1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* This file is part of the KDE project
Copyright (C) 2001 David Faure <faure@kde.org>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef koPoint_h
#define koPoint_h
#include <tqwmatrix.h>
#include <math.h>
/**
* A point whose coordinates are floating-point values ( "double"s ).
* The API isn't documented, it's a perfect mirror of TQPoint.
*/
class KoPoint {
public:
KoPoint() { m_x = 0; m_y = 0; }
KoPoint(const double &x, const double &y) : m_x(x), m_y(y) {}
explicit KoPoint(const TQPoint & p) : m_x(p.x()), m_y(p.y()) {}
~KoPoint() {}
bool operator==(const KoPoint &rhs) const { return TQABS(m_x-rhs.x()) < 1E-10 && TQABS(m_y-rhs.y()) < 1E-10; }
bool operator!=(const KoPoint &rhs) const { return TQABS(m_x-rhs.x()) > 1E-10 || TQABS(m_y-rhs.y()) > 1E-10; }
bool isNull() const { return m_x == 0 && m_y == 0; }
double x() const { return m_x; }
double y() const { return m_y; }
void setX(const double &x) { m_x = x; }
void setY(const double &y) { m_y = y; }
double &rx() { return m_x; }
double &ry() { return m_y; }
KoPoint &operator=(const KoPoint &rhs) { m_x = rhs.x(); m_y = rhs.y(); return *this; }
KoPoint &operator+=( const KoPoint &rhs ) { m_x += rhs.x(); m_y += rhs.y(); return *this; }
KoPoint &operator-=( const KoPoint &rhs ) { m_x -= rhs.x(); m_y -= rhs.y(); return *this; }
KoPoint &operator*=( const double &c ) { m_x *= c; m_y *= c; return *this; }
friend inline KoPoint operator+( const KoPoint &, const KoPoint & );
friend inline KoPoint operator-( const KoPoint &, const KoPoint & );
friend inline KoPoint operator*( const KoPoint &, const double & );
friend inline KoPoint operator*( const double &, const KoPoint & );
friend inline double operator*( const KoPoint &a, const KoPoint &b );
// Not in TQPoint:
void setCoords(const double &x, const double &y) { m_x = x; m_y = y; }
KoPoint transform (const TQWMatrix &m) const
{
double x, y;
m.map(m_x, m_y, &x, &y);
return KoPoint(x, y);
};
bool isNear(const KoPoint &p, double range) const
{
return (p.x() >= m_x - range && p.x() <= m_x + range && p.y() >= m_y - range && p.y() <= m_y + range);
}
static double getAngle( const KoPoint& p1, const KoPoint& p2 ) {
double a = atan2( p2.x() - p1.x(), p2.y() - p1.y() ) + M_PI;
return ( ( - ( a * 360 ) / ( 2 * M_PI ) - 90 ) - 180 );
}
double manhattanLength() const
{
return TQABS( m_x ) + TQABS( m_y );
}
/// Convert to a TQPoint - with precision loss!
TQPoint toTQPoint() const
{
return TQPoint( tqRound( m_x ), tqRound( m_y ) );
}
private:
double m_x, m_y;
};
inline KoPoint operator+( const KoPoint &p1, const KoPoint &p2 )
{ return KoPoint( p1.m_x+p2.m_x, p1.m_y+p2.m_y ); }
inline KoPoint operator-( const KoPoint &p1, const KoPoint &p2 )
{ return KoPoint( p1.m_x-p2.m_x, p1.m_y-p2.m_y ); }
inline KoPoint operator*( const KoPoint &p, const double &c )
{ return KoPoint( p.m_x*c, p.m_y*c ); }
inline KoPoint operator*( const double &c, const KoPoint &p )
{ return KoPoint( p.m_x*c, p.m_y*c ); }
inline double operator*( const KoPoint &a, const KoPoint &b )
{ return a.m_x * b.m_x + a.m_y * b.m_y; }
/******************************
kdDebug support
*******************************/
#include <kdebug.h>
/** Show a floating point value with great precision (use within kdDebug) */
#define DEBUGDOUBLE(d) TQString::number( (d), 'g', 20 )
inline kdbgstream operator<<( kdbgstream str, const KoPoint & r ) {
// should this use DEBUGDOUBLE?
str << "(" << r.x() << ", " << r.y() << ")";
return str;
}
inline kndbgstream operator<<( kndbgstream str, const KoPoint & ) { return str; }
#endif
|