 bit, 8 bit if (depth() == 1 || depth() == 8) { for (int sy = 0; sy < h; sy++, dy += dyi) { TQ_UINT8* ssl = (TQ_UINT8*)(data->bits[sy]); TQ_UINT8* dsl = (TQ_UINT8*)(result.data->bits[dy]); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } #ifndef TQT_NO_IMAGE_TRUECOLOR #ifndef TQT_NO_IMAGE_16_BIT // 16 bit else if (depth() == 16) { for (int sy = 0; sy < h; sy++, dy += dyi) { TQ_UINT16* ssl = (TQ_UINT16*)(data->bits[sy]); TQ_UINT16* dsl = (TQ_UINT16*)(result.data->bits[dy]); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } #endif // 32 bit else if (depth() == 32) { for (int sy = 0; sy < h; sy++, dy += dyi) { TQ_UINT32* ssl = (TQ_UINT32*)(data->bits[sy]); TQ_UINT32* dsl = (TQ_UINT32*)(result.data->bits[dy]); int dx = dxs; for (int sx = 0; sx < w; sx++, dx += dxi) dsl[dx] = ssl[sx]; } } #endif // special handling of 1 bit images for horizontal mirroring if (horizontal && depth() == 1) { int shift = width() % 8; for (int y = h-1; y >= 0; y--) { TQ_UINT8* a0 = (TQ_UINT8*)(result.data->bits[y]); // Swap bytes TQ_UINT8* a = a0+dxs; while (a >= a0) { *a = bitflip[*a]; a--; } // Shift bits if unaligned if (shift != 0) { a = a0+dxs; TQ_UINT8 c = 0; if (bitOrder() == TQImage::LittleEndian) { while (a >= a0) { TQ_UINT8 nc = *a << shift; *a = (*a >> (8-shift)) | c; --a; c = nc; } } else { while (a >= a0) { TQ_UINT8 nc = *a >> shift; *a = (*a << (8-shift)) | c; --a; c = nc; } } } } } return result; } /*! Returns a TQImage which is a vertically mirrored copy of this image. The original TQImage is not changed. */ TQImage TQImage::mirror() const { return mirror(FALSE,TRUE); } #endif //TQT_NO_IMAGE_MIRROR /*! Returns a TQImage in which the values of the red and blue components of all pixels have been swapped, effectively converting an RGB image to a BGR image. The original TQImage is not changed. */ TQImage TQImage::swapRGB() const { TQImage res = copy(); if ( !isNull() ) { #ifndef TQT_NO_IMAGE_TRUECOLOR if ( depth() == 32 ) { for ( int i=0; i < height(); i++ ) { uint *p = (uint*)scanLine( i ); uint *q = (uint*)res.scanLine( i ); uint *end = p + width(); while ( p < end ) { *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00); p++; q++; } } #ifndef TQT_NO_IMAGE_16_BIT } else if ( depth() == 16 ) { tqWarning( "TQImage::swapRGB not implemented for 16bpp" ); #endif } else #endif //TQT_NO_IMAGE_TRUECOLOR { uint* p = (uint*)colorTable(); uint* q = (uint*)res.colorTable(); if ( p && q ) { for ( int i=0; i < numColors(); i++ ) { *q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00); p++; q++; } } } } return res; } #ifndef TQT_NO_IMAGEIO /*! Returns a string that specifies the image format of the file \a fileName, or 0 if the file cannot be read or if the format is not recognized. The TQImageIO documentation lists the guaranteed supported image formats, or use TQImage::inputFormats() and TQImage::outputFormats() to get lists that include the installed formats. \sa load() save() */ const char* TQImage::imageFormat( const TQString &fileName ) { return TQImageIO::imageFormat( fileName ); } /*! Returns a list of image formats that are supported for image input. \sa outputFormats() inputFormatList() TQImageIO */ TQStrList TQImage::inputFormats() { return TQImageIO::inputFormats(); } #ifndef TQT_NO_STRINGLIST /*! Returns a list of image formats that are supported for image input. Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQStringList list = myImage.inputFormatList(); TQStringList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode \sa outputFormatList() inputFormats() TQImageIO */ TQStringList TQImage::inputFormatList() { return TQStringList::fromStrList(TQImageIO::inputFormats()); } /*! Returns a list of image formats that are supported for image output. Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQStringList list = myImage.outputFormatList(); TQStringList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode \sa inputFormatList() outputFormats() TQImageIO */ TQStringList TQImage::outputFormatList() { return TQStringList::fromStrList(TQImageIO::outputFormats()); } #endif //TQT_NO_STRINGLIST /*! Returns a list of image formats that are supported for image output. \sa inputFormats() outputFormatList() TQImageIO */ TQStrList TQImage::outputFormats() { return TQImageIO::outputFormats(); } /*! Loads an image from the file \a fileName. Returns TRUE if the image was successfully loaded; otherwise returns FALSE. If \a format is specified, the loader attempts to read the image using the specified format. If \a format is not specified (which is the default), the loader reads a few bytes from the header to guess the file format. The TQImageIO documentation lists the supported image formats and explains how to add extra formats. \sa loadFromData() save() imageFormat() TQPixmap::load() TQImageIO */ bool TQImage::load( const TQString &fileName, const char* format ) { TQImageIO io( fileName, format ); bool result = io.read(); if ( result ) operator=( io.image() ); return result; } /*! Loads an image from the first \a len bytes of binary data in \a buf. Returns TRUE if the image was successfully loaded; otherwise returns FALSE. If \a format is specified, the loader attempts to read the image using the specified format. If \a format is not specified (which is the default), the loader reads a few bytes from the header to guess the file format. The TQImageIO documentation lists the supported image formats and explains how to add extra formats. \sa load() save() imageFormat() TQPixmap::loadFromData() TQImageIO */ bool TQImage::loadFromData( const uchar *buf, uint len, const char *format ) { TQByteArray a; a.setRawData( (char *)buf, len ); TQBuffer b( a ); b.open( IO_ReadOnly ); TQImageIO io( &b, format ); bool result = io.read(); b.close(); a.resetRawData( (char *)buf, len ); if ( result ) operator=( io.image() ); return result; } /*! \overload Loads an image from the TQByteArray \a buf. */ bool TQImage::loadFromData( TQByteArray buf, const char *format ) { return loadFromData( (const uchar *)(buf.data()), buf.size(), format ); } /*! Saves the image to the file \a fileName, using the image file format \a format and a quality factor of \a quality. \a quality must be in the range 0..100 or -1. Specify 0 to obtain small compressed files, 100 for large uncompressed files, and -1 (the default) to use the default settings. Returns TRUE if the image was successfully saved; otherwise returns FALSE. \sa load() loadFromData() imageFormat() TQPixmap::save() TQImageIO */ bool TQImage::save( const TQString &fileName, const char* format, int quality ) const { if ( isNull() ) return FALSE; // nothing to save TQImageIO io( fileName, format ); return doImageIO( &io, quality ); } /*! \overload This function writes a TQImage to the TQIODevice, \a device. This can be used, for example, to save an image directly into a TQByteArray: \code TQImage image; TQByteArray ba; TQBuffer buffer( ba ); buffer.open( IO_WriteOnly ); image.save( &buffer, "PNG" ); // writes image into ba in PNG format \endcode */ bool TQImage::save( TQIODevice* device, const char* format, int quality ) const { if ( isNull() ) return FALSE; // nothing to save TQImageIO io( device, format ); return doImageIO( &io, quality ); } /* \internal */ bool TQImage::doImageIO( TQImageIO* io, int quality ) const { if ( !io ) return FALSE; io->setImage( *this ); #if defined(QT_CHECK_RANGE) if ( quality > 100 || quality < -1 ) tqWarning( "TQPixmap::save: quality out of range [-1,100]" ); #endif if ( quality >= 0 ) io->setQuality( TQMIN(quality,100) ); return io->write(); } #endif //TQT_NO_IMAGEIO /***************************************************************************** TQImage stream functions *****************************************************************************/ #if !defined(TQT_NO_DATASTREAM) && !defined(TQT_NO_IMAGEIO) /*! \relates TQImage Writes the image \a image to the stream \a s as a PNG image, or as a BMP image if the stream's version is 1. Note that writing the stream to a file will not produce a valid image file. \sa TQImage::save() \link datastreamformat.html Format of the TQDataStream operators \endlink */ TQDataStream &operator<<( TQDataStream &s, const TQImage &image ) { if ( s.version() >= 5 ) { if ( image.isNull() ) { s << (TQ_INT32) 0; // null image marker return s; } else { s << (TQ_INT32) 1; // continue ... } } TQImageIO io; io.setIODevice( s.device() ); if ( s.version() == 1 ) io.setFormat( "BMP" ); else io.setFormat( "PNG" ); io.setImage( image ); io.write(); return s; } /*! \relates TQImage Reads an image from the stream \a s and stores it in \a image. \sa TQImage::load() \link datastreamformat.html Format of the TQDataStream operators \endlink */ TQDataStream &operator>>( TQDataStream &s, TQImage &image ) { if ( s.version() >= 5 ) { TQ_INT32 nullMarker; s >> nullMarker; if ( !nullMarker ) { image = TQImage(); // null image return s; } } TQImageIO io( s.device(), 0 ); if ( io.read() ) image = io.image(); return s; } #endif /***************************************************************************** Standard image io handlers (defined below) *****************************************************************************/ // standard image io handlers (defined below) #ifndef TQT_NO_IMAGEIO_BMP static void read_bmp_image( TQImageIO * ); static void write_bmp_image( TQImageIO * ); #endif #ifndef TQT_NO_IMAGEIO_PPM static void read_pbm_image( TQImageIO * ); static void write_pbm_image( TQImageIO * ); #endif #ifndef TQT_NO_IMAGEIO_XBM static void read_xbm_image( TQImageIO * ); static void write_xbm_image( TQImageIO * ); #endif #ifndef TQT_NO_IMAGEIO_XPM static void read_xpm_image( TQImageIO * ); static void write_xpm_image( TQImageIO * ); #endif #ifndef TQT_NO_ASYNC_IMAGE_IO static void read_async_image( TQImageIO * ); // Not in table of handlers #endif /***************************************************************************** Misc. utility functions *****************************************************************************/ #if !defined(TQT_NO_IMAGEIO_XPM) || !defined(TQT_NO_IMAGEIO_XBM) static TQString fbname( const TQString &fileName ) // get file basename (sort of) { TQString s = fileName; if ( !s.isEmpty() ) { int i; if ( (i = s.findRev('/')) >= 0 ) s = s.mid( i ); if ( (i = s.findRev('\\')) >= 0 ) s = s.mid( i ); TQRegExp r( TQString::fromLatin1("[a-zA-Z][a-zA-Z0-9_]*") ); int p = r.search( s ); if ( p == -1 ) s.truncate( 0 ); else s = s.mid( p, r.matchedLength() ); } if ( s.isEmpty() ) s = TQString::fromLatin1( "dummy" ); return s; } #endif #ifndef TQT_NO_IMAGEIO_BMP static void swapPixel01( TQImage *image ) // 1-bpp: swap 0 and 1 pixels { int i; if ( image->depth() == 1 && image->numColors() == 2 ) { uint *p = (uint *)image->bits(); int nbytes = image->numBytes(); for ( i=0; icolor(0); // swap color 0 and 1 image->setColor( 0, image->color(1) ); image->setColor( 1, t ); } } #endif /***************************************************************************** TQImageIO member functions *****************************************************************************/ /*! \class TQImageIO tqimage.h \brief The TQImageIO class contains parameters for loading and saving images. \ingroup images \ingroup graphics \ingroup io TQImageIO contains a TQIODevice object that is used for image data I/O. The programmer can install new image file formats in addition to those that TQt provides. TQt currently supports the following image file formats: PNG, BMP, XBM, XPM and PNM. It may also support JPEG, MNG and GIF, if specially configured during compilation. The different PNM formats are: PBM (P1 or P4), PGM (P2 or P5), and PPM (P3 or P6). You don't normally need to use this class; TQPixmap::load(), TQPixmap::save(), and TQImage contain sufficient functionality. For image files that contain sequences of images, only the first is read. See TQMovie for loading multiple images. PBM, PGM, and PPM format \e output is always in the more condensed raw format. PPM and PGM files with more than 256 levels of intensity are scaled down when reading. \warning If you are in a country which recognizes software patents and in which Unisys holds a patent on LZW compression and/or decompression and you want to use GIF, Unisys may require you to license the technology. Such countries include Canada, Japan, the USA, France, Germany, Italy and the UK. GIF support may be removed completely in a future version of TQt. We recommend using the PNG format. \sa TQImage TQPixmap TQFile TQMovie */ #ifndef TQT_NO_IMAGEIO struct TQImageIOData { const char *parameters; int quality; float gamma; }; /*! Constructs a TQImageIO object with all parameters set to zero. */ TQImageIO::TQImageIO() { init(); } /*! Constructs a TQImageIO object with the I/O device \a ioDevice and a \a format tag. */ TQImageIO::TQImageIO( TQIODevice *ioDevice, const char *format ) : frmt(format) { init(); iodev = ioDevice; } /*! Constructs a TQImageIO object with the file name \a fileName and a \a format tag. */ TQImageIO::TQImageIO( const TQString &fileName, const char* format ) : frmt(format), fname(fileName) { init(); } /*! Contains initialization common to all TQImageIO constructors. */ void TQImageIO::init() { d = new TQImageIOData(); d->parameters = 0; d->quality = -1; // default quality of the current format d->gamma=0.0f; iostat = 0; iodev = 0; } /*! Destroys the object and all related data. */ TQImageIO::~TQImageIO() { if ( d->parameters ) delete [] (char*)d->parameters; delete d; } /***************************************************************************** TQImageIO image handler functions *****************************************************************************/ class TQImageHandler { public: TQImageHandler( const char *f, const char *h, const TQCString& fl, image_io_handler r, image_io_handler w ); TQCString format; // image format TQRegExp header; // image header pattern enum TMode { Untranslated=0, TranslateIn, TranslateInOut } text_mode; image_io_handler read_image; // image read function image_io_handler write_image; // image write function bool obsolete; // support not "published" }; TQImageHandler::TQImageHandler( const char *f, const char *h, const TQCString& fl, image_io_handler r, image_io_handler w ) : format(f), header(TQString::fromLatin1(h)) { text_mode = Untranslated; if ( fl.contains('t') ) text_mode = TranslateIn; else if ( fl.contains('T') ) text_mode = TranslateInOut; obsolete = fl.contains('O'); read_image = r; write_image = w; } typedef TQPtrList TQIHList;// list of image handlers static TQIHList *imageHandlers = 0; #ifndef TQT_NO_COMPONENT static TQPluginManager *plugin_manager = 0; #else static void *plugin_manager = 0; #endif void tqt_init_image_plugins() { #ifndef TQT_NO_COMPONENT if ( plugin_manager ) return; plugin_manager = new TQPluginManager( IID_QImageFormat, TQApplication::libraryPaths(), "/imageformats" ); TQStringList features = plugin_manager->featureList(); TQStringList::Iterator it = features.begin(); while ( it != features.end() ) { TQString str = *it; ++it; TQInterfacePtr iface; plugin_manager->queryInterface( str, &iface ); if ( iface ) iface->installIOHandler( str ); } #endif } static void cleanup() { // make sure that image handlers are delete before plugin manager delete imageHandlers; imageHandlers = 0; #ifndef TQT_NO_COMPONENT delete plugin_manager; plugin_manager = 0; #endif } void tqt_init_image_handlers() // initialize image handlers { if ( !imageHandlers ) { imageHandlers = new TQIHList; TQ_CHECK_PTR( imageHandlers ); imageHandlers->setAutoDelete( TRUE ); tqAddPostRoutine( cleanup ); #ifndef TQT_NO_IMAGEIO_BMP TQImageIO::defineIOHandler( "BMP", "^BM", 0, read_bmp_image, write_bmp_image ); #endif #ifndef TQT_NO_IMAGEIO_PPM TQImageIO::defineIOHandler( "PBM", "^P1", "t", read_pbm_image, write_pbm_image ); TQImageIO::defineIOHandler( "PBMRAW", "^P4", "O", read_pbm_image, write_pbm_image ); TQImageIO::defineIOHandler( "PGM", "^P2", "t", read_pbm_image, write_pbm_image ); TQImageIO::defineIOHandler( "PGMRAW", "^P5", "O", read_pbm_image, write_pbm_image ); TQImageIO::defineIOHandler( "PPM", "^P3", "t", read_pbm_image, write_pbm_image ); TQImageIO::defineIOHandler( "PPMRAW", "^P6", "O", read_pbm_image, write_pbm_image ); #endif #ifndef TQT_NO_IMAGEIO_XBM TQImageIO::defineIOHandler( "XBM", "^((/\\*(?!.XPM.\\*/))|#define)", "T", read_xbm_image, write_xbm_image ); #endif #ifndef TQT_NO_IMAGEIO_XPM TQImageIO::defineIOHandler( "XPM", "/\\*.XPM.\\*/", "T", read_xpm_image, write_xpm_image ); #endif #ifndef TQT_NO_IMAGEIO_MNG qInitMngIO(); #endif #ifndef TQT_NO_IMAGEIO_PNG qInitPngIO(); #endif #ifndef TQT_NO_IMAGEIO_JPEG qInitJpegIO(); #endif } } static TQImageHandler *get_image_handler( const char *format ) { // get pointer to handler tqt_init_image_handlers(); tqt_init_image_plugins(); TQImageHandler *p = imageHandlers->first(); while ( p ) { // traverse list if ( p->format == format ) return p; p = imageHandlers->next(); } return 0; // no such handler } /*! Defines an image I/O handler for the image format called \a format, which is recognized using the \link tqregexp.html#details regular expression\endlink \a header, read using \a readImage and written using \a writeImage. \a flags is a string of single-character flags for this format. The only flag defined currently is T (upper case), so the only legal value for \a flags are "T" and the empty string. The "T" flag means that the image file is a text file, and TQt should treat all newline conventions as equivalent. (XPM files and some PPM files are text files for example.) \a format is used to select a handler to write a TQImage; \a header is used to select a handler to read an image file. If \a readImage is a null pointer, the TQImageIO will not be able to read images in \a format. If \a writeImage is a null pointer, the TQImageIO will not be able to write images in \a format. If both are null, the TQImageIO object is valid but useless. Example: \code void readGIF( TQImageIO *image ) { // read the image using the image->ioDevice() } void writeGIF( TQImageIO *image ) { // write the image using the image->ioDevice() } // add the GIF image handler TQImageIO::defineIOHandler( "GIF", "^GIF[0-9][0-9][a-z]", 0, readGIF, writeGIF ); \endcode Before the regex test, all the 0 bytes in the file header are converted to 1 bytes. This is done because when TQt was ASCII-based, TQRegExp could not handle 0 bytes in strings. The regexp is only applied on the first 14 bytes of the file. Note that TQt assumes that there is only one handler per format; if two handlers support the same format, TQt will choose one arbitrarily. It is not possible to have one handler support reading, and another support writing. */ void TQImageIO::defineIOHandler( const char *format, const char *header, const char *flags, image_io_handler readImage, image_io_handler writeImage ) { tqt_init_image_handlers(); TQImageHandler *p; p = new TQImageHandler( format, header, flags, readImage, writeImage ); TQ_CHECK_PTR( p ); imageHandlers->insert( 0, p ); } /***************************************************************************** TQImageIO normal member functions *****************************************************************************/ /*! \fn const TQImage &TQImageIO::image() const Returns the image currently set. \sa setImage() */ /*! \fn int TQImageIO::status() const Returns the image's IO status. A non-zero value indicates an error, whereas 0 means that the IO operation was successful. \sa setStatus() */ /*! \fn const char *TQImageIO::format() const Returns the image format string or 0 if no format has been explicitly set. */ /*! \fn TQIODevice *TQImageIO::ioDevice() const Returns the IO device currently set. \sa setIODevice() */ /*! \fn TQString TQImageIO::fileName() const Returns the file name currently set. \sa setFileName() */ /*! \fn TQString TQImageIO::description() const Returns the image description string. \sa setDescription() */ /*! Sets the image to \a image. \sa image() */ void TQImageIO::setImage( const TQImage &image ) { im = image; } /*! Sets the image IO status to \a status. A non-zero value indicates an error, whereas 0 means that the IO operation was successful. \sa status() */ void TQImageIO::setStatus( int status ) { iostat = status; } /*! Sets the image format to \a format for the image to be read or written. It is necessary to specify a format before writing an image, but it is not necessary to specify a format before reading an image. If no format has been set, TQt guesses the image format before reading it. If a format is set the image will only be read if it has that format. \sa read() write() format() */ void TQImageIO::setFormat( const char *format ) { frmt = format; } /*! Sets the IO device to be used for reading or writing an image. Setting the IO device allows images to be read/written to any block-oriented TQIODevice. If \a ioDevice is not null, this IO device will override file name settings. \sa setFileName() */ void TQImageIO::setIODevice( TQIODevice *ioDevice ) { iodev = ioDevice; } /*! Sets the name of the file to read or write an image from to \a fileName. \sa setIODevice() */ void TQImageIO::setFileName( const TQString &fileName ) { fname = fileName; } /*! Returns the quality of the written image, related to the compression ratio. \sa setQuality() TQImage::save() */ int TQImageIO::quality() const { return d->quality; } /*! Sets the quality of the written image to \a q, related to the compression ratio. \a q must be in the range -1..100. Specify 0 to obtain small compressed files, 100 for large uncompressed files. (-1 signifies the default compression.) \sa quality() TQImage::save() */ void TQImageIO::setQuality( int q ) { d->quality = q; } /*! Returns the image's parameters string. \sa setParameters() */ const char *TQImageIO::parameters() const { return d->parameters; } /*! Sets the image's parameter string to \a parameters. This is for image handlers that require special parameters. Although the current image formats supported by TQt ignore the parameters string, it may be used in future extensions or by contributions (for example, JPEG). \sa parameters() */ void TQImageIO::setParameters( const char *parameters ) { if ( d && d->parameters ) delete [] (char*)d->parameters; d->parameters = tqstrdup( parameters ); } /*! Sets the gamma value at which the image will be viewed to \a gamma. If the image format stores a gamma value for which the image is intended to be used, then this setting will be used to modify the image. Setting to 0.0 will disable gamma correction (i.e. any specification in the file will be ignored). The default value is 0.0. \sa gamma() */ void TQImageIO::setGamma( float gamma ) { d->gamma=gamma; } /*! Returns the gamma value at which the image will be viewed. \sa setGamma() */ float TQImageIO::gamma() const { return d->gamma; } /*! Sets the image description string for image handlers that support image descriptions to \a description. Currently, no image format supported by TQt uses the description string. */ void TQImageIO::setDescription( const TQString &description ) { descr = description; } /*! Returns a string that specifies the image format of the file \a fileName, or null if the file cannot be read or if the format is not recognized. */ const char* TQImageIO::imageFormat( const TQString &fileName ) { TQFile file( fileName ); if ( !file.open(IO_ReadOnly) ) return 0; const char* format = imageFormat( &file ); file.close(); return format; } /*! \overload Returns a string that specifies the image format of the image read from IO device \a d, or 0 if the device cannot be read or if the format is not recognized. Make sure that \a d is at the right position in the device (for example, at the beginning of the file). \sa TQIODevice::at() */ const char *TQImageIO::imageFormat( TQIODevice *d ) { // if you change this change the documentation for defineIOHandler() const int buflen = 14; char buf[buflen]; char buf2[buflen]; tqt_init_image_handlers(); tqt_init_image_plugins(); int pos = d->at(); // save position int rdlen = d->readBlock( buf, buflen ); // read a few bytes if ( rdlen != buflen ) return 0; memcpy( buf2, buf, buflen ); const char* format = 0; for ( int n = 0; n < rdlen; n++ ) if ( buf[n] == '\0' ) buf[n] = '\001'; if ( d->status() == IO_Ok && rdlen > 0 ) { buf[rdlen - 1] = '\0'; TQString bufStr = TQString::fromLatin1(buf); TQImageHandler *p = imageHandlers->first(); int bestMatch = -1; while ( p ) { if ( p->read_image && p->header.search(bufStr) != -1 ) { // try match with header if a read function is available if (p->header.matchedLength() > bestMatch) { // keep looking for best match format = p->format; bestMatch = p->header.matchedLength(); } } p = imageHandlers->next(); } } d->at( pos ); // restore position #ifndef TQT_NO_ASYNC_IMAGE_IO if ( !format ) format = TQImageDecoder::formatName( (uchar*)buf2, rdlen ); #endif return format; } /*! Returns a sorted list of image formats that are supported for image input. */ TQStrList TQImageIO::inputFormats() { TQStrList result; tqt_init_image_handlers(); tqt_init_image_plugins(); #ifndef TQT_NO_ASYNC_IMAGE_IO // Include asynchronous loaders first. result = TQImageDecoder::inputFormats(); #endif TQImageHandler *p = imageHandlers->first(); while ( p ) { if ( p->read_image && !p->obsolete && !result.contains(p->format) ) { result.inSort(p->format); } p = imageHandlers->next(); } return result; } /*! Returns a sorted list of image formats that are supported for image output. */ TQStrList TQImageIO::outputFormats() { TQStrList result; tqt_init_image_handlers(); tqt_init_image_plugins(); // Include asynchronous writers (!) first. // (None) TQImageHandler *p = imageHandlers->first(); while ( p ) { if ( p->write_image && !p->obsolete && !result.contains(p->format) ) { result.inSort(p->format); } p = imageHandlers->next(); } return result; } /*! Reads an image into memory and returns TRUE if the image was successfully read; otherwise returns FALSE. Before reading an image you must set an IO device or a file name. If both an IO device and a file name have been set, the IO device will be used. Setting the image file format string is optional. Note that this function does \e not set the \link format() format\endlink used to read the image. If you need that information, use the imageFormat() static functions. Example: \code TQImageIO iio; TQPixmap pixmap; iio.setFileName( "vegeburger.bmp" ); if ( image.read() ) // ok pixmap = iio.image(); // convert to pixmap \endcode \sa setIODevice() setFileName() setFormat() write() TQPixmap::load() */ bool TQImageIO::read() { TQFile file; const char *image_format; TQImageHandler *h; if ( iodev ) { // read from io device // ok, already open } else if ( !fname.isEmpty() ) { // read from file file.setName( fname ); if ( !file.open(IO_ReadOnly) ) return FALSE; // cannot open file iodev = &file; } else { // no file name or io device return FALSE; } if (frmt.isEmpty()) { // Try to guess format image_format = imageFormat( iodev ); // get image format if ( !image_format ) { if ( file.isOpen() ) { // unknown format file.close(); iodev = 0; } return FALSE; } } else { image_format = frmt; } h = get_image_handler( image_format ); if ( file.isOpen() ) { #if !defined(Q_OS_UNIX) if ( h && h->text_mode ) { // reopen in translated mode file.close(); file.open( IO_ReadOnly | IO_Translate ); } else #endif file.at( 0 ); // position to start } iostat = 1; // assume error if ( h && h->read_image ) { (*h->read_image)( this ); } #ifndef TQT_NO_ASYNC_IMAGE_IO else { // Format name, but no handler - must be an asychronous reader read_async_image( this ); } #endif if ( file.isOpen() ) { // image was read using file file.close(); iodev = 0; } return iostat == 0; // image successfully read? } /*! Writes an image to an IO device and returns TRUE if the image was successfully written; otherwise returns FALSE. Before writing an image you must set an IO device or a file name. If both an IO device and a file name have been set, the IO device will be used. The image will be written using the specified image format. Example: \code TQImageIO iio; TQImage im; im = pixmap; // convert to image iio.setImage( im ); iio.setFileName( "vegeburger.bmp" ); iio.setFormat( "BMP" ); if ( iio.write() ) // returned TRUE if written successfully \endcode \sa setIODevice() setFileName() setFormat() read() TQPixmap::save() */ bool TQImageIO::write() { if ( frmt.isEmpty() ) return FALSE; TQImageHandler *h = get_image_handler( frmt ); if ( !h && !plugin_manager) { tqt_init_image_plugins(); h = get_image_handler( frmt ); } if ( !h || !h->write_image ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImageIO::write: No such image format handler: %s", format() ); #endif return FALSE; } TQFile file; if ( !iodev && !fname.isEmpty() ) { file.setName( fname ); bool translate = h->text_mode==TQImageHandler::TranslateInOut; int fmode = translate ? IO_WriteOnly|IO_Translate : IO_WriteOnly; if ( !file.open(fmode) ) // couldn't create file return FALSE; iodev = &file; } iostat = 1; (*h->write_image)( this ); if ( file.isOpen() ) { // image was written using file file.close(); iodev = 0; } return iostat == 0; // image successfully written? } #endif //TQT_NO_IMAGEIO #ifndef TQT_NO_IMAGEIO_BMP /***************************************************************************** BMP (DIB) image read/write functions *****************************************************************************/ const int BMP_FILEHDR_SIZE = 14; // size of BMP_FILEHDR data struct BMP_FILEHDR { // BMP file header char bfType[2]; // "BM" TQ_INT32 bfSize; // size of file TQ_INT16 bfReserved1; TQ_INT16 bfReserved2; TQ_INT32 bfOffBits; // pointer to the pixmap bits }; TQDataStream &operator>>( TQDataStream &s, BMP_FILEHDR &bf ) { // read file header s.readRawBytes( bf.bfType, 2 ); s >> bf.bfSize >> bf.bfReserved1 >> bf.bfReserved2 >> bf.bfOffBits; return s; } TQDataStream &operator<<( TQDataStream &s, const BMP_FILEHDR &bf ) { // write file header s.writeRawBytes( bf.bfType, 2 ); s << bf.bfSize << bf.bfReserved1 << bf.bfReserved2 << bf.bfOffBits; return s; } const int BMP_OLD = 12; // old Windows/OS2 BMP size const int BMP_WIN = 40; // new Windows BMP size const int BMP_OS2 = 64; // new OS/2 BMP size const int BMP_RGB = 0; // no compression const int BMP_RLE8 = 1; // run-length encoded, 8 bits const int BMP_RLE4 = 2; // run-length encoded, 4 bits const int BMP_BITFIELDS = 3; // RGB values encoded in data as bit-fields struct BMP_INFOHDR { // BMP information header TQ_INT32 biSize; // size of this struct TQ_INT32 biWidth; // pixmap width TQ_INT32 biHeight; // pixmap height TQ_INT16 biPlanes; // should be 1 TQ_INT16 biBitCount; // number of bits per pixel TQ_INT32 biCompression; // compression method TQ_INT32 biSizeImage; // size of image TQ_INT32 biXPelsPerMeter; // horizontal resolution TQ_INT32 biYPelsPerMeter; // vertical resolution TQ_INT32 biClrUsed; // number of colors used TQ_INT32 biClrImportant; // number of important colors }; TQDataStream &operator>>( TQDataStream &s, BMP_INFOHDR &bi ) { s >> bi.biSize; if ( bi.biSize == BMP_WIN || bi.biSize == BMP_OS2 ) { s >> bi.biWidth >> bi.biHeight >> bi.biPlanes >> bi.biBitCount; s >> bi.biCompression >> bi.biSizeImage; s >> bi.biXPelsPerMeter >> bi.biYPelsPerMeter; s >> bi.biClrUsed >> bi.biClrImportant; } else { // probably old Windows format TQ_INT16 w, h; s >> w >> h >> bi.biPlanes >> bi.biBitCount; bi.biWidth = w; bi.biHeight = h; bi.biCompression = BMP_RGB; // no compression bi.biSizeImage = 0; bi.biXPelsPerMeter = bi.biYPelsPerMeter = 0; bi.biClrUsed = bi.biClrImportant = 0; } return s; } TQDataStream &operator<<( TQDataStream &s, const BMP_INFOHDR &bi ) { s << bi.biSize; s << bi.biWidth << bi.biHeight; s << bi.biPlanes; s << bi.biBitCount; s << bi.biCompression; s << bi.biSizeImage; s << bi.biXPelsPerMeter << bi.biYPelsPerMeter; s << bi.biClrUsed << bi.biClrImportant; return s; } static int calc_shift(int mask) { int result = 0; while (!(mask & 1)) { result++; mask >>= 1; } return result; } static bool read_dib( TQDataStream& s, int offset, int startpos, TQImage& image ) { BMP_INFOHDR bi; TQIODevice* d = s.device(); s >> bi; // read BMP info header if ( d->atEnd() ) // end of stream/file return FALSE; #if 0 tqDebug( "offset...........%d", offset ); tqDebug( "startpos.........%d", startpos ); tqDebug( "biSize...........%d", bi.biSize ); tqDebug( "biWidth..........%d", bi.biWidth ); tqDebug( "biHeight.........%d", bi.biHeight ); tqDebug( "biPlanes.........%d", bi.biPlanes ); tqDebug( "biBitCount.......%d", bi.biBitCount ); tqDebug( "biCompression....%d", bi.biCompression ); tqDebug( "biSizeImage......%d", bi.biSizeImage ); tqDebug( "biXPelsPerMeter..%d", bi.biXPelsPerMeter ); tqDebug( "biYPelsPerMeter..%d", bi.biYPelsPerMeter ); tqDebug( "biClrUsed........%d", bi.biClrUsed ); tqDebug( "biClrImportant...%d", bi.biClrImportant ); #endif int w = bi.biWidth, h = bi.biHeight, nbits = bi.biBitCount; int t = bi.biSize, comp = bi.biCompression; int red_mask, green_mask, blue_mask; int red_shift = 0; int green_shift = 0; int blue_shift = 0; int red_scale = 0; int green_scale = 0; int blue_scale = 0; if ( !(nbits == 1 || nbits == 4 || nbits == 8 || nbits == 16 || nbits == 24 || nbits == 32) || bi.biPlanes != 1 || comp > BMP_BITFIELDS ) return FALSE; // weird BMP image if ( !(comp == BMP_RGB || (nbits == 4 && comp == BMP_RLE4) || (nbits == 8 && comp == BMP_RLE8) || ((nbits == 16 || nbits == 32) && comp == BMP_BITFIELDS)) ) return FALSE; // weird compression type if ((w < 0) || ((w * abs(h)) > (16384 * 16384))) return FALSE; int ncols; int depth; switch ( nbits ) { case 32: case 24: case 16: depth = 32; break; case 8: case 4: depth = 8; break; default: depth = 1; } if ( depth == 32 ) // there's no colormap ncols = 0; else // # colors used ncols = bi.biClrUsed ? bi.biClrUsed : 1 << nbits; image.create( w, h, depth, ncols, nbits == 1 ? TQImage::BigEndian : TQImage::IgnoreEndian ); if ( image.isNull() ) // could not create image return FALSE; image.setDotsPerMeterX( bi.biXPelsPerMeter ); image.setDotsPerMeterY( bi.biYPelsPerMeter ); d->at( startpos + BMP_FILEHDR_SIZE + bi.biSize ); // goto start of colormap if ( ncols > 0 ) { // read color table uchar rgb[4]; int rgb_len = t == BMP_OLD ? 3 : 4; for ( int i=0; ireadBlock( (char *)rgb, rgb_len ) != rgb_len ) return FALSE; image.setColor( i, tqRgb(rgb[2],rgb[1],rgb[0]) ); if ( d->atEnd() ) // truncated file return FALSE; } } else if (comp == BMP_BITFIELDS && (nbits == 16 || nbits == 32)) { if ( (TQ_ULONG)d->readBlock( (char *)&red_mask, sizeof(red_mask) ) != sizeof(red_mask) ) return FALSE; if ( (TQ_ULONG)d->readBlock( (char *)&green_mask, sizeof(green_mask) ) != sizeof(green_mask) ) return FALSE; if ( (TQ_ULONG)d->readBlock( (char *)&blue_mask, sizeof(blue_mask) ) != sizeof(blue_mask) ) return FALSE; red_shift = calc_shift(red_mask); if (((red_mask >> red_shift) + 1) == 0) return FALSE; red_scale = 256 / ((red_mask >> red_shift) + 1); green_shift = calc_shift(green_mask); if (((green_mask >> green_shift) + 1) == 0) return FALSE; green_scale = 256 / ((green_mask >> green_shift) + 1); blue_shift = calc_shift(blue_mask); if (((blue_mask >> blue_shift) + 1) == 0) return FALSE; blue_scale = 256 / ((blue_mask >> blue_shift) + 1); } else if (comp == BMP_RGB && (nbits == 24 || nbits == 32)) { blue_mask = 0x000000ff; green_mask = 0x0000ff00; red_mask = 0x00ff0000; blue_shift = 0; green_shift = 8; red_shift = 16; blue_scale = green_scale = red_scale = 1; } else if (comp == BMP_RGB && nbits == 16) // don't support RGB values for 15/16 bpp return FALSE; // offset can be bogus, be careful if (offset>=0 && startpos + offset > (TQ_LONG)d->at() ) d->at( startpos + offset ); // start of image data int bpl = image.bytesPerLine(); uchar **line = image.jumpTable(); if ( nbits == 1 ) { // 1 bit BMP image while ( --h >= 0 ) { if ( d->readBlock((char*)line[h],bpl) != bpl ) break; } if ( ncols == 2 && tqGray(image.color(0)) < tqGray(image.color(1)) ) swapPixel01( &image ); // pixel 0 is white! } else if ( nbits == 4 ) { // 4 bit BMP image int buflen = ((w+7)/8)*4; uchar *buf = new uchar[buflen]; TQ_CHECK_PTR( buf ); if ( comp == BMP_RLE4 ) { // run length compression int x=0, y=0, b, c, i; uchar *p = line[h-1]; uchar *endp = line[h-1]+w; while ( y < h ) { if ( (b=d->getch()) == EOF ) break; if ( b == 0 ) { // escape code switch ( (b=d->getch()) ) { case 0: // end of line x = 0; y++; p = line[h-y-1]; break; case 1: // end of image case EOF: // end of file y = h; // exit loop break; case 2: // delta (jump) x += d->getch(); y += d->getch(); // Protection if ( (uint)x >= (uint)w ) x = w-1; if ( (uint)y >= (uint)h ) y = h-1; p = line[h-y-1] + x; break; default: // absolute mode // Protection if ( p + b > endp ) b = endp-p; i = (c = b)/2; while ( i-- ) { b = d->getch(); *p++ = b >> 4; *p++ = b & 0x0f; } if ( c & 1 ) *p++ = d->getch() >> 4; if ( (((c & 3) + 1) & 2) == 2 ) d->getch(); // align on word boundary x += c; } } else { // encoded mode // Protection if ( p + b > endp ) b = endp-p; i = (c = b)/2; b = d->getch(); // 2 pixels to be repeated while ( i-- ) { *p++ = b >> 4; *p++ = b & 0x0f; } if ( c & 1 ) *p++ = b >> 4; x += c; } } } else if ( comp == BMP_RGB ) { // no compression while ( --h >= 0 ) { if ( d->readBlock((char*)buf,buflen) != buflen ) break; uchar *p = line[h]; uchar *b = buf; for ( int i=0; i> 4; *p++ = *b++ & 0x0f; } if ( w & 1 ) // the last nibble *p = *b >> 4; } } delete [] buf; } else if ( nbits == 8 ) { // 8 bit BMP image if ( comp == BMP_RLE8 ) { // run length compression int x=0, y=0, b; uchar *p = line[h-1]; const uchar *endp = line[h-1]+w; while ( y < h ) { if ( (b=d->getch()) == EOF ) break; if ( b == 0 ) { // escape code switch ( (b=d->getch()) ) { case 0: // end of line x = 0; y++; p = line[h-y-1]; break; case 1: // end of image case EOF: // end of file y = h; // exit loop break; case 2: // delta (jump) x += d->getch(); y += d->getch(); // Protection if ( (uint)x >= (uint)w ) x = w-1; if ( (uint)y >= (uint)h ) y = h-1; p = line[h-y-1] + x; break; default: // absolute mode // Protection if ( p + b > endp ) b = endp-p; if ( d->readBlock( (char *)p, b ) != b ) return FALSE; if ( (b & 1) == 1 ) d->getch(); // align on word boundary x += b; p += b; } } else { // encoded mode // Protection if ( p + b > endp ) b = endp-p; memset( p, d->getch(), b ); // repeat pixel x += b; p += b; } } } else if ( comp == BMP_RGB ) { // uncompressed while ( --h >= 0 ) { if ( d->readBlock((char *)line[h],bpl) != bpl ) break; } } } else if ( nbits == 16 || nbits == 24 || nbits == 32 ) { // 16,24,32 bit BMP image TQRgb *p; TQRgb *end; uchar *buf24 = new uchar[bpl]; int bpl24 = ((w*nbits+31)/32)*4; uchar *b; int c; while ( --h >= 0 ) { p = (TQRgb *)line[h]; end = p + w; if ( d->readBlock( (char *)buf24,bpl24) != bpl24 ) break; b = buf24; while ( p < end ) { c = *(uchar*)b | (*(uchar*)(b+1)<<8); if (nbits != 16) c |= *(uchar*)(b+2)<<16; *p++ = tqRgb(((c & red_mask) >> red_shift) * red_scale, ((c & green_mask) >> green_shift) * green_scale, ((c & blue_mask) >> blue_shift) * blue_scale); b += nbits/8; } } delete[] buf24; } return TRUE; } bool qt_read_dib( TQDataStream& s, TQImage& image ) { return read_dib(s,-1,-BMP_FILEHDR_SIZE,image); } static void read_bmp_image( TQImageIO *iio ) { TQIODevice *d = iio->ioDevice(); TQDataStream s( d ); BMP_FILEHDR bf; int startpos = d->at(); s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order s >> bf; // read BMP file header if ( tqstrncmp(bf.bfType,"BM",2) != 0 ) // not a BMP image return; TQImage image; if (read_dib( s, bf.bfOffBits, startpos, image )) { iio->setImage( image ); iio->setStatus( 0 ); // image ok } } bool qt_write_dib( TQDataStream& s, TQImage image ) { int nbits; int bpl_bmp; int bpl = image.bytesPerLine(); TQIODevice* d = s.device(); if ( image.depth() == 8 && image.numColors() <= 16 ) { bpl_bmp = (((bpl+1)/2+3)/4)*4; nbits = 4; } else if ( image.depth() == 32 ) { bpl_bmp = ((image.width()*24+31)/32)*4; nbits = 24; } else { bpl_bmp = bpl; nbits = image.depth(); } BMP_INFOHDR bi; bi.biSize = BMP_WIN; // build info header bi.biWidth = image.width(); bi.biHeight = image.height(); bi.biPlanes = 1; bi.biBitCount = nbits; bi.biCompression = BMP_RGB; bi.biSizeImage = bpl_bmp*image.height(); bi.biXPelsPerMeter = image.dotsPerMeterX() ? image.dotsPerMeterX() : 2834; // 72 dpi default bi.biYPelsPerMeter = image.dotsPerMeterY() ? image.dotsPerMeterY() : 2834; bi.biClrUsed = image.numColors(); bi.biClrImportant = image.numColors(); s << bi; // write info header if ( image.depth() != 32 ) { // write color table uchar *color_table = new uchar[4*image.numColors()]; uchar *rgb = color_table; TQRgb *c = image.colorTable(); for ( int i=0; iwriteBlock( (char *)color_table, 4*image.numColors() ); delete [] color_table; } if ( image.depth() == 1 && image.bitOrder() != TQImage::BigEndian ) image = image.convertBitOrder( TQImage::BigEndian ); int y; if ( nbits == 1 || nbits == 8 ) { // direct output for ( y=image.height()-1; y>=0; y-- ) { d->writeBlock( (char*)image.scanLine(y), bpl ); } return TRUE; } uchar *buf = new uchar[bpl_bmp]; uchar *b, *end; uchar *p; memset( buf, 0, bpl_bmp ); for ( y=image.height()-1; y>=0; y-- ) { // write the image bits if ( nbits == 4 ) { // convert 8 -> 4 bits p = image.scanLine(y); b = buf; end = b + image.width()/2; while ( b < end ) { *b++ = (*p << 4) | (*(p+1) & 0x0f); p += 2; } if ( image.width() & 1 ) *b = *p << 4; } else { // 32 bits TQRgb *p = (TQRgb *)image.scanLine( y ); TQRgb *end = p + image.width(); b = buf; while ( p < end ) { *b++ = tqBlue(*p); *b++ = tqGreen(*p); *b++ = tqRed(*p); p++; } } if ( bpl_bmp != d->writeBlock( (char*)buf, bpl_bmp ) ) { delete[] buf; return FALSE; } } delete[] buf; return TRUE; } static void write_bmp_image( TQImageIO *iio ) { TQIODevice *d = iio->ioDevice(); TQImage image = iio->image(); TQDataStream s( d ); BMP_FILEHDR bf; int bpl_bmp; int bpl = image.bytesPerLine(); // Code partially repeated in qt_write_dib if ( image.depth() == 8 && image.numColors() <= 16 ) { bpl_bmp = (((bpl+1)/2+3)/4)*4; } else if ( image.depth() == 32 ) { bpl_bmp = ((image.width()*24+31)/32)*4; } else { bpl_bmp = bpl; } iio->setStatus( 0 ); s.setByteOrder( TQDataStream::LittleEndian );// Intel byte order strncpy( bf.bfType, "BM", 2 ); // build file header bf.bfReserved1 = bf.bfReserved2 = 0; // reserved, should be zero bf.bfOffBits = BMP_FILEHDR_SIZE + BMP_WIN + image.numColors()*4; bf.bfSize = bf.bfOffBits + bpl_bmp*image.height(); s << bf; // write file header if ( !qt_write_dib( s, image ) ) iio->setStatus( 1 ); } #endif // TQT_NO_IMAGEIO_BMP #ifndef TQT_NO_IMAGEIO_PPM /***************************************************************************** PBM/PGM/PPM (ASCII and RAW) image read/write functions *****************************************************************************/ static int read_pbm_int( TQIODevice *d ) { int c; int val = -1; bool digit; const int buflen = 100; char buf[buflen]; for ( ;; ) { if ( (c=d->getch()) == EOF ) // end of file break; digit = isdigit( (uchar) c ); if ( val != -1 ) { if ( digit ) { val = 10*val + c - '0'; continue; } else { if ( c == '#' ) // comment d->readLine( buf, buflen ); break; } } if ( digit ) // first digit val = c - '0'; else if ( isspace((uchar) c) ) continue; else if ( c == '#' ) d->readLine( buf, buflen ); else break; } return val; } static void read_pbm_image( TQImageIO *iio ) // read PBM image data { const int buflen = 300; char buf[buflen]; TQIODevice *d = iio->ioDevice(); int w, h, nbits, mcc, y; int pbm_bpl; char type; bool raw; TQImage image; if ( d->readBlock( buf, 3 ) != 3 ) // read P[1-6] return; if ( !(buf[0] == 'P' && isdigit((uchar) buf[1]) && isspace((uchar) buf[2])) ) return; switch ( (type=buf[1]) ) { case '1': // ascii PBM case '4': // raw PBM nbits = 1; break; case '2': // ascii PGM case '5': // raw PGM nbits = 8; break; case '3': // ascii PPM case '6': // raw PPM nbits = 32; break; default: return; } raw = type >= '4'; w = read_pbm_int( d ); // get image width h = read_pbm_int( d ); // get image height if ( nbits == 1 ) mcc = 1; // ignore max color component else mcc = read_pbm_int( d ); // get max color component if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 || mcc <= 0 || mcc > 0xffff ) return; // weird P.M image int maxc = mcc; if ( maxc > 255 ) maxc = 255; image.create( w, h, nbits, 0, nbits == 1 ? TQImage::BigEndian : TQImage::IgnoreEndian ); if ( image.isNull() ) return; pbm_bpl = (nbits*w+7)/8; // bytes per scanline in PBM if ( raw ) { // read raw data if ( nbits == 32 ) { // type 6 pbm_bpl = 3*w; uchar *buf24 = new uchar[pbm_bpl], *b; TQRgb *p; TQRgb *end; for ( y=0; yreadBlock( (char *)buf24, pbm_bpl ) != pbm_bpl ) { delete[] buf24; return; } p = (TQRgb *)image.scanLine( y ); end = p + w; b = buf24; while ( p < end ) { *p++ = tqRgb(b[0],b[1],b[2]); b += 3; } } delete[] buf24; } else { // type 4,5 for ( y=0; yreadBlock( (char *)image.scanLine(y), pbm_bpl ) != pbm_bpl ) return; } } } else { // read ascii data uchar *p; int n; for ( y=0; ysetImage( image ); iio->setStatus( 0 ); // image ok } static void write_pbm_image( TQImageIO *iio ) { TQIODevice* out = iio->ioDevice(); TQCString str; TQImage image = iio->image(); TQCString format = iio->format(); format = format.left(3); // ignore RAW part bool gray = format == "PGM"; if ( format == "PBM" ) { image = image.convertDepth(1); } else if ( image.depth() == 1 ) { image = image.convertDepth(8); } if ( image.depth() == 1 && image.numColors() == 2 ) { if ( tqGray(image.color(0)) < tqGray(image.color(1)) ) { // 0=dark/black, 1=light/white - invert image.detach(); for ( int y=0; ywriteBlock(str, str.length()) != str.length()) { iio->setStatus(1); return; } w = (w+7)/8; for (uint y=0; ywriteBlock((char*)line, w) ) { iio->setStatus(1); return; } } } break; case 8: { str.insert(1, gray ? '5' : '6'); str.append("255\n"); if ((uint)out->writeBlock(str, str.length()) != str.length()) { iio->setStatus(1); return; } TQRgb *color = image.colorTable(); uint bpl = w*(gray ? 1 : 3); uchar *buf = new uchar[bpl]; for (uint y=0; ywriteBlock((char*)buf, bpl) ) { iio->setStatus(1); return; } } delete [] buf; } break; case 32: { str.insert(1, gray ? '5' : '6'); str.append("255\n"); if ((uint)out->writeBlock(str, str.length()) != str.length()) { iio->setStatus(1); return; } uint bpl = w*(gray ? 1 : 3); uchar *buf = new uchar[bpl]; for (uint y=0; ywriteBlock((char*)buf, bpl) ) { iio->setStatus(1); return; } } delete [] buf; } } iio->setStatus(0); } #endif // TQT_NO_IMAGEIO_PPM #ifndef TQT_NO_ASYNC_IMAGE_IO class TQImageIOFrameGrabber : public TQImageConsumer { public: TQImageIOFrameGrabber() : framecount(0) { } virtual ~TQImageIOFrameGrabber() { } TQImageDecoder *decoder; int framecount; void changed(const TQRect&) { } void end() { } void frameDone(const TQPoint&, const TQRect&) { framecount++; } void frameDone() { framecount++; } void setLooping(int) { } void setFramePeriod(int) { } void setSize(int, int) { } }; static void read_async_image( TQImageIO *iio ) { const int buf_len = 2048; uchar buffer[buf_len]; TQIODevice *d = iio->ioDevice(); TQImageIOFrameGrabber* consumer = new TQImageIOFrameGrabber(); TQImageDecoder *decoder = new TQImageDecoder(consumer); consumer->decoder = decoder; int startAt = d->at(); int totLen = 0; for (;;) { int length = d->readBlock((char*)buffer, buf_len); if ( length <= 0 ) { iio->setStatus(length); break; } uchar* b = buffer; int r = -1; while (length > 0 && consumer->framecount==0) { r = decoder->decode(b, length); if ( r <= 0 ) break; b += r; totLen += r; length -= r; } if ( consumer->framecount ) { // Stopped after first frame if ( d->isDirectAccess() ) d->at( startAt + totLen ); else { // ### We have (probably) read too much from the stream into // the buffer, and there is no way to put it back! } iio->setImage(decoder->image()); iio->setStatus(0); break; } if ( r <= 0 ) { iio->setStatus(r); break; } } consumer->decoder = 0; delete decoder; delete consumer; } #endif // TQT_NO_ASYNC_IMAGE_IO #ifndef TQT_NO_IMAGEIO_XBM /***************************************************************************** X bitmap image read/write functions *****************************************************************************/ static inline int hex2byte( char *p ) { return ( (isdigit((uchar) *p) ? *p - '0' : toupper((uchar) *p) - 'A' + 10) << 4 ) | ( isdigit((uchar) *(p+1)) ? *(p+1) - '0' : toupper((uchar) *(p+1)) - 'A' + 10 ); } static void read_xbm_image( TQImageIO *iio ) { const int buflen = 300; const int maxlen = 4096; char buf[buflen]; TQRegExp r1, r2; TQIODevice *d = iio->ioDevice(); int w=-1, h=-1; TQImage image; TQ_INT64 readBytes = 0; TQ_INT64 totalReadBytes = 0; r1 = TQString::fromLatin1("^#define[ \t]+[a-zA-Z0-9._]+[ \t]+"); r2 = TQString::fromLatin1("[0-9]+"); buf[0] = '\0'; while (buf[0] != '#') { //skip leading comment, if any readBytes = d->readLine(buf, buflen); // if readBytes >= buflen, it's very probably not a C file if ((readBytes <= 0) || (readBytes >= (buflen-1))) return; // limit xbm headers to the first 4k in the file to prevent // excessive reads on non-xbm files totalReadBytes += readBytes; if (totalReadBytes >= maxlen) return; } TQString sbuf; sbuf = TQString::fromLatin1(buf); if ( r1.search(sbuf) == 0 && r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() ) w = atoi( &buf[r1.matchedLength()] ); readBytes = d->readLine(buf, buflen ); // "#define .._height " if (readBytes <= 0) { return; } sbuf = TQString::fromLatin1(buf); if ( r1.search(sbuf) == 0 && r2.search(sbuf, r1.matchedLength()) == r1.matchedLength() ) h = atoi( &buf[r1.matchedLength()] ); if ( w <= 0 || w > 32767 || h <= 0 || h > 32767 ) return; // format error for ( ;; ) { // scan for data readBytes = d->readLine(buf, buflen); if (readBytes <= 0) { // end of file return; } buf[readBytes] = '\0'; if ( strstr(buf,"0x") != 0 ) // does line contain data? break; } image.create( w, h, 1, 2, TQImage::LittleEndian ); if ( image.isNull() ) return; image.setColor( 0, tqRgb(255,255,255) ); // white image.setColor( 1, tqRgb(0,0,0) ); // black int x = 0, y = 0; uchar *b = image.scanLine(0); char *p = strstr( buf, "0x" ); w = (w+7)/8; // byte width while ( y < h ) { // for all encoded bytes... if (p && (p < (buf + readBytes - 3))) { // p = "0x.." if (!isxdigit(p[2]) || !isxdigit(p[3])) { return; } *b++ = hex2byte(p+2); p += 2; if ( ++x == w && ++y < h ) { b = image.scanLine(y); x = 0; } p = strstr( p, "0x" ); } else { // read another line readBytes = d->readLine(buf, buflen); if (readBytes <= 0) // EOF ==> truncated image break; buf[readBytes] = '\0'; p = strstr( buf, "0x" ); } } iio->setImage( image ); iio->setStatus( 0 ); // image ok } static void write_xbm_image( TQImageIO *iio ) { TQIODevice *d = iio->ioDevice(); TQImage image = iio->image(); int w = image.width(); int h = image.height(); int i; TQString s = fbname(iio->fileName()); // get file base name char *buf = new char[s.length() + 100]; sprintf( buf, "#define %s_width %d\n", s.ascii(), w ); d->writeBlock( buf, tqstrlen(buf) ); sprintf( buf, "#define %s_height %d\n", s.ascii(), h ); d->writeBlock( buf, tqstrlen(buf) ); sprintf( buf, "static char %s_bits[] = {\n ", s.ascii() ); d->writeBlock( buf, tqstrlen(buf) ); iio->setStatus( 0 ); if ( image.depth() != 1 ) image = image.convertDepth( 1 ); // dither if ( image.bitOrder() != TQImage::LittleEndian ) image = image.convertBitOrder( TQImage::LittleEndian ); bool invert = tqGray(image.color(0)) < tqGray(image.color(1)); char hexrep[16]; for ( i=0; i<10; i++ ) hexrep[i] = '0' + i; for ( i=10; i<16; i++ ) hexrep[i] = 'a' -10 + i; if ( invert ) { char t; for ( i=0; i<8; i++ ) { t = hexrep[15-i]; hexrep[15-i] = hexrep[i]; hexrep[i] = t; } } int bcnt = 0; char *p = buf; int bpl = (w+7)/8; for (int y = 0; y < h; ++y) { uchar *b = image.scanLine(y); for (i = 0; i < bpl; ++i) { *p++ = '0'; *p++ = 'x'; *p++ = hexrep[*b >> 4]; *p++ = hexrep[*b++ & 0xf]; if ( i < bpl - 1 || y < h - 1 ) { *p++ = ','; if ( ++bcnt > 14 ) { *p++ = '\n'; *p++ = ' '; *p = '\0'; if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) { iio->setStatus( 1 ); delete [] buf; return; } p = buf; bcnt = 0; } } } } strcpy( p, " };\n" ); if ( (int)tqstrlen(buf) != d->writeBlock( buf, tqstrlen(buf) ) ) iio->setStatus( 1 ); delete [] buf; } #endif // TQT_NO_IMAGEIO_XBM #ifndef TQT_NO_IMAGEIO_XPM /***************************************************************************** XPM image read/write functions *****************************************************************************/ // Skip until ", read until the next ", return the rest in *buf // Returns FALSE on error, TRUE on success static bool read_xpm_string( TQCString &buf, TQIODevice *d, const char * const *source, int &index ) { if ( source ) { buf = source[index++]; return TRUE; } if ( buf.size() < 69 ) //# just an approximation buf.resize( 123 ); buf[0] = '\0'; int c; int i; while ( (c=d->getch()) != EOF && c != '"' ) { } if ( c == EOF ) { return FALSE; } i = 0; while ( (c=d->getch()) != EOF && c != '"' ) { if ( i == (int)buf.size() ) buf.resize( i*2+42 ); buf[i++] = c; } if ( c == EOF ) { return FALSE; } if ( i == (int)buf.size() ) // always use a 0 terminator buf.resize( i+1 ); buf[i] = '\0'; return TRUE; } static int nextColorSpec(const TQCString & buf) { int i = buf.find(" c "); if (i < 0) i = buf.find(" g "); if (i < 0) i = buf.find(" g4 "); if (i < 0) i = buf.find(" m "); if (i < 0) i = buf.find(" s "); return i; } // // INTERNAL // // Reads an .xpm from either the TQImageIO or from the TQString *. // One of the two HAS to be 0, the other one is used. // static void read_xpm_image_or_array( TQImageIO * iio, const char * const * source, TQImage & image) { TQCString buf; TQIODevice *d = 0; buf.resize( 200 ); int i, cpp, ncols, w, h, index = 0; if ( iio ) { iio->setStatus( 1 ); d = iio ? iio->ioDevice() : 0; d->readLine( buf.data(), buf.size() ); // "/* XPM */" TQRegExp r( TQString::fromLatin1("/\\*.XPM.\\*/") ); if ( buf.find(r) == -1 ) return; // bad magic } else if ( !source ) { return; } if ( !read_xpm_string( buf, d, source, index ) ) return; if ( sscanf( buf, "%d %d %d %d", &w, &h, &ncols, &cpp ) < 4 ) return; // < 4 numbers parsed if ( cpp > 15 ) return; if ( ncols > 256 ) { image.create( w, h, 32 ); } else { image.create( w, h, 8, ncols ); } if (image.isNull()) return; TQMap colorMap; int currentColor; for( currentColor=0; currentColor < ncols; ++currentColor ) { if ( !read_xpm_string( buf, d, source, index ) ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage: XPM color specification missing"); #endif return; } TQString index; index = buf.left( cpp ); buf = buf.mid( cpp ).simplifyWhiteSpace().lower(); buf.prepend( " " ); i = nextColorSpec(buf); if ( i < 0 ) { #if defined(QT_CHECK_RANGE) tqWarning( "TQImage: XPM color specification is missing: %s", buf.data()); #endif return; // no c/g/g4/m/s specification at all } buf = buf.mid( i+3 ); // Strip any other colorspec int end = nextColorSpec(buf); if (end != -1) buf.truncate(end); buf = buf.stripWhiteSpace(); if ( buf == "none" ) { image.setAlphaBuffer( TRUE ); int transparentColor = currentColor; if ( image.depth() == 8 ) { image.setColor( transparentColor, TQT_RGB_MASK & tqRgb(198,198,198) ); colorMap.insert( index, transparentColor ); } else { TQRgb rgb = TQT_RGB_MASK & tqRgb(198,198,198); colorMap.insert( index, rgb ); } } else { if ( ((buf.length()-1) % 3) && (buf[0] == '#') ) { buf.truncate (((buf.length()-1) / 4 * 3) + 1); // remove alpha channel left by imagemagick } TQColor c( buf.data() ); if ( image.depth() == 8 ) { image.setColor( currentColor, 0xff000000 | c.rgb() ); colorMap.insert( index, currentColor ); } else { TQRgb rgb = 0xff000000 | c.rgb(); colorMap.insert( index, rgb ); } } } // Read pixels for( int y=0; ysetImage( image ); iio->setStatus( 0 ); // image ok } } static void read_xpm_image( TQImageIO * iio ) { TQImage i; (void)read_xpm_image_or_array( iio, 0, i ); return; } static const char* xpm_color_name( int cpp, int index ) { static char returnable[5]; static const char code[] = ".#abcdefghijklmnopqrstuvwxyzABCD" "EFGHIJKLMNOPQRSTUVWXYZ0123456789"; // cpp is limited to 4 and index is limited to 64^cpp if ( cpp > 1 ) { if ( cpp > 2 ) { if ( cpp > 3 ) { returnable[3] = code[index % 64]; index /= 64; } else returnable[3] = '\0'; returnable[2] = code[index % 64]; index /= 64; } else returnable[2] = '\0'; // the following 4 lines are a joke! if ( index == 0 ) index = 64*44+21; else if ( index == 64*44+21 ) index = 0; returnable[1] = code[index % 64]; index /= 64; } else returnable[1] = '\0'; returnable[0] = code[index]; return returnable; } // write XPM image data static void write_xpm_image( TQImageIO * iio ) { if ( iio ) iio->setStatus( 1 ); else return; // ### 8-bit case could be made faster TQImage image; if ( iio->image().depth() != 32 ) image = iio->image().convertDepth( 32 ); else image = iio->image(); TQMap colorMap; int w = image.width(), h = image.height(), ncolors = 0; int x, y; // build color table for( y=0; y k; k *= 64 ) { ++cpp; // limit to 4 characters per pixel // 64^4 colors is enough for a 4096x4096 image if ( cpp > 4) break; } TQString line; // write header TQTextStream s( iio->ioDevice() ); s << "/* XPM */" << endl << "static char *" << fbname(iio->fileName()) << "[]={" << endl << "\"" << w << " " << h << " " << ncolors << " " << cpp << "\""; // write palette TQMap::Iterator c = colorMap.begin(); while ( c != colorMap.end() ) { TQRgb color = c.key(); if ( image.hasAlphaBuffer() && color == (color & TQT_RGB_MASK) ) line.sprintf( "\"%s c None\"", xpm_color_name(cpp, *c) ); else line.sprintf( "\"%s c #%02x%02x%02x\"", xpm_color_name(cpp, *c), tqRed(color), tqGreen(color), tqBlue(color) ); ++c; s << "," << endl << line; } // write pixels, limit to 4 characters per pixel line.truncate( cpp*w ); for( y=0; y 1 ) { line[cc++] = chars[1]; if ( cpp > 2 ) { line[cc++] = chars[2]; if ( cpp > 3 ) { line[cc++] = chars[3]; } } } } s << "," << endl << "\"" << line << "\""; } s << "};" << endl; iio->setStatus( 0 ); } #endif // TQT_NO_IMAGEIO_XPM /*! Returns an image with depth \a d, using the \a palette_count colors pointed to by \a palette. If \a d is 1 or 8, the returned image will have its color table ordered the same as \a palette. If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the \a conversion_flags to specify how you'd prefer this to happen. Note: currently no closest-color search is made. If colors are found that are not in the palette, the palette may not be used at all. This result should not be considered valid because it may change in future implementations. Currently inefficient for non-32-bit images. \sa TQt::ImageConversionFlags */ #ifndef TQT_NO_IMAGE_TRUECOLOR TQImage TQImage::convertDepthWithPalette( int d, TQRgb* palette, int palette_count, int conversion_flags ) const { if ( depth() == 1 ) { return convertDepth( 8, conversion_flags ) .convertDepthWithPalette( d, palette, palette_count, conversion_flags ); } else if ( depth() == 8 ) { // ### this could be easily made more efficient return convertDepth( 32, conversion_flags ) .convertDepthWithPalette( d, palette, palette_count, conversion_flags ); } else { TQImage result; convert_32_to_8( this, &result, (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither, palette, palette_count ); return result.convertDepth( d ); } } #endif static bool haveSamePalette(const TQImage& a, const TQImage& b) { if (a.depth() != b.depth()) return FALSE; if (a.numColors() != b.numColors()) return FALSE; TQRgb* ca = a.colorTable(); TQRgb* cb = b.colorTable(); for (int i=a.numColors(); i--; ) { if (*ca++ != *cb++) return FALSE; } return TRUE; } /*! \relates TQImage Copies a block of pixels from \a src to \a dst. The pixels copied from source (src) are converted according to \a conversion_flags if it is incompatible with the destination (\a dst). \a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the top-left position in \a dst and \a sw, \a sh is the size of the copied block. The copying is clipped if areas outside \a src or \a dst are specified. If \a sw is -1, it is adjusted to src->width(). Similarly, if \a sh is -1, it is adjusted to src->height(). Currently inefficient for non 32-bit images. */ void bitBlt( TQImage* dst, int dx, int dy, const TQImage* src, int sx, int sy, int sw, int sh, int conversion_flags ) { // Parameter correction if ( sw < 0 ) sw = src->width(); if ( sh < 0 ) sh = src->height(); if ( sx < 0 ) { dx -= sx; sw += sx; sx = 0; } if ( sy < 0 ) { dy -= sy; sh += sy; sy = 0; } if ( dx < 0 ) { sx -= dx; sw += dx; dx = 0; } if ( dy < 0 ) { sy -= dy; sh += dy; dy = 0; } if ( sx + sw > src->width() ) sw = src->width() - sx; if ( sy + sh > src->height() ) sh = src->height() - sy; if ( dx + sw > dst->width() ) sw = dst->width() - dx; if ( dy + sh > dst->height() ) sh = dst->height() - dy; if ( sw <= 0 || sh <= 0 ) return; // Nothing left to copy if ( (dst->data == src->data) && dx==sx && dy==sy ) return; // Same pixels // "Easy" to copy if both same depth and one of: // - 32 bit // - 8 bit, identical palette // - 1 bit, identical palette and byte-aligned area // if ( haveSamePalette(*dst,*src) && ( (dst->depth() != 1) || (!( (dx&7) || (sx&7) || (((sw&7) && (sx+sw < src->width())) || (dx+sw < dst->width()) ) )) ) ) { // easy to copy } else if ( dst->depth() != 32 ) { #ifndef TQT_NO_IMAGE_TRUECOLOR TQImage dstconv = dst->convertDepth( 32 ); bitBlt( &dstconv, dx, dy, src, sx, sy, sw, sh, (conversion_flags&~TQt::DitherMode_Mask) | TQt::AvoidDither ); *dst = dstconv.convertDepthWithPalette( dst->depth(), dst->colorTable(), dst->numColors() ); #endif return; } // Now assume palette can be ignored if ( dst->depth() != src->depth() ) { if ( ((sw == src->width()) && (sh == src->height())) || (dst->depth()==32) ) { TQImage srcconv = src->convertDepth( dst->depth(), conversion_flags ); bitBlt( dst, dx, dy, &srcconv, sx, sy, sw, sh, conversion_flags ); } else { TQImage srcconv = src->copy( sx, sy, sw, sh ); // ie. bitBlt bitBlt( dst, dx, dy, &srcconv, 0, 0, sw, sh, conversion_flags ); } return; } // Now assume both are the same depth. // Now assume both are 32-bit or 8-bit with compatible palettes. // "Easy" switch ( dst->depth() ) { case 1: { uchar* d = dst->scanLine(dy) + dx/8; uchar* s = src->scanLine(sy) + sx/8; const int bw = (sw+7)/8; if ( bw < 64 ) { // Trust ourselves const int dd = dst->bytesPerLine() - bw; const int ds = src->bytesPerLine() - bw; while ( sh-- ) { for ( int t=bw; t--; ) *d++ = *s++; d += dd; s += ds; } } else { // Trust libc const int dd = dst->bytesPerLine(); const int ds = src->bytesPerLine(); while ( sh-- ) { memcpy( d, s, bw ); d += dd; s += ds; } } } break; case 8: { uchar* d = dst->scanLine(dy) + dx; uchar* s = src->scanLine(sy) + sx; if ( sw < 64 ) { // Trust ourselves const int dd = dst->bytesPerLine() - sw; const int ds = src->bytesPerLine() - sw; while ( sh-- ) { for ( int t=sw; t--; ) *d++ = *s++; d += dd; s += ds; } } else { // Trust libc const int dd = dst->bytesPerLine(); const int ds = src->bytesPerLine(); while ( sh-- ) { memcpy( d, s, sw ); d += dd; s += ds; } } } break; #ifndef TQT_NO_IMAGE_TRUECOLOR case 32: if ( src->hasAlphaBuffer() ) { TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx; TQRgb* s = (TQRgb*)src->scanLine(sy) + sx; const int dd = dst->width() - sw; const int ds = src->width() - sw; while ( sh-- ) { for ( int t=sw; t--; ) { unsigned char a = tqAlpha(*s); if ( a == 255 ) *d++ = *s++; else if ( a == 0 ) ++d,++s; // nothing else { unsigned char r = ((tqRed(*s)-tqRed(*d)) * a) / 256 + tqRed(*d); unsigned char g = ((tqGreen(*s)-tqGreen(*d)) * a) / 256 + tqGreen(*d); unsigned char b = ((tqBlue(*s)-tqBlue(*d)) * a) / 256 + tqBlue(*d); a = TQMAX(tqAlpha(*d),a); // alternatives... *d++ = tqRgba(r,g,b,a); ++s; } } d += dd; s += ds; } } else { TQRgb* d = (TQRgb*)dst->scanLine(dy) + dx; TQRgb* s = (TQRgb*)src->scanLine(sy) + sx; if ( sw < 64 ) { // Trust ourselves const int dd = dst->width() - sw; const int ds = src->width() - sw; while ( sh-- ) { for ( int t=sw; t--; ) *d++ = *s++; d += dd; s += ds; } } else { // Trust libc const int dd = dst->width(); const int ds = src->width(); const int b = sw*sizeof(TQRgb); while ( sh-- ) { memcpy( d, s, b ); d += dd; s += ds; } } } break; #endif // TQT_NO_IMAGE_TRUECOLOR } } /*! Returns TRUE if this image and image \a i have the same contents; otherwise returns FALSE. The comparison can be slow, unless there is some obvious difference, such as different widths, in which case the function will return quickly. \sa operator=() */ bool TQImage::operator==( const TQImage & i ) const { // same object, or shared? if ( i.data == data ) return TRUE; // obviously different stuff? if ( i.data->h != data->h || i.data->w != data->w ) return FALSE; // not equal if one has alphabuffer and the other does not if ( i.hasAlphaBuffer() != hasAlphaBuffer() ) return FALSE; // that was the fast bit... TQImage i1 = convertDepth( 32 ); TQImage i2 = i.convertDepth( 32 ); int l; // if no alpha buffer used, there might still be junk in the // alpha bits; thus, we can't do memcmp-style comparison of scanlines if ( !hasAlphaBuffer() ) { int m; TQRgb *i1line; TQRgb *i2line; for( l=0; l < data->h; l++ ) { i1line = (uint *)i1.scanLine( l ); i2line = (uint *)i2.scanLine( l ); // compare pixels of scanline individually for ( m=0; m < data->w; m++ ) if ( (i1line[m] ^ i2line[m]) & 0x00FFFFFF ) return FALSE; } } else { // yay, we can do fast binary comparison on entire scanlines for( l=0; l < data->h; l++ ) if ( memcmp( i1.scanLine( l ), i2.scanLine( l ), 4*data->w ) ) return FALSE; } return TRUE; } /*! Returns TRUE if this image and image \a i have different contents; otherwise returns FALSE. The comparison can be slow, unless there is some obvious difference, such as different widths, in which case the function will return quickly. \sa operator=() */ bool TQImage::operator!=( const TQImage & i ) const { return !(*this == i); } /*! \fn int TQImage::dotsPerMeterX() const Returns the number of pixels that fit horizontally in a physical meter. This and dotsPerMeterY() define the intended scale and aspect ratio of the image. \sa setDotsPerMeterX() */ /*! \fn int TQImage::dotsPerMeterY() const Returns the number of pixels that fit vertically in a physical meter. This and dotsPerMeterX() define the intended scale and aspect ratio of the image. \sa setDotsPerMeterY() */ /*! Sets the value returned by dotsPerMeterX() to \a x. */ void TQImage::setDotsPerMeterX(int x) { data->dpmx = x; } /*! Sets the value returned by dotsPerMeterY() to \a y. */ void TQImage::setDotsPerMeterY(int y) { data->dpmy = y; } /*! \fn TQPoint TQImage::offset() const Returns the number of pixels by which the image is intended to be offset by when positioning relative to other images. */ /*! Sets the value returned by offset() to \a p. */ void TQImage::setOffset(const TQPoint& p) { data->offset = p; } #ifndef TQT_NO_IMAGE_TEXT /*! \internal Returns the internal TQImageDataMisc object. This object will be created if it doesn't already exist. */ TQImageDataMisc& TQImage::misc() const { if ( !data->misc ) data->misc = new TQImageDataMisc; return *data->misc; } /*! Returns the string recorded for the keyword \a key in language \a lang, or in a default language if \a lang is 0. */ TQString TQImage::text(const char* key, const char* lang) const { TQImageTextKeyLang x(key,lang); return misc().text_lang[x]; } /*! \overload Returns the string recorded for the keyword and language \a kl. */ TQString TQImage::text(const TQImageTextKeyLang& kl) const { return misc().text_lang[kl]; } /*! Returns the language identifiers for which some texts are recorded. Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQStringList list = myImage.textLanguages(); TQStringList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode \sa textList() text() setText() textKeys() */ TQStringList TQImage::textLanguages() const { if ( !data->misc ) return TQStringList(); return misc().languages(); } /*! Returns the keywords for which some texts are recorded. Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQStringList list = myImage.textKeys(); TQStringList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode \sa textList() text() setText() textLanguages() */ TQStringList TQImage::textKeys() const { if ( !data->misc ) return TQStringList(); return misc().keys(); } /*! Returns a list of TQImageTextKeyLang objects that enumerate all the texts key/language pairs set by setText() for this image. Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQValueList list = myImage.textList(); TQValueList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode */ TQValueList TQImage::textList() const { if ( !data->misc ) return TQValueList(); return misc().list(); } /*! Records string \a s for the keyword \a key. The \a key should be a portable keyword recognizable by other software - some suggested values can be found in \link http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text the PNG specification \endlink. \a s can be any text. \a lang should specify the language code (see \link http://www.rfc-editor.org/rfc/rfc1766.txt RFC 1766 \endlink) or 0. */ void TQImage::setText(const char* key, const char* lang, const TQString& s) { TQImageTextKeyLang x(key,lang); misc().text_lang.replace(x,s); } #endif // TQT_NO_IMAGE_TEXT