1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
|
#ifndef ABAKUS_NUMERICTYPES_H
#define ABAKUS_NUMERICTYPES_H
/*
* numerictypes.h - part of abakus
* Copyright (C) 2004, 2005 Michael Pyne <michael.pyne@kdemail.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02110-1301 USA
*/
#include <sstream>
#include <string>
#include <qstring.h>
#include <qstringlist.h>
#include <qregexp.h>
#include "hmath.h"
#include "config.h"
#if HAVE_MPFR
#include <mpfr.h>
#endif
namespace Abakus
{
/* What trigonometric mode we're in. */
typedef enum { Degrees, Radians } TrigMode;
/* Shared application-wide */
extern TrigMode m_trigMode;
/* Precision to display at. */
extern int m_prec;
/**
* Representation of a number type. Includes the basic operators, along with
* built-in functions such as abs() and mod().
*
* You need to actually define it using template specializations though. You
* can add functions in a specialization, it may be worth it to have the
* functions declared here as well so that you get a compiler error if you
* forget to implement it.
*
* Note that since we're using a specialization, and then typedef'ing the
* new specialized class to number_t, that means we only support one type of
* number at a time, and the choice is made at compile-time.
*/
template <typename T>
class number
{
public:
/// Default ctor and set-and-assign ctor wrapped in one.
number(const T& t = T());
/// Copy constructor.
number(const number &other);
/// Create number from textual representation, useful for ginormously
/// precise numbers.
number(const char *str);
/// Convienience constructor to create a number from an integer.
explicit number(int i);
/// Assignment operator. Be sure to check for &other == this if necessary!
number<T> &operator =(const number<T> &other);
// You need to implement the suite of comparison operators as well, along
// with the negation operator. Sorry.
bool operator!=(const number<T> &other) const;
bool operator==(const number<T> &other) const;
bool operator<(const number<T> &other) const;
bool operator>(const number<T> &other) const;
bool operator<=(const number<T> &other) const;
bool operator>=(const number<T> &other) const;
number<T> operator -() const;
// These functions must be implemented by all specializations to be used.
// Note that when implementing these functions, the implicit value is the
// value that this object is wrapping. E.g. you'd call the function on
// a number object, kind of like 3.sin() if you were using Ruby.
// Trigonometric, must accept values in degrees.
number<T> sin() const;
number<T> cos() const;
number<T> tan() const;
// Inverse trigonometric, must return result in Degrees if necessary.
number<T> asin() const;
number<T> acos() const;
number<T> atan() const;
// Hyperbolic trigonometric (doesn't use Degrees).
number<T> sinh() const;
number<T> cosh() const;
number<T> tanh() const;
// Inverse hyperbolic trigonometric (doesn't use degrees).
number<T> asinh() const;
number<T> acosh() const;
number<T> atanh() const;
/// @return Number rounded to closest integer less than or equal to value.
number<T> floor() const;
/// @return Number rounded to closest integer greater than or equal to value.
number<T> ceil() const;
/// @return Number with only integer component of result.
number<T> integer() const;
/// @return Number with only fractional component of result.
number<T> frac() const;
/**
* @return Number rounded to nearest integer. What to do in 'strange'
* situations is specialization-dependant, I don't really care enough to
* mandate one or the other.
*/
number<T> round() const;
/// @return Absolute value of number.
number<T> abs() const;
/// @return Square root of number.
number<T> sqrt() const;
/// @return Natural-base logarithm of value.
number<T> ln() const;
/// @return base-10 logarithm of value.
number<T> log() const;
/// @return Natural base raised to the power given by our value.
number<T> exp() const;
/// @return Our value raised to the \p exponent power. Would be nice if
/// it supported even exponents on negative numbers correctly.
number<T> pow(const number<T> &exponent);
/// @return value rounded to double precision.
double asDouble() const;
/// @return Textual representation of the number, adjusted to the user's
/// current precision.
QString toString() const;
/// @return Our value.
T value() const;
};
// You should also remember to overload the math operators for your
// specialization. These generic ones should work for templates wrapping a
// type that C++ already has operators for.
template<typename T>
inline number<T> operator+(const number<T> &l, const number<T> &r)
{
return number<T>(l.value() + r.value());
}
template<typename T>
inline number<T> operator-(const number<T> &l, const number<T> &r)
{
return number<T>(l.value() - r.value());
}
template<typename T>
inline number<T> operator*(const number<T> &l, const number<T> &r)
{
return number<T>(l.value() * r.value());
}
template<typename T>
inline number<T> operator/(const number<T> &l, const number<T> &r)
{
return number<T>(l.value() / r.value());
}
#if HAVE_MPFR
/**
* Utility function to convert a MPFR number to a string. This is declared
* this way so that when it changes we don't have to recompile all of Abakus.
*
* This function obeys the precision settings of the user. This means that if
* you change the precision between function calls, you may get different
* results, even on the same number!
*
* But, don't use this directly, you should be using
* number<mpfr_ptr>::toString() instead!
*
* @param number MPFR number to convert to string.
* @return The number converted to a string, in US Decimal format at this time.
* @see number<>::toString()
*/
QString convertToString(const mpfr_ptr &number);
/**
* This is a specialization of the number<> template for the MPFR numeric type.
* It uses a weird hack in that it is declared as specializing mpfr_ptr instead
* of mpfr_t like is used everywhere in MPFR's public API.
*
* This is because mpfr_t does not seem to play well with C++ templates (it
* is implemented internally as a 1-length array to get pointer semantics
* while also allocating memory.
*
* What this means is that should you ever have to deal with allocating
* memory, you need to use allocate space for it (mpfr_ptr is a pointer to
* __mpfr_struct).
*
* I don't like using the internal API this way, but I have little choice.
*
* @author Michael Pyne <michael.pyne@kdemail.net>
*/
template<>
class number<mpfr_ptr>
{
public:
typedef mpfr_ptr value_type;
static const mp_rnd_t RoundDirection = GMP_RNDN;
number(const value_type& t)
{
m_t = (mpfr_ptr) new __mpfr_struct;
mpfr_init_set(m_t, t, RoundDirection);
}
number(const number<value_type> &other)
{
m_t = (mpfr_ptr) new __mpfr_struct;
mpfr_init_set(m_t, other.m_t, RoundDirection);
}
number(const char *str)
{
m_t = (mpfr_ptr) new __mpfr_struct;
mpfr_init_set_str (m_t, str, 10, RoundDirection);
}
explicit number(int i)
{
m_t = (mpfr_ptr) new __mpfr_struct;
mpfr_init_set_si(m_t, (signed long int) i, RoundDirection);
}
/// Construct a number with a value of NaN.
number()
{
m_t = (mpfr_ptr) new __mpfr_struct;
mpfr_init(m_t);
}
~number()
{
mpfr_clear(m_t);
delete (__mpfr_struct *) m_t;
}
number<value_type> &operator=(const number<value_type> &other)
{
if(&other == this)
return *this;
mpfr_clear (m_t);
mpfr_init_set (m_t, other.m_t, RoundDirection);
return *this;
}
bool operator!=(const number<value_type> &other) const
{
return mpfr_equal_p(m_t, other.m_t) == 0;
}
bool operator==(const number<value_type> &other) const
{
return mpfr_equal_p(m_t, other.m_t) != 0;
}
bool operator<(const number<value_type> &other) const
{
return mpfr_less_p(m_t, other.m_t) != 0;
}
bool operator>(const number<value_type> &other) const
{
return mpfr_greater_p(m_t, other.m_t) != 0;
}
bool operator<=(const number<value_type> &other) const
{
return mpfr_lessequal_p(m_t, other.m_t) != 0;
}
bool operator>=(const number<value_type> &other) const
{
return mpfr_greaterequal_p(m_t, other.m_t) != 0;
}
number<value_type> operator -() const
{
number<value_type> result(m_t);
mpfr_neg(result.m_t, result.m_t, RoundDirection);
return result;
}
// internal
number<value_type> asRadians() const
{
if(m_trigMode == Degrees)
{
number<value_type> result(m_t);
mpfr_t pi;
mpfr_init (pi);
mpfr_const_pi (pi, RoundDirection);
mpfr_mul (result.m_t, result.m_t, pi, RoundDirection);
mpfr_div_ui (result.m_t, result.m_t, 180, RoundDirection);
mpfr_clear (pi);
return result;
}
else
return m_t;
}
// internal
number<value_type> toTrig() const
{
// Assumes num is in radians.
if(m_trigMode == Degrees)
{
number<value_type> result(m_t);
mpfr_t pi;
mpfr_init (pi);
mpfr_const_pi (pi, RoundDirection);
mpfr_mul_ui (result.m_t, result.m_t, 180, RoundDirection);
mpfr_div (result.m_t, result.m_t, pi, RoundDirection);
mpfr_clear (pi);
return result;
}
else
return m_t;
}
/* There is a lot of boilerplate ahead, so define a macro to declare and
* define some functions for us to forward the call to MPFR.
*/
#define DECLARE_IMPL_BASE(name, func, in, out) number<value_type> name() const \
{ \
number<value_type> result = in; \
mpfr_##func (result.m_t, result.m_t, RoundDirection); \
\
return out; \
}
// Normal function, uses 2 rather than 3 params
#define DECLARE_NAMED_IMPL2(name, func) number<value_type> name() const \
{ \
number<value_type> result = m_t; \
mpfr_##func (result.m_t, result.m_t); \
\
return result; \
}
// Normal function, but MPFL uses a different name than abakus.
#define DECLARE_NAMED_IMPL(name, func) DECLARE_IMPL_BASE(name, func, m_t, result)
// Normal function, just routes call to MPFR.
#define DECLARE_IMPL(name) DECLARE_NAMED_IMPL(name, name)
// Trig function, degrees in
#define DECLARE_TRIG_IN_IMPL(name) DECLARE_IMPL_BASE(name, name, asRadians(), result)
// Trig function, degrees out
#define DECLARE_TRIG_OUT_IMPL(name) DECLARE_IMPL_BASE(name, name, m_t, result.toTrig())
// Now declare our functions.
DECLARE_TRIG_IN_IMPL(sin)
DECLARE_TRIG_IN_IMPL(cos)
DECLARE_TRIG_IN_IMPL(tan)
DECLARE_IMPL(sinh)
DECLARE_IMPL(cosh)
DECLARE_IMPL(tanh)
DECLARE_TRIG_OUT_IMPL(asin)
DECLARE_TRIG_OUT_IMPL(acos)
DECLARE_TRIG_OUT_IMPL(atan)
DECLARE_IMPL(asinh)
DECLARE_IMPL(acosh)
DECLARE_IMPL(atanh)
DECLARE_NAMED_IMPL2(floor, floor)
DECLARE_NAMED_IMPL2(ceil, ceil)
DECLARE_NAMED_IMPL(integer, rint)
DECLARE_IMPL(frac)
DECLARE_NAMED_IMPL2(round, round)
DECLARE_IMPL(abs)
DECLARE_IMPL(sqrt)
DECLARE_NAMED_IMPL(ln, log)
DECLARE_NAMED_IMPL(log, log10)
DECLARE_IMPL(exp)
// Can't use macro for this one, it's sorta weird.
number<value_type> pow(const number<value_type> &exponent)
{
number<value_type> result = m_t;
mpfr_pow(result.m_t, result.m_t, exponent.m_t, RoundDirection);
return result;
}
double asDouble() const
{
return mpfr_get_d(m_t, RoundDirection);
}
// Note that this can be used dangerously, be careful.
value_type value() const { return m_t; }
QString toString() const
{
// Move this to .cpp to avoid recompiling as I fix it.
return convertToString(m_t);
}
static number<value_type> nan()
{
// Doesn't apply, but the default value when initialized happens
// to be nan.
return number<value_type>();
}
static const value_type PI;
static const value_type E;
private:
mpfr_ptr m_t;
};
// Specializations of math operators for mpfr.
template<>
inline number<mpfr_ptr> operator+(const number<mpfr_ptr> &l, const number<mpfr_ptr> &r)
{
number<mpfr_ptr> result;
mpfr_add(result.value(), l.value(), r.value(), GMP_RNDN);
return result;
}
template<>
inline number<mpfr_ptr> operator-(const number<mpfr_ptr> &l, const number<mpfr_ptr> &r)
{
number<mpfr_ptr> result;
mpfr_sub(result.value(), l.value(), r.value(), GMP_RNDN);
return result;
}
template<>
inline number<mpfr_ptr> operator*(const number<mpfr_ptr> &l, const number<mpfr_ptr> &r)
{
number<mpfr_ptr> result;
mpfr_mul(result.value(), l.value(), r.value(), GMP_RNDN);
return result;
}
template<>
inline number<mpfr_ptr> operator/(const number<mpfr_ptr> &l, const number<mpfr_ptr> &r)
{
number<mpfr_ptr> result;
mpfr_div(result.value(), l.value(), r.value(), GMP_RNDN);
return result;
}
// Abakus namespace continues.
typedef number<mpfr_ptr> number_t;
#else
// Defined in numerictypes.cpp for ease of reimplementation.
QString convertToString(const HNumber &num);
/**
* Specialization for internal HMath library, used if MPFR isn't usable.
*
* @author Michael Pyne <michael.pyne@kdemail.net>
*/
template<>
class number<HNumber>
{
public:
typedef HNumber value_type;
number(const HNumber& t = HNumber()) : m_t(t)
{
}
explicit number(int i) : m_t(i) { }
number(const number<HNumber> &other) : m_t(other.m_t) { }
number(const char *s) : m_t(s) { }
bool operator!=(const number<HNumber> &other) const
{
return m_t != other.m_t;
}
bool operator==(const number<HNumber> &other) const
{
return m_t == other.m_t;
}
bool operator<(const number<HNumber> &other) const
{
return m_t < other.m_t;
}
bool operator>(const number<HNumber> &other) const
{
return m_t > other.m_t;
}
bool operator<=(const number<HNumber> &other) const
{
return m_t <= other.m_t;
}
bool operator>=(const number<HNumber> &other) const
{
return m_t >= other.m_t;
}
number<HNumber> &operator=(const number<HNumber> &other)
{
m_t = other.m_t;
return *this;
}
HNumber asRadians() const
{
if(m_trigMode == Degrees)
return m_t * PI / HNumber("180.0");
else
return m_t;
}
HNumber toTrig(const HNumber &num) const
{
// Assumes num is in radians.
if(m_trigMode == Degrees)
return num * HNumber("180.0") / PI;
else
return num;
}
number<HNumber> sin() const
{
return HMath::sin(asRadians());
}
number<HNumber> cos() const
{
return HMath::cos(asRadians());
}
number<HNumber> tan() const
{
return HMath::tan(asRadians());
}
number<HNumber> asin() const
{
return toTrig(HMath::asin(m_t));
}
number<HNumber> acos() const
{
return toTrig(HMath::acos(m_t));
}
number<HNumber> atan() const
{
return toTrig(HMath::atan(m_t));
}
number<HNumber> floor() const
{
if(HMath::frac(m_t) == HNumber("0.0"))
return integer();
if(HMath::integer(m_t) < HNumber("0.0"))
return HMath::integer(m_t) - 1;
return integer();
}
number<HNumber> ceil() const
{
return floor().value() + HNumber(1);
}
/* There is a lot of boilerplate ahead, so define a macro to declare and
* define some functions for us to forward the call to HMath.
*/
#define DECLARE_IMPL(name) number<value_type> name() const \
{ return HMath::name(m_t); }
DECLARE_IMPL(frac)
DECLARE_IMPL(integer)
DECLARE_IMPL(round)
DECLARE_IMPL(abs)
DECLARE_IMPL(sqrt)
DECLARE_IMPL(ln)
DECLARE_IMPL(log)
DECLARE_IMPL(exp)
DECLARE_IMPL(sinh)
DECLARE_IMPL(cosh)
DECLARE_IMPL(tanh)
DECLARE_IMPL(asinh)
DECLARE_IMPL(acosh)
DECLARE_IMPL(atanh)
HNumber value() const { return m_t; }
double asDouble() const { return toString().toDouble(); }
number<HNumber> operator-() const { return HMath::negate(m_t); }
// TODO: I believe this doesn't work for negative numbers with even
// exponents. Which breaks simple stuff like (-2)^2. :(
number<HNumber> pow(const number<HNumber> &exponent)
{
return HMath::raise(m_t, exponent.m_t);
}
QString toString() const
{
return convertToString(m_t);
}
static number<HNumber> nan()
{
return HNumber::nan();
}
static const HNumber PI;
static const HNumber E;
private:
HNumber m_t;
};
// Abakus namespace continues.
typedef number<HNumber> number_t;
#endif /* HAVE_MPFR */
}; // namespace Abakus
#endif /* ABAKUS_NUMERICTYPES_H */
// vim: set et ts=8 sw=4:
|