summaryrefslogtreecommitdiffstats
path: root/kernel/kls_dds/dds.cpp
blob: 4205816641b846c72f0bc6ca81e87f4a4dd714fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/*
 *  (C) 2007 Dmitry Baryshev, KSquirrel project
 */

/* This file is part of the KDE project
   Copyright (C) 2003 Ignacio Casta�o <castano@ludicon.com>

   This program is free software; you can redistribute it and/or
   modify it under the terms of the Lesser GNU General Public
   License as published by the Free Software Foundation; either
   version 2 of the License, or (at your option) any later version.

   Almost all this code is based on nVidia's DDS-loading example
   and the DevIl's source code by Denton Woods.
*/

/* this code supports:
 * reading:
 *     rgb and dxt dds files
 *     cubemap dds files
 *     volume dds files -- TODO
 * writing:
 *     rgb dds files only -- TODO
 */

#include <cmath> // sqrtf
#include <fstream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "ksquirrel-libs/fileio.h"
#include "ksquirrel-libs/fmt_types.h"
#include "ksquirrel-libs/fmt_defs.h"

#include "dds.h"

#ifndef __USE_ISOC99
#define sqrtf(x) ((float)sqrt(x))
#endif

typedef u32 uint;
typedef u16 ushort;
typedef u8 uchar;

typedef RGBA* RGBAP;

namespace {	// Private.

static bool MALLOC_ROWS(RGBAP **A, const int RB, const int H)
{
    *A = (RGBAP *)malloc(H * sizeof(RGBA*));

    if(!*A)
        return false;

    for(s32 row = 0; row < H; row++)
        (*A)[row] = 0;

    for(s32 row = 0; row < (s32)H; row++)
    {
        (*A)[row] = (RGBA *)malloc(RB);

        if(!(*A)[row])
            return false;

        memset((*A)[row], 0, RB);
    }

    return true;
}
/*
static void FREE_ROWS(RGBAP **A, const int H)
{
    if(*A)
    {
        for(s32 i = 0;i < H;i++)
        {
            if((*A)[i])
                free((*A)[i]);
        }

        free(*A);
        *A = 0;
    }
}
*/
#if !defined(MAKEFOURCC)
#	define MAKEFOURCC(ch0, ch1, ch2, ch3) \
		(uint(uchar(ch0)) | (uint(uchar(ch1)) << 8) | \
		(uint(uchar(ch2)) << 16) | (uint(uchar(ch3)) << 24 ))
#endif

//#ifdef max
#undef max
#define max(a,b)	((a)>(b)?(a):(b))
//#endif

#define HORIZONTAL 1
#define VERTICAL 2
#define CUBE_LAYOUT	HORIZONTAL

	struct Color8888
	{
		uchar r, g, b, a;
	};

	union Color565
	{
		struct {
			ushort b : 5;
			ushort g : 6;
			ushort r : 5;
		} c;
		ushort u;
	};

	union Color1555 {
		struct {
			ushort b : 5;
			ushort g : 5;
			ushort r : 5;
			ushort a : 1;
		} c;
		ushort u;
	};

	union Color4444 {
		struct {
			ushort b : 4;
			ushort g : 4;
			ushort r : 4;
			ushort a : 4;
		} c;
		ushort u;
	};


	static const uint FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' ');
	static const uint FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1');
	static const uint FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2');
	static const uint FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3');
	static const uint FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4');
	static const uint FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5');
	static const uint FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B');
	static const uint FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2');

	static const uint DDSD_CAPS = 0x00000001l;
	static const uint DDSD_PIXELFORMAT = 0x00001000l;
	static const uint DDSD_WIDTH = 0x00000004l;
	static const uint DDSD_HEIGHT = 0x00000002l;
	static const uint DDSD_PITCH = 0x00000008l;

	static const uint DDSCAPS_TEXTURE = 0x00001000l;
	static const uint DDSCAPS2_VOLUME = 0x00200000l;
	static const uint DDSCAPS2_CUBEMAP = 0x00000200l;

	static const uint DDSCAPS2_CUBEMAP_POSITIVEX = 0x00000400l;
	static const uint DDSCAPS2_CUBEMAP_NEGATIVEX = 0x00000800l;
	static const uint DDSCAPS2_CUBEMAP_POSITIVEY = 0x00001000l;
	static const uint DDSCAPS2_CUBEMAP_NEGATIVEY = 0x00002000l;
	static const uint DDSCAPS2_CUBEMAP_POSITIVEZ = 0x00004000l;
	static const uint DDSCAPS2_CUBEMAP_NEGATIVEZ = 0x00008000l;

	static const uint DDPF_RGB = 0x00000040l;
 	static const uint DDPF_FOURCC = 0x00000004l;
 	static const uint DDPF_ALPHAPIXELS = 0x00000001l;

	enum DDSType {
		DDS_A8R8G8B8 = 0,
		DDS_A1R5G5B5 = 1,
		DDS_A4R4G4B4 = 2,
		DDS_R8G8B8 = 3,
		DDS_R5G6B5 = 4,
		DDS_DXT1 = 5,
		DDS_DXT2 = 6,
		DDS_DXT3 = 7,
		DDS_DXT4 = 8,
		DDS_DXT5 = 9,
		DDS_RXGB = 10,
		DDS_ATI2 = 11,
		DDS_UNKNOWN
	};


	struct DDSPixelFormat {
		uint size;
		uint flags;
		uint fourcc;
		uint bitcount;
		uint rmask;
		uint gmask;
		uint bmask;
		uint amask;
	};

	static ifstreamK & operator>> ( ifstreamK & s, DDSPixelFormat & pf )
	{
		s.readK(&pf.size, sizeof(pf.size));
		s.readK(&pf.flags, sizeof(pf.flags));
		s.readK(&pf.fourcc, sizeof(pf.fourcc));
		s.readK(&pf.bitcount, sizeof(pf.bitcount));
		s.readK(&pf.rmask, sizeof(pf.rmask));
		s.readK(&pf.gmask, sizeof(pf.gmask));
		s.readK(&pf.bmask, sizeof(pf.bmask));
		s.readK(&pf.amask, sizeof(pf.amask));

		return s;
	}

	struct DDSCaps {
		uint caps1;
		uint caps2;
		uint caps3;
		uint caps4;
	};

	static ifstreamK & operator>> ( ifstreamK & s, DDSCaps & caps )
	{
		s.readK(&caps.caps1, sizeof(caps.caps1));
		s.readK(&caps.caps2, sizeof(caps.caps2));
		s.readK(&caps.caps3, sizeof(caps.caps3));
		s.readK(&caps.caps4, sizeof(caps.caps4));

		return s;
	}

	struct DDSHeader {
		uint size;
		uint flags;
		uint height;
		uint width;
		uint pitch;
		uint depth;
		uint mipmapcount;
		uint reserved[11];
		DDSPixelFormat pf;
		DDSCaps caps;
		uint notused;
	};

	static ifstreamK & operator>> ( ifstreamK & s, DDSHeader & header )
	{
		s.readK(&header.size, sizeof(header.size));
		s.readK(&header.flags, sizeof(header.flags));
		s.readK(&header.height, sizeof(header.height));
		s.readK(&header.width, sizeof(header.width));
		s.readK(&header.pitch, sizeof(header.pitch));
		s.readK(&header.depth, sizeof(header.depth));
		s.readK(&header.mipmapcount, sizeof(header.mipmapcount));

		for( int i = 0; i < 11; i++ )
                {
			s.readK(&header.reserved[i], sizeof(header.reserved[i]));
		}

		s >> header.pf;
		s >> header.caps;

		s.readK(&header.notused, sizeof(header.notused));

		return s;
	}

	static bool IsValid( const DDSHeader & header )
	{
		if( header.size != 124 || !header.width || !header.height) {
			return false;
		}

		const uint required = (DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS | DDSD_PIXELFORMAT);

		if( (header.flags & required) != required ) {
			return false;
		}
		if( header.pf.size != 32 ) {
			return false;
		}
		if( !(header.caps.caps1 & DDSCAPS_TEXTURE) ) {
			return false;
		}
		return true;
	}

	// Get supported type. We currently support 10 different types.
	static DDSType GetType( const DDSHeader & header )
	{
		if( header.pf.flags & DDPF_RGB ) {
			if( header.pf.flags & DDPF_ALPHAPIXELS ) {
				switch( header.pf.bitcount ) {
					case 16:
						return (header.pf.amask == 0x7000) ? DDS_A1R5G5B5 : DDS_A4R4G4B4;
					case 32:
						return DDS_A8R8G8B8;
				}
			}
			else {
				switch( header.pf.bitcount ) {
					case 16:
						return DDS_R5G6B5;
					case 24:
						return DDS_R8G8B8;
				}
			}
		}
		else if( header.pf.flags & DDPF_FOURCC ) {
			switch( header.pf.fourcc ) {
				case FOURCC_DXT1:
					return DDS_DXT1;
				case FOURCC_DXT2:
					return DDS_DXT2;
				case FOURCC_DXT3:
					return DDS_DXT3;
				case FOURCC_DXT4:
					return DDS_DXT4;
				case FOURCC_DXT5:
					return DDS_DXT5;
				case FOURCC_RXGB:
					return DDS_RXGB;
				case FOURCC_ATI2:
					return DDS_ATI2;
			}
		}
		return DDS_UNKNOWN;
	}

	static bool IsCubeMap( const DDSHeader & header )
	{
		return header.caps.caps2 & DDSCAPS2_CUBEMAP;
	}

	static bool IsSupported( const DDSHeader & header )
	{
		if( header.caps.caps2 & DDSCAPS2_VOLUME ) {
			return false;
		}
		if( GetType(header) == DDS_UNKNOWN ) {
			return false;
		}
		return true;
	}

	static bool LoadA8R8G8B8( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		for( uint y = 0; y < h; y++ ) {
			RGBA *scanline = img[y];
			for( uint x = 0; x < w; x++ ) {
				uchar r, g, b, a;

				s.readK(&b, sizeof(b));
				s.readK(&g, sizeof(g));
				s.readK(&r, sizeof(r));
				s.readK(&a, sizeof(a));

				scanline[x] = RGBA(r, g, b, a);
			}
		}

		return true;
	}

	static bool LoadR8G8B8( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		for( uint y = 0; y < h; y++ ) {
			RGBA * scanline = img[y];
			for( uint x = 0; x < w; x++ )
                        {
				uchar r, g, b;

				s.readK(&b, sizeof(b));
				s.readK(&g, sizeof(g));
				s.readK(&r, sizeof(r));

				scanline[x] = RGBA(r, g, b, 255);
			}
		}

		return true;
	}

	static bool LoadA1R5G5B5( ifstreamK & s, const DDSHeader & header, RGBA **img )
	{
		const uint w = header.width;
		const uint h = header.height;

		for( uint y = 0; y < h; y++ ) {
			RGBA * scanline = img[y];
			for( uint x = 0; x < w; x++ ) {
				Color1555 color;
				s.readK(&color.u, sizeof(color.u));
				uchar a = (color.c.a != 0) ? 0xFF : 0;
				uchar r = (color.c.r << 3) | (color.c.r >> 2);
				uchar g = (color.c.g << 3) | (color.c.g >> 2);
				uchar b = (color.c.b << 3) | (color.c.b >> 2);
				scanline[x] = RGBA(r, g, b, a);
			}
		}

		return true;
	}

	static bool LoadA4R4G4B4( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		for( uint y = 0; y < h; y++ ) {
			RGBA * scanline = img[y];
			for( uint x = 0; x < w; x++ ) {
				Color4444 color;
				s.readK(&color.u, sizeof(color.u));
				uchar a = (color.c.a << 4) | color.c.a;
				uchar r = (color.c.r << 4) | color.c.r;
				uchar g = (color.c.g << 4) | color.c.g;
				uchar b = (color.c.b << 4) | color.c.b;
				scanline[x] = RGBA(r, g, b, a);
			}
		}

		return true;
	}

	static bool LoadR5G6B5( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		for( uint y = 0; y < h; y++ ) {
			RGBA * scanline = img[y];
			for( uint x = 0; x < w; x++ ) {
				Color565 color;
				s.readK(&color.u, sizeof(color.u));
				uchar r = (color.c.r << 3) | (color.c.r >> 2);
				uchar g = (color.c.g << 2) | (color.c.g >> 4);
				uchar b = (color.c.b << 3) | (color.c.b >> 2);
				scanline[x] = RGBA(r, g, b, 255);
			}
		}

		return true;
	}

	static ifstreamK & operator>> ( ifstreamK & s, Color565 & c )
	{
		s.readK(&c.u, sizeof(c.u));

                return s;
	}

	struct BlockDXT
	{
		Color565 col0;
		Color565 col1;
		uchar row[4];

		void GetColors( Color8888 color_array[4] )
		{
			color_array[0].r = (col0.c.r << 3) | (col0.c.r >> 2);
			color_array[0].g = (col0.c.g << 2) | (col0.c.g >> 4);
			color_array[0].b = (col0.c.b << 3) | (col0.c.b >> 2);
			color_array[0].a = 0xFF;

			color_array[1].r = (col1.c.r << 3) | (col1.c.r >> 2);
			color_array[1].g = (col1.c.g << 2) | (col1.c.g >> 4);
			color_array[1].b = (col1.c.b << 3) | (col1.c.b >> 2);
			color_array[1].a = 0xFF;

			if( col0.u > col1.u ) {
				// Four-color block: derive the other two colors.
				color_array[2].r = (2 * color_array[0].r + color_array[1].r) / 3;
				color_array[2].g = (2 * color_array[0].g + color_array[1].g) / 3;
				color_array[2].b = (2 * color_array[0].b + color_array[1].b) / 3;
				color_array[2].a = 0xFF;

				color_array[3].r = (2 * color_array[1].r + color_array[0].r) / 3;
				color_array[3].g = (2 * color_array[1].g + color_array[0].g) / 3;
				color_array[3].b = (2 * color_array[1].b + color_array[0].b) / 3;
				color_array[3].a = 0xFF;
			}
			else {
				// Three-color block: derive the other color.
				color_array[2].r = (color_array[0].r + color_array[1].r) / 2;
				color_array[2].g = (color_array[0].g + color_array[1].g) / 2;
				color_array[2].b = (color_array[0].b + color_array[1].b) / 2;
				color_array[2].a = 0xFF;

				// Set all components to 0 to match DXT specs.
				color_array[3].r = 0x00; // color_array[2].r;
				color_array[3].g = 0x00; // color_array[2].g;
				color_array[3].b = 0x00; // color_array[2].b;
				color_array[3].a = 0x00;
			}
		}
	};

	static ifstreamK & operator>> ( ifstreamK & s, BlockDXT & c )
	{
    	    s >> c.col0 >> c.col1;

            s.readK(&c.row[0], sizeof(uchar));
            s.readK(&c.row[1], sizeof(uchar));
            s.readK(&c.row[2], sizeof(uchar));
            s.readK(&c.row[3], sizeof(uchar));

            return s;
	}

	struct BlockDXTAlphaExplicit {
		ushort row[4];
	};

	static ifstreamK & operator>> ( ifstreamK & s, BlockDXTAlphaExplicit & c )
	{
                s.readK(&c.row[0], sizeof(ushort));
                s.readK(&c.row[1], sizeof(ushort));
                s.readK(&c.row[2], sizeof(ushort));
                s.readK(&c.row[3], sizeof(ushort));

                return s;
	}

	struct BlockDXTAlphaLinear {
		uchar alpha0;
		uchar alpha1;
		uchar bits[6];

		void GetAlphas( uchar alpha_array[8] )
		{
			alpha_array[0] = alpha0;
			alpha_array[1] = alpha1;

			// 8-alpha or 6-alpha block?
			if( alpha_array[0] > alpha_array[1] )
			{
				// 8-alpha block:  derive the other 6 alphas.
				// 000 = alpha_0, 001 = alpha_1, others are interpolated

				alpha_array[2] = ( 6 * alpha0 +     alpha1) / 7;	// bit code 010
				alpha_array[3] = ( 5 * alpha0 + 2 * alpha1) / 7;	// Bit code 011
				alpha_array[4] = ( 4 * alpha0 + 3 * alpha1) / 7;	// Bit code 100
				alpha_array[5] = ( 3 * alpha0 + 4 * alpha1) / 7;	// Bit code 101
				alpha_array[6] = ( 2 * alpha0 + 5 * alpha1) / 7;	// Bit code 110
				alpha_array[7] = (     alpha0 + 6 * alpha1) / 7;	// Bit code 111
			}
			else
			{
				// 6-alpha block:  derive the other alphas.
				// 000 = alpha_0, 001 = alpha_1, others are interpolated

				alpha_array[2] = (4 * alpha0 +     alpha1) / 5;		// Bit code 010
				alpha_array[3] = (3 * alpha0 + 2 * alpha1) / 5;		// Bit code 011
				alpha_array[4] = (2 * alpha0 + 3 * alpha1) / 5;		// Bit code 100
				alpha_array[5] = (    alpha0 + 4 * alpha1) / 5;		// Bit code 101
				alpha_array[6] = 0x00;								// Bit code 110
				alpha_array[7] = 0xFF;								// Bit code 111
			}
		}

		void GetBits( uchar bit_array[16] )
		{
			// uint b = (uint &) bits[0];
			/* avoid a warning
			 * "dereferencing type-punned pointer will break strict-aliasing rules"
			 * TODO: check endianness issues (but that was probably broken anyway) */
			uint b;
			memcpy(&b, &bits[0], sizeof(b));
			bit_array[0] = uchar(b & 0x07); b >>= 3;
			bit_array[1] = uchar(b & 0x07); b >>= 3;
			bit_array[2] = uchar(b & 0x07); b >>= 3;
			bit_array[3] = uchar(b & 0x07); b >>= 3;
			bit_array[4] = uchar(b & 0x07); b >>= 3;
			bit_array[5] = uchar(b & 0x07); b >>= 3;
			bit_array[6] = uchar(b & 0x07); b >>= 3;
			bit_array[7] = uchar(b & 0x07); b >>= 3;

			// b = (uint &) bits[3];
			memcpy(&b, &bits[3], sizeof(b));
			bit_array[8] = uchar(b & 0x07); b >>= 3;
			bit_array[9] = uchar(b & 0x07); b >>= 3;
			bit_array[10] = uchar(b & 0x07); b >>= 3;
			bit_array[11] = uchar(b & 0x07); b >>= 3;
			bit_array[12] = uchar(b & 0x07); b >>= 3;
			bit_array[13] = uchar(b & 0x07); b >>= 3;
			bit_array[14] = uchar(b & 0x07); b >>= 3;
			bit_array[15] = uchar(b & 0x07); b >>= 3;
		}
	};

	static ifstreamK & operator>> ( ifstreamK & s, BlockDXTAlphaLinear & c )
	{
		s.readK(&c.alpha0, sizeof(c.alpha0));
		s.readK(&c.alpha1, sizeof(c.alpha1));

                s.readK(&c.bits[0], sizeof(uchar));
                s.readK(&c.bits[1], sizeof(uchar));
                s.readK(&c.bits[2], sizeof(uchar));
                s.readK(&c.bits[3], sizeof(uchar));
                s.readK(&c.bits[4], sizeof(uchar));
                s.readK(&c.bits[5], sizeof(uchar));

                return s;
	}

	static bool LoadDXT1( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		BlockDXT block;
		RGBA * scanline[4];

		for( uint y = 0; y < h; y += 4 ) {
			for( uint j = 0; j < 4; j++ ) {
				scanline[j] = img[y + j];
			}

			for( uint x = 0; x < w; x += 4 ) {

				// Read 64bit color block.
				s >> block;

				// Decode color block.
				Color8888 color_array[4];
				block.GetColors(color_array);

				// bit masks = 00000011, 00001100, 00110000, 11000000
				const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 };
				const int shift[4] = { 0, 2, 4, 6 };

				// Write color block.
				for( uint j = 0; j < 4; j++ ) {
					for( uint i = 0; i < 4; i++ ) {
						/*if( img.valid( x+i, y+j ) ) */{

							uint idx = (block.row[j] & masks[i]) >> shift[i];
							scanline[j][x+i] = RGBA(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a);
						}
					}
				}
			}
		}

		return true;
	}

	static bool LoadDXT3( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		BlockDXT block;
		BlockDXTAlphaExplicit alpha;
		RGBA * scanline[4];

		for( uint y = 0; y < h; y += 4 ) {
			for( uint j = 0; j < 4; j++ ) {
				scanline[j] = img[y + j];
			}
			for( uint x = 0; x < w; x += 4 ) {

				// Read 128bit color block.
				s >> alpha;
				s >> block;

				// Decode color block.
				Color8888 color_array[4];
				block.GetColors(color_array);

				// bit masks = 00000011, 00001100, 00110000, 11000000
				const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 };
				const int shift[4] = { 0, 2, 4, 6 };

				// Write color block.
				for( uint j = 0; j < 4; j++ ) {
					ushort a = alpha.row[j];
					for( uint i = 0; i < 4; i++ ) {
						/*if( img.valid( x+i, y+j ) ) */{
							uint idx = (block.row[j] & masks[i]) >> shift[i];
							color_array[idx].a = a & 0x0f;
							color_array[idx].a = color_array[idx].a | (color_array[idx].a << 4);
							scanline[j][x+i] = RGBA(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a);
						}
						a >>= 4;
					}
				}
			}
		}
		return true;
	}

	static bool LoadDXT2( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		if( !LoadDXT3(s, header, img) ) return false;
		//UndoPremultiplyAlpha(img);
		return true;
	}

	static bool LoadDXT5( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		BlockDXT block;
		BlockDXTAlphaLinear alpha;
		RGBA * scanline[4];

		for( uint y = 0; y < h; y += 4 ) {
			for( uint j = 0; j < 4; j++ ) {
				scanline[j] = img[y + j];
			}
			for( uint x = 0; x < w; x += 4 ) {

				// Read 128bit color block.
				s >> alpha;
				s >> block;

				// Decode color block.
				Color8888 color_array[4];
				block.GetColors(color_array);

				uchar alpha_array[8];
				alpha.GetAlphas(alpha_array);

				uchar bit_array[16];
				alpha.GetBits(bit_array);

				// bit masks = 00000011, 00001100, 00110000, 11000000
				const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 };
				const int shift[4] = { 0, 2, 4, 6 };

				// Write color block.
				for( uint j = 0; j < 4; j++ ) {
					for( uint i = 0; i < 4; i++ ) {
						/*if( img.valid( x+i, y+j ) ) */{
							uint idx = (block.row[j] & masks[i]) >> shift[i];
							color_array[idx].a = alpha_array[bit_array[j*4+i]];
							scanline[j][x+i] = RGBA(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a);
						}
					}
				}
			}
		}

		return true;
	}
	static bool LoadDXT4( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		if( !LoadDXT5(s, header, img) ) return false;
		//UndoPremultiplyAlpha(img);
		return true;
	}

	static bool LoadRXGB( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		BlockDXT block;
		BlockDXTAlphaLinear alpha;
		RGBA * scanline[4];

		for( uint y = 0; y < h; y += 4 ) {
			for( uint j = 0; j < 4; j++ ) {
				scanline[j] = img[y + j];
			}
			for( uint x = 0; x < w; x += 4 ) {

				// Read 128bit color block.
				s >> alpha;
				s >> block;

				// Decode color block.
				Color8888 color_array[4];
				block.GetColors(color_array);

				uchar alpha_array[8];
				alpha.GetAlphas(alpha_array);

				uchar bit_array[16];
				alpha.GetBits(bit_array);

				// bit masks = 00000011, 00001100, 00110000, 11000000
				const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 };
				const int shift[4] = { 0, 2, 4, 6 };

				// Write color block.
				for( uint j = 0; j < 4; j++ ) {
					for( uint i = 0; i < 4; i++ ) {
						/*if( img.valid( x+i, y+j ) ) */{
							uint idx = (block.row[j] & masks[i]) >> shift[i];
							color_array[idx].a = alpha_array[bit_array[j*4+i]];
							scanline[j][x+i] = RGBA(color_array[idx].a, color_array[idx].g, color_array[idx].b, 255);
						}
					}
				}
			}
		}

		return true;
	}

	static bool LoadATI2( ifstreamK & s, const DDSHeader & header, RGBA **img)
	{
		const uint w = header.width;
		const uint h = header.height;

		BlockDXTAlphaLinear xblock;
		BlockDXTAlphaLinear yblock;
		RGBA * scanline[4];

		for( uint y = 0; y < h; y += 4 ) {
			for( uint j = 0; j < 4; j++ ) {
				scanline[j] = img[y + j];
			}
			for( uint x = 0; x < w; x += 4 ) {

				// Read 128bit color block.
				s >> xblock;
				s >> yblock;

				// Decode color block.
				uchar xblock_array[8];
				xblock.GetAlphas(xblock_array);

				uchar xbit_array[16];
				xblock.GetBits(xbit_array);

				uchar yblock_array[8];
				yblock.GetAlphas(yblock_array);

				uchar ybit_array[16];
				yblock.GetBits(ybit_array);

				// Write color block.
				for( uint j = 0; j < 4; j++ ) {
					for( uint i = 0; i < 4; i++ ) {
						/*if( img.valid( x+i, y+j ) ) */{
							const uchar nx = xblock_array[xbit_array[j*4+i]];
							const uchar ny = yblock_array[ybit_array[j*4+i]];
							
							const float fx = float(nx) / 127.5f - 1.0f;
							const float fy = float(ny) / 127.5f - 1.0f;
							const float fz = sqrtf(1.0f - fx*fx - fy*fy);
							const uchar nz = uchar((fz + 1.0f) * 127.5f);
							
							scanline[j][x+i] = RGBA(nx, ny, nz, 255);
						}
					}
				}
			}
		}

		return true;
	}

	typedef bool (* TextureLoader)( ifstreamK & s, const DDSHeader & header, RGBA **);

	// Get an appropiate texture loader for the given type.
	static TextureLoader GetTextureLoader( DDSType type ) {
		switch( type ) {
			case DDS_A8R8G8B8:
				return LoadA8R8G8B8;
			case DDS_A1R5G5B5:
				return LoadA1R5G5B5;
			case DDS_A4R4G4B4:
				return LoadA4R4G4B4;
			case DDS_R8G8B8:
				return LoadR8G8B8;
			case DDS_R5G6B5:
				return LoadR5G6B5;
			case DDS_DXT1:
				return LoadDXT1;
			case DDS_DXT2:
				return LoadDXT2;
			case DDS_DXT3:
				return LoadDXT3;
			case DDS_DXT4:
				return LoadDXT4;
			case DDS_DXT5:
				return LoadDXT5;
			case DDS_RXGB:
				return LoadRXGB;
			case DDS_ATI2:
				return LoadATI2;
			default:
				return NULL;
		};
	}


	// Load a 2d texture.
	static bool LoadTexture( ifstreamK & s, const DDSHeader & header, RGBA ***img)
	{
                if(!MALLOC_ROWS(img, header.width * sizeof(RGBA), header.height))
                    return false;
        
		// Read image.
		DDSType type = GetType( header );

		TextureLoader loader = GetTextureLoader( type );
		if( loader == NULL ) {
			return false;
		}

		return loader( s, header, *img );
	}


	static int FaceOffset( const DDSHeader & header ) {

		DDSType type = GetType( header );

		int mipmap = max(header.mipmapcount, 1);
		int size = 0;
		int w = header.width;
		int h = header.height;
		
		if( type >= DDS_DXT1 ) {
			int multiplier = (type == DDS_DXT1) ? 8 : 16;
			do {
				int face_size = max(w/4,1) * max(h/4,1) * multiplier;
				size += face_size;
				w >>= 1;
				h >>= 1;
			} while( --mipmap );
		}
		else {
			int multiplier = header.pf.bitcount / 8;
			do {
				int face_size = w * h * multiplier;
				size += face_size;
				w = max( w>>1, 1 );
				h = max( h>>1, 1 );
			} while( --mipmap );
		}

		return size;
	}

#if CUBE_LAYOUT == HORIZONTAL
	static int face_offset[6][2] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {3, 1} };
#elif CUBE_LAYOUT == VERTICAL
	static int face_offset[6][2] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {1, 3} };
#endif
	static int face_flags[6] = {
		DDSCAPS2_CUBEMAP_POSITIVEX,
		DDSCAPS2_CUBEMAP_NEGATIVEX,
		DDSCAPS2_CUBEMAP_POSITIVEY,
		DDSCAPS2_CUBEMAP_NEGATIVEY,
		DDSCAPS2_CUBEMAP_POSITIVEZ,
		DDSCAPS2_CUBEMAP_NEGATIVEZ
	};

	// Load unwrapped cube map.
	static bool LoadCubeMap( ifstreamK & s, const DDSHeader & header, RGBA ***img)
	{
            int dimw = 0, dimh = 0;
#if CUBE_LAYOUT == HORIZONTAL
		dimw = 4 * header.width;
                dimh = 3 * header.height;
#elif CUBE_LAYOUT == VERTICAL
		dimw = 3 * header.width;
                dimh = 4 * header.height;
#endif

                if(!MALLOC_ROWS(img, dimw * sizeof(RGBA), dimh))
                    return false;

		// Create dst image.

		DDSType type = GetType( header );
		
		// Select texture loader.
		TextureLoader loader = GetTextureLoader( type );
		if( loader == NULL ) {
			return false;
		}

                RGBA **face;
                if(!MALLOC_ROWS(&face, header.width * sizeof(RGBA), header.height))
                    return false;

		// Create face image.
		int offset = s.tellg();
		int size = FaceOffset( header );

		for( int i = 0; i < 6; i++ ) {

			if( !(header.caps.caps2 & face_flags[i]) ) {
				// Skip face.
				continue;
			}

			// Seek device.
			s.seekg(offset);
			offset += size;

			// Load face from stream.
			if( !loader( s, header, face ) ) {
				return false;
			}

#if CUBE_LAYOUT == VERTICAL
			if( i == 5 ) {
//				face = face.mirror(true, true);
			}
#endif

			// Compute face offsets.
			int offset_x = face_offset[i][0] * header.width;
			int offset_y = face_offset[i][1] * header.height;

			// Copy face on the image.
			for( uint y = 0; y < header.height; y++ )
                        {
			    RGBA * src = face[y];
    			    RGBA * dst = (*img)[y + offset_y] + offset_x;
			    memcpy( dst, src, sizeof(RGBA) * header.width );
			}
		}

		return true;
	}

}

bool dds_read(const std::string &file, DDSINFO &dds)
{
	ifstreamK s;
        s.open(file.c_str(), std::ios::binary | std::ios::in);

        if(!s.good())
            return false;

	// Validate header.
	uint fourcc;
        s.readK(&fourcc, sizeof(uint));

	if(fourcc != FOURCC_DDS)
	    return false;

	// Read image header.
	DDSHeader header;
	s >> header;

	// Check image file format.
	if(!s.good() || !IsValid(header) || !IsSupported(header))
		return false;

	RGBA **img = 0;
	bool result;

	if(IsCubeMap(header))
		result = LoadCubeMap(s, header, &img);
	else
		result = LoadTexture(s, header, &img);

    if(result)
    {
        dds.w = header.width;
        dds.h = header.height;
        dds.img = img;
    }

    return result;
}