summaryrefslogtreecommitdiffstats
path: root/digikam/libs/lprof/cmslm.cpp
blob: 81d86ba64f5e1a22bd3aee64fd4d6ab61e501a55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* */
/*  Little cms - profiler construction set */
/*  Copyright (C) 1998-2001 Marti Maria <marti@littlecms.com> */
/* */
/* THIS SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY */
/* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/* IN NO EVENT SHALL MARTI MARIA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, */
/* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, */
/* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF */
/* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE */
/* OF THIS SOFTWARE. */
/* */
/* This file is free software; you can redistribute it and/or modify it */
/* under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU */
/* General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, ma 02110-1301, USA. */
/* */
/* As a special exception to the GNU General Public License, if you */
/* distribute this file as part of a program that contains a */
/* configuration script generated by Autoconf, you may include it under */
/* the same distribution terms that you use for the rest of that program. */
/* */
/* Version 1.09a */

#include "lcmsprf.h"


/* From "numerical recipes in C" */
/*  */
/* Levenberg-Marquardt method, attempting to reduce the value X2 of a  */
/* fit between a set of data points x[1..ndata], y[1..ndata] with individual  */
/* standard deviations sig[1..ndata], and a nonlinear function dependent  */
/* on ma coefficients a[1..ma]. The input array ia[1..ma] */
/* indicates by nonzero entries those components of a that should be  */
/* fitted for, and by zero entries those components that should be held  */
/* fixed at their input values. The program returns current best-fitt  */
/* values for the parameters a[1..ma], and chisq. The arrays */
/* covar[1..ma][1..ma], alpha[1..ma][1..ma] are used as  */
/* working space  during most iterations. Supply a routine  */
/* funcs(x, a, yfit, dyda, ma)  */
/* that evaluates the fitting function yfit, and its derivatives dyda[1..ma]  */
/* with respect to the fitting parameters a at x. On the first call provide  */
/* an initial guess for the parameters a, and set alamda<0 for initialization */
/* (which then sets alamda=.001). If a step succeeds chisq becomes smaller  */
/* and alamda decreases by a factor of 10. If a step fails alamda grows by  */
/* a factor of 10. You must call this routine repeatedly until convergence  */
/* is achieved. Then, make one final call with alamda=0, so that  */
/* covar[1..ma][1..ma] returns the covar matrix, and alpha the  */
/* alpha matrix. (Parameters held fixed will return zero covariances.) */


LCMSHANDLE cdecl cmsxLevenbergMarquardtInit(LPSAMPLEDCURVE x, LPSAMPLEDCURVE y, double sig,
								double a[],
								int ma,  
								void (*funcs)(double, double[], double*, double[], int)
								);

double    cdecl cmsxLevenbergMarquardtAlamda(LCMSHANDLE hMRQ);
double    cdecl cmsxLevenbergMarquardtChiSq(LCMSHANDLE hMRQ);
BOOL      cdecl cmsxLevenbergMarquardtIterate(LCMSHANDLE hMRQ);
BOOL      cdecl cmsxLevenbergMarquardtFree(LCMSHANDLE hMRQ);

/* ---------------------------------------------------------------------------- */



typedef struct {

	LPSAMPLEDCURVE x;
	LPSAMPLEDCURVE y;		     
	int     ndata;  	 
	double* a;		     
	int     ma;
	LPMATN  covar;		 
	LPMATN  alpha;		 
	double* atry;		 
	LPMATN  beta;		 
	LPMATN  oneda;		 
	double* dyda;	 	 		
	double  ochisq;
	double  sig;


	void (*funcs)(double, double[], double*, double[], int); 

	double alamda;
	double chisq;

} LMRTQMIN, FAR* LPLMRTQMIN;




static 
void  mrqcof(LPLMRTQMIN pLM, double *a, LPMATN alpha, LPMATN beta, double *chisq)
{
	int i, j, k;
	double ymod, wt, sig2i, dy;

	for(j = 0; j < pLM->ma; j++)
	{
		for(k = 0; k <= j; k++)
			alpha->Values[j][k] = 0.0;

		beta->Values[j][0] = 0.0;
	}
	
	*chisq = 0.0;
	sig2i = 1.0 / (pLM->sig * pLM->sig);

	for(i = 0; i < pLM->ndata; i++)
	{
		(*(pLM->funcs))(pLM->x ->Values[i], a, &ymod, pLM->dyda, pLM->ma);

		dy = pLM->y->Values[i] - ymod;

		for(j = 0; j < pLM->ma; j++)
		{
			wt = pLM->dyda[j] * sig2i;
			
			for(k = 0; k <= j; k++)
				alpha->Values[j][k] += wt * pLM->dyda[k];

			beta->Values[j][0] += dy * wt;
		}

		*chisq += dy * dy * sig2i;  
	}

	for(j = 1; j < pLM->ma; j++)	/* Fill in the symmetric side. */
		for(k = 0; k < j; k++)
			alpha->Values[k][j] = alpha->Values[j][k];
}



static 
void FreeStruct(LPLMRTQMIN pLM)
{	
	if(pLM == NULL) return;

	if(pLM->covar) MATNfree (pLM->covar);
	if(pLM->alpha) MATNfree (pLM->alpha);
	if(pLM->atry)  free(pLM->atry);
	if(pLM->beta)  MATNfree (pLM->beta);
	if(pLM->oneda) MATNfree (pLM->oneda);
	if(pLM->dyda)  free(pLM->dyda);
	free(pLM);
}



LCMSHANDLE cmsxLevenbergMarquardtInit(LPSAMPLEDCURVE x, LPSAMPLEDCURVE y, double sig,
							double a[],
							int ma,  
							void (*funcs)(double, double[], double*, double[], int))
							
{
	int i;
	LPLMRTQMIN pLM;
	
	if (x ->nItems != y ->nItems) return NULL;

	pLM = (LPLMRTQMIN) malloc(sizeof(LMRTQMIN));
	if(!pLM)
		return NULL;

	ZeroMemory(pLM, sizeof(LMRTQMIN));
	
	if((pLM->atry = (double*)malloc(ma * sizeof(double))) == NULL) goto failed;
	if((pLM->beta = MATNalloc (ma, 1)) == NULL) goto failed;
	if((pLM->oneda = MATNalloc (ma, 1)) == NULL) goto failed;

	

	if((pLM->covar = MATNalloc(ma, ma)) == NULL) goto failed;
	if((pLM->alpha = MATNalloc(ma, ma)) == NULL) goto failed;		
	if((pLM->dyda = (double*)malloc(ma * sizeof(double))) == NULL) goto failed;

	pLM->alamda = 0.001;

	pLM->ndata = x ->nItems;
	pLM->x = x;
	pLM->y = y;
	pLM->ma = ma;
	pLM->a = a;
	pLM->funcs = funcs;
	pLM->sig = sig;
		
	mrqcof(pLM, a, pLM->alpha, pLM->beta, &pLM->chisq);	
	pLM->ochisq = (pLM->chisq);

	for(i = 0; i < ma; i++) pLM->atry[i] = a[i];

	return (LCMSHANDLE) pLM;

failed:
	FreeStruct(pLM);
	return NULL;
}


BOOL cmsxLevenbergMarquardtFree(LCMSHANDLE hMRQ)
{
	LPLMRTQMIN pLM = (LPLMRTQMIN)hMRQ;
	if(!pLM)
		return false;

	FreeStruct(pLM);	
	return true;
}


BOOL cmsxLevenbergMarquardtIterate(LCMSHANDLE hMRQ)
{
	int j, k;
	BOOL sts;
	LPLMRTQMIN pLM = (LPLMRTQMIN)hMRQ;
	if(!pLM)
		return false;

	for(j = 0; j < pLM->ma; j++) /* Alter linearized fitting matrix, by augmenting diagonal elements.  */
	{
		for(k = 0; k < pLM->ma; k++)
			pLM->covar->Values[j][k] = pLM->alpha->Values[j][k];

		pLM->covar->Values[j][j] = pLM->alpha->Values[j][j] * (1.0 + pLM ->alamda);
		pLM->oneda->Values[j][0] = pLM->beta->Values[j][0];
	}
	
	if((sts = MATNsolve (pLM->covar, pLM->oneda)) != true)  /* Matrix solution. */
		return sts;

	for(j = 0; j < pLM->ma; j++)							/* Did the trial succeed? */
		pLM->atry[j] = pLM->a[j] + pLM->oneda->Values[j][0];

	mrqcof(pLM, pLM->atry, pLM->covar, pLM->oneda, &pLM -> chisq);
	
	if (pLM->chisq < pLM->ochisq) {	 /* Success, accept the new solution. */

		pLM->alamda *= 0.1;
		pLM->ochisq = pLM->chisq;

		for(j = 0; j < pLM->ma; j++)
		{
			for(k = 0; k < pLM->ma; k++) 
				pLM->alpha->Values[j][k] = pLM->covar->Values[j][k];

			pLM->beta->Values[j][0] = pLM->oneda->Values[j][0];			
		}

		for (j=0; j < pLM ->ma; j++) pLM->a[j] = pLM->atry[j];
	}
	else   /* Failure, increase alamda and return. */
	{
		pLM -> alamda *= 10.0;
		pLM->chisq = pLM->ochisq;
	}
	
	return true;
}


double cmsxLevenbergMarquardtAlamda(LCMSHANDLE hMRQ)
{
		LPLMRTQMIN pLM = (LPLMRTQMIN)hMRQ;

		return pLM ->alamda;
}

double cmsxLevenbergMarquardtChiSq(LCMSHANDLE hMRQ)
{
		LPLMRTQMIN pLM = (LPLMRTQMIN)hMRQ;

		return pLM ->chisq;
}