1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// -*- c-basic-offset: 4 -*-
/*
Rosegarden
A sequencer and musical notation editor.
This program is Copyright 2000-2008
Guillaume Laurent <glaurent@telegraph-road.org>,
Chris Cannam <cannam@all-day-breakfast.com>,
Richard Bown <bownie@bownie.com>
The moral right of the authors to claim authorship of this work
has been asserted.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include <iostream>
#if (__GNUC__ < 3)
#include <strstream>
#define stringstream strstream
#else
#include <sstream>
#endif
#include "RealTime.h"
#include "sys/time.h"
namespace Rosegarden {
// A RealTime consists of two ints that must be at least 32 bits each.
// A signed 32-bit int can store values exceeding +/- 2 billion. This
// means we can safely use our lower int for nanoseconds, as there are
// 1 billion nanoseconds in a second and we need to handle double that
// because of the implementations of addition etc that we use.
//
// The maximum valid RealTime on a 32-bit system is somewhere around
// 68 years: 999999999 nanoseconds longer than the classic Unix epoch.
#define ONE_BILLION 1000000000
RealTime::RealTime(int s, int n) :
sec(s), nsec(n)
{
if (sec == 0) {
while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
while (nsec >= ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
} else if (sec < 0) {
while (nsec <= -ONE_BILLION) { nsec += ONE_BILLION; --sec; }
while (nsec > 0) { nsec -= ONE_BILLION; ++sec; }
} else {
while (nsec >= ONE_BILLION) { nsec -= ONE_BILLION; ++sec; }
while (nsec < 0) { nsec += ONE_BILLION; --sec; }
}
}
RealTime
RealTime::fromSeconds(double sec)
{
return RealTime(int(sec), int((sec - int(sec)) * ONE_BILLION + 0.5));
}
RealTime
RealTime::fromMilliseconds(int msec)
{
return RealTime(msec / 1000, (msec % 1000) * 1000000);
}
RealTime
RealTime::fromTimeval(const struct timeval &tv)
{
return RealTime(tv.tv_sec, tv.tv_usec * 1000);
}
std::ostream &operator<<(std::ostream &out, const RealTime &rt)
{
if (rt < RealTime::zeroTime) {
out << "-";
} else {
out << " ";
}
int s = (rt.sec < 0 ? -rt.sec : rt.sec);
int n = (rt.nsec < 0 ? -rt.nsec : rt.nsec);
out << s << ".";
int nn(n);
if (nn == 0) out << "00000000";
else while (nn < (ONE_BILLION / 10)) {
out << "0";
nn *= 10;
}
out << n << "R";
return out;
}
std::string
RealTime::toString(bool align) const
{
std::stringstream out;
out << *this;
#if (__GNUC__ < 3)
out << std::ends;
#endif
std::string s = out.str();
if (!align && *this >= RealTime::zeroTime) {
// remove leading " "
s = s.substr(1, s.length() - 1);
}
// remove trailing R
return s.substr(0, s.length() - 1);
}
std::string
RealTime::toText(bool fixedDp) const
{
if (*this < RealTime::zeroTime) return "-" + (-*this).toText();
std::stringstream out;
if (sec >= 3600) {
out << (sec / 3600) << ":";
}
if (sec >= 60) {
out << (sec % 3600) / 60 << ":";
}
if (sec >= 10) {
out << ((sec % 60) / 10);
}
out << (sec % 10);
int ms = msec();
if (ms != 0) {
out << ".";
out << (ms / 100);
ms = ms % 100;
if (ms != 0) {
out << (ms / 10);
ms = ms % 10;
} else if (fixedDp) {
out << "0";
}
if (ms != 0) {
out << ms;
} else if (fixedDp) {
out << "0";
}
} else if (fixedDp) {
out << ".000";
}
#if (__GNUC__ < 3)
out << std::ends;
#endif
std::string s = out.str();
return s;
}
RealTime
RealTime::operator*(double m) const
{
double t = (double(nsec) / ONE_BILLION) * m;
t += sec * m;
return fromSeconds(t);
}
RealTime
RealTime::operator/(int d) const
{
int secdiv = sec / d;
int secrem = sec % d;
double nsecdiv = (double(nsec) + ONE_BILLION * double(secrem)) / d;
return RealTime(secdiv, int(nsecdiv + 0.5));
}
double
RealTime::operator/(const RealTime &r) const
{
double lTotal = double(sec) * ONE_BILLION + double(nsec);
double rTotal = double(r.sec) * ONE_BILLION + double(r.nsec);
if (rTotal == 0) return 0.0;
else return lTotal/rTotal;
}
long
RealTime::realTime2Frame(const RealTime &time, unsigned int sampleRate)
{
if (time < zeroTime) return -realTime2Frame(-time, sampleRate);
// We like integers. The last term is always zero unless the
// sample rate is greater than 1MHz, but hell, you never know...
long frame =
time.sec * sampleRate +
(time.msec() * sampleRate) / 1000 +
((time.usec() - 1000 * time.msec()) * sampleRate) / 1000000 +
((time.nsec - 1000 * time.usec()) * sampleRate) / 1000000000;
return frame;
}
RealTime
RealTime::frame2RealTime(long frame, unsigned int sampleRate)
{
if (frame < 0) return -frame2RealTime(-frame, sampleRate);
RealTime rt;
rt.sec = frame / sampleRate;
frame -= rt.sec * sampleRate;
rt.nsec = (int)(((float(frame) * 1000000) / sampleRate) * 1000);
return rt;
}
const RealTime RealTime::zeroTime(0,0);
}
|