1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
void func() {
}
// **ABC**
void func() { }
// *INDENT-ON*
void func() {
}
/**
* Function to solve for roots of a generic quartic polynomial of the
* following form:
* \verbatim
p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e,
where a, b, c, d, and e are real coefficients
* \endverbatim
*
* This object's tolerance defines a threshold for root solutions
* above which iterative methods will be employed to achieve the
* desired accuracy
*
* \verbatim - this should cause the following line to not wrap due to cmt_width
* Upon success, the roots array contains the solution to the polynomial p(x) = 0
* \endverbatim
* + Return value on output:
* - 0, if an error occurs (invalid coefficients)
* - 1, if all roots are real
* - 2, if two roots are real and two roots are complex conjugates
* - 3, if the roots are two pairs of complex conjugates
*/
int solve(double a,
double b,
double c,
double d,
double e,
std::complex<double> roots[4]);
/**
* Function to solve for roots of a generic quartic polynomial of the
* following form:
*
*
* p(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e, where a, b, c, d,
* and e are real coefficients
*
* Upon success, root1, root2, root3, and root4 contain the solution
* to the polynomial p(x) = 0
* + Return value on output:
* - 0, if an error occurs (invalid coefficients)
* - 1, if all roots are real
* - 2, if two roots are real and two roots are complex conjugates
* - 3, if the roots are two pairs of complex conjugates
*/
/* **ABC** */
int solve(double a,
double b,
double c,
double d,
double e,
std::complex<double> &root1,
std::complex<double> &root2,
std::complex<double> &root3,
std::complex<double> &root4);
/* ??DEF?? */
|