diff options
author | gregory guy <gregory-tde@laposte.net> | 2020-10-02 12:42:44 +0200 |
---|---|---|
committer | gregory guy <gregory-tde@laposte.net> | 2020-10-05 13:50:52 +0200 |
commit | 8349a964c20f96504886ece0f2c8ba0c7489fff3 (patch) | |
tree | 465e998f662f5b54e93e31501ab38156664f75d1 /art_affine.c | |
parent | 31363763ec32d7d1edd53b55d7321f001f031fe9 (diff) | |
download | libart-lgpl-8349a964c20f96504886ece0f2c8ba0c7489fff3.tar.gz libart-lgpl-8349a964c20f96504886ece0f2c8ba0c7489fff3.zip |
Libart-lgpl moved into a 'src' folder for consistency sake with the other
modules.
Add basic cmake build instructions.
Rework of the README file.
Some cosmetics.
Signed-off-by: gregory guy <gregory-tde@laposte.net>
Diffstat (limited to 'art_affine.c')
-rw-r--r-- | art_affine.c | 458 |
1 files changed, 0 insertions, 458 deletions
diff --git a/art_affine.c b/art_affine.c deleted file mode 100644 index 9f332a3..0000000 --- a/art_affine.c +++ /dev/null @@ -1,458 +0,0 @@ -/* Libart_LGPL - library of basic graphic primitives - * Copyright (C) 1998 Raph Levien - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the - * Free Software Foundation, Inc., 59 Temple Place - Suite 330, - * Boston, MA 02111-1307, USA. - */ - -/* Simple manipulations with affine transformations */ - -#include "config.h" -#include "art_affine.h" -#include "art_misc.h" /* for M_PI */ - -#include <math.h> -#include <stdio.h> /* for sprintf */ -#include <string.h> /* for strcpy */ - - -/* According to a strict interpretation of the libart structure, this - routine should go into its own module, art_point_affine. However, - it's only two lines of code, and it can be argued that it is one of - the natural basic functions of an affine transformation. -*/ - -/** - * art_affine_point: Do an affine transformation of a point. - * @dst: Where the result point is stored. - * @src: The original point. - @ @affine: The affine transformation. - **/ -void -art_affine_point (ArtPoint *dst, const ArtPoint *src, - const double affine[6]) -{ - double x, y; - - x = src->x; - y = src->y; - dst->x = x * affine[0] + y * affine[2] + affine[4]; - dst->y = x * affine[1] + y * affine[3] + affine[5]; -} - -/** - * art_affine_invert: Find the inverse of an affine transformation. - * @dst: Where the resulting affine is stored. - * @src: The original affine transformation. - * - * All non-degenerate affine transforms are invertible. If the original - * affine is degenerate or nearly so, expect numerical instability and - * very likely core dumps on Alpha and other fp-picky architectures. - * Otherwise, @dst multiplied with @src, or @src multiplied with @dst - * will be (to within roundoff error) the identity affine. - **/ -void -art_affine_invert (double dst[6], const double src[6]) -{ - double r_det; - - r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]); - dst[0] = src[3] * r_det; - dst[1] = -src[1] * r_det; - dst[2] = -src[2] * r_det; - dst[3] = src[0] * r_det; - dst[4] = -src[4] * dst[0] - src[5] * dst[2]; - dst[5] = -src[4] * dst[1] - src[5] * dst[3]; -} - -/** - * art_affine_flip: Flip an affine transformation horizontally and/or vertically. - * @dst_affine: Where the resulting affine is stored. - * @src_affine: The original affine transformation. - * @horiz: Whether or not to flip horizontally. - * @vert: Whether or not to flip horizontally. - * - * Flips the affine transform. FALSE for both @horiz and @vert implements - * a simple copy operation. TRUE for both @horiz and @vert is a - * 180 degree rotation. It is ok for @src_affine and @dst_affine to - * be equal pointers. - **/ -void -art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert) -{ - dst_affine[0] = horz ? - src_affine[0] : src_affine[0]; - dst_affine[1] = horz ? - src_affine[1] : src_affine[1]; - dst_affine[2] = vert ? - src_affine[2] : src_affine[2]; - dst_affine[3] = vert ? - src_affine[3] : src_affine[3]; - dst_affine[4] = horz ? - src_affine[4] : src_affine[4]; - dst_affine[5] = vert ? - src_affine[5] : src_affine[5]; -} - -#define EPSILON 1e-6 - -/* It's ridiculous I have to write this myself. This is hardcoded to - six digits of precision, which is good enough for PostScript. - - The return value is the number of characters (i.e. strlen (str)). - It is no more than 12. */ -static int -art_ftoa (char str[80], double x) -{ - char *p = str; - int i, j; - - p = str; - if (fabs (x) < EPSILON / 2) - { - strcpy (str, "0"); - return 1; - } - if (x < 0) - { - *p++ = '-'; - x = -x; - } - if ((int)floor ((x + EPSILON / 2) < 1)) - { - *p++ = '0'; - *p++ = '.'; - i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6)); - while (i && p[i - 1] == '0') - i--; - if (i == 0) - i--; - p += i; - } - else if (x < 1e6) - { - i = sprintf (p, "%d", (int)floor (x + EPSILON / 2)); - p += i; - if (i < 6) - { - int ix; - - *p++ = '.'; - x -= floor (x + EPSILON / 2); - for (j = i; j < 6; j++) - x *= 10; - ix = floor (x + 0.5); - - for (j = 0; j < i; j++) - ix *= 10; - - /* A cheap hack, this routine can round wrong for fractions - near one. */ - if (ix == 1000000) - ix = 999999; - - sprintf (p, "%06d", ix); - i = 6 - i; - while (i && p[i - 1] == '0') - i--; - if (i == 0) - i--; - p += i; - } - } - else - p += sprintf (p, "%g", x); - - *p = '\0'; - return p - str; -} - - - -#include <stdlib.h> -/** - * art_affine_to_string: Convert affine transformation to concise PostScript string representation. - * @str: Where to store the resulting string. - * @src: The affine transform. - * - * Converts an affine transform into a bit of PostScript code that - * implements the transform. Special cases of scaling, rotation, and - * translation are detected, and the corresponding PostScript - * operators used (this greatly aids understanding the output - * generated). The identity transform is mapped to the null string. - **/ -void -art_affine_to_string (char str[128], const double src[6]) -{ - char tmp[80]; - int i, ix; - -#if 0 - for (i = 0; i < 1000; i++) - { - double d = rand () * .1 / RAND_MAX; - art_ftoa (tmp, d); - printf ("%g %f %s\n", d, d, tmp); - } -#endif - if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON) - { - /* could be scale or rotate */ - if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) - { - /* scale */ - if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON) - { - /* identity transform */ - str[0] = '\0'; - return; - } - else - { - ix = 0; - ix += art_ftoa (str + ix, src[0]); - str[ix++] = ' '; - ix += art_ftoa (str + ix, src[3]); - strcpy (str + ix, " scale"); - return; - } - } - else - { - /* could be rotate */ - if (fabs (src[0] - src[3]) < EPSILON && - fabs (src[1] + src[2]) < EPSILON && - fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON) - { - double theta; - - theta = (180 / M_PI) * atan2 (src[1], src[0]); - art_ftoa (tmp, theta); - sprintf (str, "%s rotate", tmp); - return; - } - } - } - else - { - /* could be translate */ - if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON && - fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON) - { - ix = 0; - ix += art_ftoa (str + ix, src[4]); - str[ix++] = ' '; - ix += art_ftoa (str + ix, src[5]); - strcpy (str + ix, " translate"); - return; - } - } - - ix = 0; - str[ix++] = '['; - str[ix++] = ' '; - for (i = 0; i < 6; i++) - { - ix += art_ftoa (str + ix, src[i]); - str[ix++] = ' '; - } - strcpy (str + ix, "] concat"); -} - -/** - * art_affine_multiply: Multiply two affine transformation matrices. - * @dst: Where to store the result. - * @src1: The first affine transform to multiply. - * @src2: The second affine transform to multiply. - * - * Multiplies two affine transforms together, i.e. the resulting @dst - * is equivalent to doing first @src1 then @src2. Note that the - * PostScript concat operator multiplies on the left, i.e. "M concat" - * is equivalent to "CTM = multiply (M, CTM)"; - * - * It is safe to call this function with @dst equal to @src1 or @src2. - **/ -void -art_affine_multiply (double dst[6], const double src1[6], const double src2[6]) -{ - double d0, d1, d2, d3, d4, d5; - - d0 = src1[0] * src2[0] + src1[1] * src2[2]; - d1 = src1[0] * src2[1] + src1[1] * src2[3]; - d2 = src1[2] * src2[0] + src1[3] * src2[2]; - d3 = src1[2] * src2[1] + src1[3] * src2[3]; - d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4]; - d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5]; - dst[0] = d0; - dst[1] = d1; - dst[2] = d2; - dst[3] = d3; - dst[4] = d4; - dst[5] = d5; -} - -/** - * art_affine_identity: Set up the identity matrix. - * @dst: Where to store the resulting affine transform. - * - * Sets up an identity matrix. - **/ -void -art_affine_identity (double dst[6]) -{ - dst[0] = 1; - dst[1] = 0; - dst[2] = 0; - dst[3] = 1; - dst[4] = 0; - dst[5] = 0; -} - - -/** - * art_affine_scale: Set up a scaling matrix. - * @dst: Where to store the resulting affine transform. - * @sx: X scale factor. - * @sy: Y scale factor. - * - * Sets up a scaling matrix. - **/ -void -art_affine_scale (double dst[6], double sx, double sy) -{ - dst[0] = sx; - dst[1] = 0; - dst[2] = 0; - dst[3] = sy; - dst[4] = 0; - dst[5] = 0; -} - -/** - * art_affine_rotate: Set up a rotation affine transform. - * @dst: Where to store the resulting affine transform. - * @theta: Rotation angle in degrees. - * - * Sets up a rotation matrix. In the standard libart coordinate - * system, in which increasing y moves downward, this is a - * counterclockwise rotation. In the standard PostScript coordinate - * system, which is reversed in the y direction, it is a clockwise - * rotation. - **/ -void -art_affine_rotate (double dst[6], double theta) -{ - double s, c; - - s = sin (theta * M_PI / 180.0); - c = cos (theta * M_PI / 180.0); - dst[0] = c; - dst[1] = s; - dst[2] = -s; - dst[3] = c; - dst[4] = 0; - dst[5] = 0; -} - -/** - * art_affine_shear: Set up a shearing matrix. - * @dst: Where to store the resulting affine transform. - * @theta: Shear angle in degrees. - * - * Sets up a shearing matrix. In the standard libart coordinate system - * and a small value for theta, || becomes \\. Horizontal lines remain - * unchanged. - **/ -void -art_affine_shear (double dst[6], double theta) -{ - double t; - - t = tan (theta * M_PI / 180.0); - dst[0] = 1; - dst[1] = 0; - dst[2] = t; - dst[3] = 1; - dst[4] = 0; - dst[5] = 0; -} - -/** - * art_affine_translate: Set up a translation matrix. - * @dst: Where to store the resulting affine transform. - * @tx: X translation amount. - * @tx: Y translation amount. - * - * Sets up a translation matrix. - **/ -void -art_affine_translate (double dst[6], double tx, double ty) -{ - dst[0] = 1; - dst[1] = 0; - dst[2] = 0; - dst[3] = 1; - dst[4] = tx; - dst[5] = ty; -} - -/** - * art_affine_expansion: Find the affine's expansion factor. - * @src: The affine transformation. - * - * Finds the expansion factor, i.e. the square root of the factor - * by which the affine transform affects area. In an affine transform - * composed of scaling, rotation, shearing, and translation, returns - * the amount of scaling. - * - * Return value: the expansion factor. - **/ -double -art_affine_expansion (const double src[6]) -{ - return sqrt (fabs (src[0] * src[3] - src[1] * src[2])); -} - -/** - * art_affine_rectilinear: Determine whether the affine transformation is rectilinear. - * @src: The original affine transformation. - * - * Determines whether @src is rectilinear, i.e. grid-aligned - * rectangles are transformed to other grid-aligned rectangles. The - * implementation has epsilon-tolerance for roundoff errors. - * - * Return value: TRUE if @src is rectilinear. - **/ -int -art_affine_rectilinear (const double src[6]) -{ - return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) || - (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON)); -} - -/** - * art_affine_equal: Determine whether two affine transformations are equal. - * @matrix1: An affine transformation. - * @matrix2: Another affine transformation. - * - * Determines whether @matrix1 and @matrix2 are equal, with - * epsilon-tolerance for roundoff errors. - * - * Return value: TRUE if @matrix1 and @matrix2 are equal. - **/ -int -art_affine_equal (double matrix1[6], double matrix2[6]) -{ - return (fabs (matrix1[0] - matrix2[0]) < EPSILON && - fabs (matrix1[1] - matrix2[1]) < EPSILON && - fabs (matrix1[2] - matrix2[2]) < EPSILON && - fabs (matrix1[3] - matrix2[3]) < EPSILON && - fabs (matrix1[4] - matrix2[4]) < EPSILON && - fabs (matrix1[5] - matrix2[5]) < EPSILON); -} |