1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/**
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legales
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*
* @license Public Domain / GPL v2+
*/
#include "md5.h"
#include <string.h>
void MD5::reverse_u32(UINT8 *buf, int n_u32)
{
UINT8 tmp;
if (m_big_endian)
{
// change { 4, 3, 2, 1 } => { 1, 2, 3, 4 }
while (n_u32-- > 0)
{
tmp = buf[0];
buf[0] = buf[3];
buf[3] = tmp;
tmp = buf[1];
buf[1] = buf[2];
buf[2] = tmp;
buf += 4;
}
}
else
{
// change { 4, 3, 2, 1 } => { 3, 4, 1, 2 }
while (n_u32-- > 0)
{
tmp = buf[0];
buf[0] = buf[1];
buf[1] = tmp;
tmp = buf[2];
buf[2] = buf[3];
buf[3] = tmp;
buf += 4;
}
}
}
MD5::MD5()
{
m_buf[0] = 0x01020304;
/*
* Little endian = { 4, 3, 2, 1 }
* Big endian = { 1, 2, 3, 4 }
* PDP endian = { 3, 4, 1, 2 }
*
* The MD5 stuff is written for little endian.
*/
m_in8 = (UINT8 *)m_in32;
m_need_byteswap = *(UINT8 *)m_buf != 4;
m_big_endian = *(UINT8 *)m_buf == 1;
}
//! Start MD5 accumulation.
void MD5::Init()
{
m_buf[0] = 0x67452301;
m_buf[1] = 0xefcdab89;
m_buf[2] = 0x98badcfe;
m_buf[3] = 0x10325476;
m_bits[0] = 0;
m_bits[1] = 0;
}
//! Update context to reflect the concatenation of another buffer full of bytes.
void MD5::Update(const void *data, UINT32 len)
{
const UINT8 *buf = (const UINT8 *)data;
UINT32 t = m_bits[0]; // Update bitcount
if ((m_bits[0] = t + ((UINT32)len << 3)) < t)
{
m_bits[1]++; // Carry from low to high
}
m_bits[1] += len >> 29;
t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data
// Handle any leading odd-sized chunks
if (t)
{
UINT8 *p = m_in8 + t;
t = 64 - t;
if (len < t)
{
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
buf += t;
len -= t;
}
// Process data in 64-byte chunks
while (len >= 64)
{
memcpy(m_in32, buf, 64);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
buf += 64; // TODO: possible creation of out-of-bounds pointer 64 beyond end of data
len -= 64;
}
// Save off any remaining bytes of data
memcpy(m_in32, buf, len); // TODO: possible access beyond array
} // MD5::Update
void MD5::Final(UINT8 digest[16])
{
// Compute number of bytes modulo 64
UINT32 count = (m_bits[0] >> 3) & 0x3F;
/*
* Set the first char of padding to 0x80. This is safe since there is always
* at least one byte free
*/
UINT8 *p = m_in8 + count;
*p++ = 0x80;
// Bytes of padding needed to make 64 bytes
count = 64 - 1 - count;
// Pad out to 56 modulo 64
if (count < 8)
{
// Two lots of padding: Pad the first block to 64 bytes
memset(p, 0, count);
if (m_need_byteswap)
{
reverse_u32(m_in8, 16);
}
Transform(m_buf, m_in32);
// Now fill the next block with 56 bytes
memset(m_in32, 0, 56);
}
else
{
// Pad block to 56 bytes
memset(p, 0, count - 8);
}
if (m_need_byteswap)
{
reverse_u32(m_in8, 14);
}
// Append length in bits and transform
memcpy(m_in8 + 56, &m_bits[0], 4);
memcpy(m_in8 + 60, &m_bits[1], 4);
Transform(m_buf, m_in32);
if (m_need_byteswap)
{
reverse_u32((UINT8 *)m_buf, 4);
}
memcpy(digest, m_buf, 16);
} // MD5::Final
// The four core functions - F1 is optimized somewhat
// #define F1(x, y, z) (x & y | ~x & z)
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f, w, x, y, z, data, s) \
((w) += f((x), (y), (z)) + (data), (w) = (w) << (s) | (w) >> (32 - (s)), (w) += (x))
void MD5::Transform(UINT32 buf[4], UINT32 in_data[16])
{
UINT32 a = buf[0];
UINT32 b = buf[1];
UINT32 c = buf[2];
UINT32 d = buf[3];
MD5STEP(F1, a, b, c, d, in_data[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in_data[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in_data[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in_data[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in_data[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in_data[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in_data[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in_data[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in_data[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in_data[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in_data[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in_data[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in_data[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in_data[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in_data[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in_data[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in_data[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in_data[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in_data[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in_data[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in_data[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in_data[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in_data[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in_data[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in_data[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in_data[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in_data[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in_data[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in_data[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in_data[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in_data[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in_data[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in_data[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in_data[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in_data[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in_data[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in_data[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in_data[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in_data[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in_data[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in_data[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in_data[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in_data[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in_data[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in_data[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in_data[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in_data[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in_data[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in_data[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in_data[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in_data[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in_data[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in_data[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in_data[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in_data[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in_data[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in_data[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in_data[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in_data[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in_data[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in_data[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in_data[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in_data[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in_data[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
} // MD5::Transform
void MD5::Calc(const void *data, UINT32 length, UINT8 digest[16])
{
MD5 md5;
md5.Init();
md5.Update(data, length);
md5.Final(digest);
}
|