1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
|
/* */
/* Little cms - profiler construction set */
/* Copyright (C) 1998-2001 Marti Maria <marti@littlecms.com> */
/* */
/* THIS SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY */
/* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/* IN NO EVENT SHALL MARTI MARIA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, */
/* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, */
/* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF */
/* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE */
/* OF THIS SOFTWARE. */
/* */
/* This file is free software; you can redistribute it and/or modify it */
/* under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU */
/* General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
/* */
/* As a special exception to the GNU General Public License, if you */
/* distribute this file as part of a program that contains a */
/* configuration script generated by Autoconf, you may include it under */
/* the same distribution terms that you use for the rest of that program. */
/* */
/* Version 1.09a */
#include "lcmsprf.h"
LPGAMMATABLE cdecl cmsxEstimateGamma(LPSAMPLEDCURVE X, LPSAMPLEDCURVE Y, int nResultingPoints);
void cdecl cmsxCompleteLabOfPatches(LPMEASUREMENT m, SETOFPATCHES Valids, int Medium);
void cdecl cmsxComputeLinearizationTables(LPMEASUREMENT m,
int ColorSpace,
LPGAMMATABLE Lin[3],
int nResultingPoints,
int Medium);
void cdecl cmsxApplyLinearizationTable(double In[3],
LPGAMMATABLE Gamma[3],
double Out[3]);
void cdecl cmsxApplyLinearizationGamma(WORD In[3], LPGAMMATABLE Gamma[3], WORD Out[3]);
/* ------------------------------------------------------------- Implementation */
#define EPSILON 0.00005
#define LEVENBERG_MARQUARDT_ITERATE_MAX 150
/* In order to track linearization tables, we use following procedure */
/* */
/* We first assume R', G' and B' does exhibit a non-linear behaviour */
/* that can be separated for each channel as Yr(R'), Yg(G'), Yb(B') */
/* This is the shaper step */
/* */
/* R = Lr(R') */
/* G = Lg(G') */
/* B = Lb(B') (0.0) */
/* */
/* After this step, RGB is converted to XYZ by a matrix multiplication */
/* */
/* |X| |R| */
/* |Y| = [M]·|G| */
/* |Z| |B| (1.0) */
/* */
/* In order to extract Lr,Lg,Lb tables, we are interested only on Y part */
/* */
/* Y = (m1 * R + m2 * G + m3 * B) (1.1) */
/* */
/* The total intensity for maximum RGB = (1, 1, 1) should be 1, */
/* */
/* 1 = m1 * 1 + m2 * 1 + m3 * 1, so */
/* */
/* m1 + m2 + m3 = 1.0 (1.2) */
/* */
/* We now impose that for neutral (gray) patches, RGB components must be equal */
/* */
/* R = G = B = Gray */
/* */
/* So, substituting in (1.1): */
/* */
/* Y = (m1 + m2 + m3) Gray */
/* */
/* and for (1.2), (m1+m2+m3) = 1, so */
/* */
/* Y = Gray = Lr(R') = Lg(G') = Lb(B') */
/* */
/* That is, after prelinearization, RGB of gray patches should give */
/* same values for R, G and B. And this value is Y. */
/* */
/* */
static
LPSAMPLEDCURVE NormalizeTo(LPSAMPLEDCURVE X, double N, BOOL lAddEndPoint)
{
int i, nItems;
LPSAMPLEDCURVE XNorm;
nItems = X ->nItems;
if (lAddEndPoint) nItems++;
XNorm = cmsAllocSampledCurve(nItems);
for (i=0; i < X ->nItems; i++) {
XNorm ->Values[i] = X ->Values[i] / N;
}
if (lAddEndPoint)
XNorm -> Values[X ->nItems] = 1.0;
return XNorm;
}
/* */
/* ------------------------------------------------------------------------------ */
/* */
/* Our Monitor model. We assume gamma has a general expression of */
/* */
/* Fn(x) = (Gain * x + offset) ^ gamma | for x >= 0 */
/* Fn(x) = 0 | for x < 0 */
/* */
/* First partial derivatives are */
/* */
/* dFn/dGamma = Fn * ln(Base) */
/* dFn/dGain = gamma * x * ((Gain * x + Offset) ^ (gamma -1)) */
/* dFn/dOffset = gamma * ((Gain * x + Offset) ^ (gamma -1)) */
/* */
static
void GammaGainOffsetFn(double x, double *a, double *y, double *dyda, int na)
{
double Gamma,Gain,Offset;
double Base;
Gamma = a[0];
Gain = a[1];
Offset = a[2];
Base = Gain * x + Offset;
if (Base < 0) {
Base = 0.0;
*y = 0.0;
dyda[0] = 0.0;
dyda[1] = 0.0;
dyda[2] = 0.0;
} else {
/* The function itself */
*y = pow(Base, Gamma);
/* dyda[0] is partial derivative across Gamma */
dyda[0] = *y * log(Base);
/* dyda[1] is partial derivative across gain */
dyda[1] = (x * Gamma) * pow(Base, Gamma-1.0);
/* dyda[2] is partial derivative across offset */
dyda[2] = Gamma * pow(Base, Gamma-1.0);
}
}
/* Fit curve to our gamma-gain-offset model. */
static
BOOL OneTry(LPSAMPLEDCURVE XNorm, LPSAMPLEDCURVE YNorm, double a[])
{
LCMSHANDLE h;
double ChiSq, OldChiSq;
int i;
BOOL Status = true;
/* initial guesses */
a[0] = 3.0; /* gamma */
a[1] = 4.0; /* gain */
a[2] = 6.0; /* offset */
a[3] = 0.0; /* Thereshold */
a[4] = 0.0; /* Black */
/* Significance = 0.02 gives good results */
h = cmsxLevenbergMarquardtInit(XNorm, YNorm, 0.02, a, 3, GammaGainOffsetFn);
if (h == NULL) return false;
OldChiSq = cmsxLevenbergMarquardtChiSq(h);
for(i = 0; i < LEVENBERG_MARQUARDT_ITERATE_MAX; i++) {
if (!cmsxLevenbergMarquardtIterate(h)) {
Status = false;
break;
}
ChiSq = cmsxLevenbergMarquardtChiSq(h);
if(OldChiSq != ChiSq && (OldChiSq - ChiSq) < EPSILON)
break;
OldChiSq = ChiSq;
}
cmsxLevenbergMarquardtFree(h);
return Status;
}
/* Tries to fit gamma as per IEC 61966-2.1 using Levenberg-Marquardt method */
/* */
/* Y = (aX + b)^Gamma | X >= d */
/* Y = cX | X < d */
LPGAMMATABLE cmsxEstimateGamma(LPSAMPLEDCURVE X, LPSAMPLEDCURVE Y, int nResultingPoints)
{
double a[5];
LPSAMPLEDCURVE XNorm, YNorm;
double e, Max;
/* Coarse approximation, to find maximum. */
/* We have only a portion of curve. It is likely */
/* maximum will not fall on exactly 100. */
if (!OneTry(X, Y, a))
return 0;
/* Got parameters. Compute maximum. */
e = a[1]* 255.0 + a[2];
if (e < 0) return 0;
Max = pow(e, a[0]);
/* Normalize values to maximum */
XNorm = NormalizeTo(X, 255.0, false);
YNorm = NormalizeTo(Y, Max, false);
/* Do the final fitting */
if (!OneTry(XNorm, YNorm, a))
return 0;
/* Type 3 = IEC 61966-2.1 (sRGB) */
/* Y = (aX + b)^Gamma | X >= d */
/* Y = cX | X < d */
return cmsBuildParametricGamma(nResultingPoints, 3, a);
}
/* A dumb bubble sort */
static
void Bubble(LPSAMPLEDCURVE C, LPSAMPLEDCURVE L)
{
#define SWAP(a, b) { tmp = (a); (a) = (b); (b) = tmp; }
BOOL lSwapped;
int i, nItems;
double tmp;
nItems = C -> nItems;
do {
lSwapped = false;
for (i= 0; i < nItems - 1; i++) {
if (C->Values[i] > C->Values[i+1]) {
SWAP(C->Values[i], C->Values[i+1]);
SWAP(L->Values[i], L->Values[i+1]);
lSwapped = true;
}
}
} while (lSwapped);
#undef SWAP
}
/* Check for monotonicity. Force it if is not the case. */
static
void CheckForMonotonicSampledCurve(LPSAMPLEDCURVE t)
{
int n = t ->nItems;
int i;
double last;
last = t ->Values[n-1];
for (i = n-2; i >= 0; --i) {
if (t ->Values[i] > last)
t ->Values[i] = last;
else
last = t ->Values[i];
}
}
/* The main gamma inferer. Tries first by gamma-gain-offset, */
/* if not proper reverts to curve guessing. */
static
LPGAMMATABLE BuildGammaTable(LPSAMPLEDCURVE C, LPSAMPLEDCURVE L, int nResultingPoints)
{
LPSAMPLEDCURVE Cw, Lw, Cn, Ln;
LPSAMPLEDCURVE out;
LPGAMMATABLE Result;
double Lmax, Lend, Cmax;
/* Try to see if it can be fitted */
Result = cmsxEstimateGamma(C, L, nResultingPoints);
if (Result)
return Result;
/* No... build curve from scratch. Since we have not */
/* endpoints, a coarse linear extrapolation should be */
/* applied in order to get the expected maximum. */
Cw = cmsDupSampledCurve(C);
Lw = cmsDupSampledCurve(L);
Bubble(Cw, Lw);
/* Get endpoint */
Lmax = Lw->Values[Lw ->nItems - 1];
Cmax = Cw->Values[Cw ->nItems - 1];
/* Linearly extrapolate */
Lend = (255 * Lmax) / Cmax;
Ln = NormalizeTo(Lw, Lend, true);
Cn = NormalizeTo(Cw, 255.0, true);
cmsFreeSampledCurve(Cw);
cmsFreeSampledCurve(Lw);
/* Add endpoint */
out = cmsJoinSampledCurves(Cn, Ln, nResultingPoints);
cmsFreeSampledCurve(Cn);
cmsFreeSampledCurve(Ln);
CheckForMonotonicSampledCurve(out);
cmsSmoothSampledCurve(out, nResultingPoints*4.);
cmsClampSampledCurve(out, 0, 1.0);
Result = cmsConvertSampledCurveToGamma(out, 1.0);
cmsFreeSampledCurve(out);
return Result;
}
void cmsxCompleteLabOfPatches(LPMEASUREMENT m, SETOFPATCHES Valids, int Medium)
{
LPPATCH White;
cmsCIEXYZ WhiteXYZ;
int i;
if (Medium == MEDIUM_REFLECTIVE_D50)
{
WhiteXYZ.X = D50X * 100.;
WhiteXYZ.Y = D50Y * 100.;
WhiteXYZ.Z = D50Z * 100.;
}
else {
White = cmsxPCollFindWhite(m, Valids, NULL);
if (!White) return;
WhiteXYZ = White ->XYZ;
}
/* For all patches with XYZ and without Lab, add Lab values. */
/* Transmissive profiles does need to locate its own white */
/* point for device gray. Reflective does use D50 */
for (i=0; i < m -> nPatches; i++) {
if (Valids[i]) {
LPPATCH p = m -> Patches + i;
if ((p ->dwFlags & PATCH_HAS_XYZ) &&
(!(p ->dwFlags & PATCH_HAS_Lab) || (Medium == MEDIUM_TRANSMISSIVE))) {
cmsXYZ2Lab(&WhiteXYZ, &p->Lab, &p->XYZ);
p -> dwFlags |= PATCH_HAS_Lab;
}
}
}
}
/* Compute linearization tables, trying to fit in a pure */
/* exponential gamma. If gamma cannot be accurately infered, */
/* then does build a smooth, monotonic curve that does the job. */
void cmsxComputeLinearizationTables(LPMEASUREMENT m,
int ColorSpace,
LPGAMMATABLE Lin[3],
int nResultingPoints,
int Medium)
{
LPSAMPLEDCURVE R, G, B, L;
LPGAMMATABLE gr, gg, gb;
SETOFPATCHES Neutrals;
int nGrays;
int i;
/* We need Lab for grays. */
cmsxCompleteLabOfPatches(m, m->Allowed, Medium);
/* Add neutrals, normalize to max */
Neutrals = cmsxPCollBuildSet(m, false);
cmsxPCollPatchesNearNeutral(m, m ->Allowed, 15, Neutrals);
nGrays = cmsxPCollCountSet(m, Neutrals);
R = cmsAllocSampledCurve(nGrays);
G = cmsAllocSampledCurve(nGrays);
B = cmsAllocSampledCurve(nGrays);
L = cmsAllocSampledCurve(nGrays);
nGrays = 0;
/* Collect patches */
for (i=0; i < m -> nPatches; i++) {
if (Neutrals[i]) {
LPPATCH gr = m -> Patches + i;
R -> Values[nGrays] = gr -> Colorant.RGB[0];
G -> Values[nGrays] = gr -> Colorant.RGB[1];
B -> Values[nGrays] = gr -> Colorant.RGB[2];
L -> Values[nGrays] = gr -> XYZ.Y;
nGrays++;
}
}
gr = BuildGammaTable(R, L, nResultingPoints);
gg = BuildGammaTable(G, L, nResultingPoints);
gb = BuildGammaTable(B, L, nResultingPoints);
cmsFreeSampledCurve(R);
cmsFreeSampledCurve(G);
cmsFreeSampledCurve(B);
cmsFreeSampledCurve(L);
if (ColorSpace == PT_Lab) {
LPGAMMATABLE Gamma3 = cmsBuildGamma(nResultingPoints, 3.0);
Lin[0] = cmsJoinGammaEx(gr, Gamma3, nResultingPoints);
Lin[1] = cmsJoinGammaEx(gg, Gamma3, nResultingPoints);
Lin[2] = cmsJoinGammaEx(gb, Gamma3, nResultingPoints);
cmsFreeGamma(gr); cmsFreeGamma(gg); cmsFreeGamma(gb);
cmsFreeGamma(Gamma3);
}
else {
LPGAMMATABLE Gamma1 = cmsBuildGamma(nResultingPoints, 1.0);
Lin[0] = cmsJoinGammaEx(gr, Gamma1, nResultingPoints);
Lin[1] = cmsJoinGammaEx(gg, Gamma1, nResultingPoints);
Lin[2] = cmsJoinGammaEx(gb, Gamma1, nResultingPoints);
cmsFreeGamma(gr); cmsFreeGamma(gg); cmsFreeGamma(gb);
cmsFreeGamma(Gamma1);
}
}
/* Apply linearization. WORD encoded version */
void cmsxApplyLinearizationGamma(WORD In[3], LPGAMMATABLE Gamma[3], WORD Out[3])
{
L16PARAMS Lut16;
cmsCalcL16Params(Gamma[0] -> nEntries, &Lut16);
Out[0] = cmsLinearInterpLUT16(In[0], Gamma[0] -> GammaTable, &Lut16);
Out[1] = cmsLinearInterpLUT16(In[1], Gamma[1] -> GammaTable, &Lut16);
Out[2] = cmsLinearInterpLUT16(In[2], Gamma[2] -> GammaTable, &Lut16);
}
/* Apply linearization. double version */
void cmsxApplyLinearizationTable(double In[3], LPGAMMATABLE Gamma[3], double Out[3])
{
WORD rw, gw, bw;
double rd, gd, bd;
L16PARAMS Lut16;
cmsCalcL16Params(Gamma[0] -> nEntries, &Lut16);
rw = (WORD) floor(_cmsxSaturate255To65535(In[0]) + .5);
gw = (WORD) floor(_cmsxSaturate255To65535(In[1]) + .5);
bw = (WORD) floor(_cmsxSaturate255To65535(In[2]) + .5);
rd = cmsLinearInterpLUT16(rw , Gamma[0] -> GammaTable, &Lut16);
gd = cmsLinearInterpLUT16(gw, Gamma[1] -> GammaTable, &Lut16);
bd = cmsLinearInterpLUT16(bw, Gamma[2] -> GammaTable, &Lut16);
Out[0] = _cmsxSaturate65535To255(rd); /* back to 0..255 */
Out[1] = _cmsxSaturate65535To255(gd);
Out[2] = _cmsxSaturate65535To255(bd);
}
|