1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
/*
* fcs_hash.c - an implementation of a simplistic (keys only) hash. This
* hash uses chaining and re-hashing and was found to be very fast. Not all
* of the functions of the hash ADT are implemented, but it is useful enough
* for Freecell Solver.
*
* Written by Shlomi Fish (shlomif@vipe.technion.ac.il), 2000
*
* This file is in the public domain (it's uncopyrighted).
*/
#include "fcs_config.h"
#if (FCS_STATE_STORAGE == FCS_STATE_STORAGE_INTERNAL_HASH) || (defined(INDIRECT_STACK_STATES) && (FCS_STACK_STORAGE == FCS_STACK_STORAGE_INTERNAL_HASH))
#include <stdlib.h>
#include <string.h>
#define DEBUG
#ifdef DEBUG
#include <stdio.h>
#endif
#include "fcs_hash.h"
#include "alloc.h"
#ifdef DMALLOC
#include "dmalloc.h"
#endif
static void SFO_hash_rehash(SFO_hash_t * hash);
SFO_hash_t * freecell_solver_hash_init(
SFO_hash_value_t wanted_size,
int (*compare_function)(const void * key1, const void * key2, void * context),
void * context
)
{
int size;
SFO_hash_t * hash;
/* Find a prime number that is greater than the initial wanted size */
size = 256;
while (size < wanted_size)
{
size <<= 1;
}
hash = (SFO_hash_t *)malloc(sizeof(SFO_hash_t));
hash->size = size;
hash->size_bitmask = size-1;
hash->num_elems = 0;
/* Allocate a table of size entries */
hash->entries = (SFO_hash_symlink_t *)malloc(
sizeof(SFO_hash_symlink_t) * size
);
hash->compare_function = compare_function;
hash->context = context;
/* Initialize all the cells of the hash table to NULL, which indicate
that the cork of the linked list is right at the start */
memset(hash->entries, 0, sizeof(SFO_hash_symlink_t)*size);
hash->allocator = freecell_solver_compact_allocator_new();
return hash;
}
void * freecell_solver_hash_insert(
SFO_hash_t * hash,
void * key,
SFO_hash_value_t hash_value,
SFO_hash_value_t secondary_hash_value,
int optimize_for_caching
)
{
int place;
SFO_hash_symlink_t * list;
SFO_hash_symlink_item_t * item, * last_item;
/* Get the index of the appropriate chain in the hash table */
place = hash_value & (hash->size_bitmask);
list = &(hash->entries[place]);
/* If first_item is non-existent */
if (list->first_item == NULL)
{
/* Allocate a first item with that key */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
list->first_item = item;
item->next = NULL;
item->key = key;
item->hash_value = hash_value;
item->secondary_hash_value = secondary_hash_value;
goto rehash_check;
}
/* Initialize item to the chain's first_item */
item = list->first_item;
last_item = NULL;
while (item != NULL)
{
/*
We first compare the hash values, because it is faster than
comparing the entire data structure.
*/
if (
(item->hash_value == hash_value) &&
(item->secondary_hash_value == secondary_hash_value) &&
(!(hash->compare_function(item->key, key, hash->context)))
)
{
if (optimize_for_caching)
{
/*
* Place the item in the beginning of the chain.
* If last_item == NULL it is already the first item so leave
* it alone
* */
if (last_item != NULL)
{
last_item->next = item->next;
item->next = list->first_item;
list->first_item = item;
}
}
return item->key;
}
/* Cache the item before the current in last_item */
last_item = item;
/* Move to the next item */
item = item->next;
}
if (optimize_for_caching)
{
/* Put the new element at the beginning of the list */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
item->next = list->first_item;
item->key = key;
item->hash_value = hash_value;
list->first_item = item;
item->secondary_hash_value = secondary_hash_value;
}
else
{
/* Put the new element at the end of the list */
fcs_compact_alloc_into_var(item, hash->allocator, SFO_hash_symlink_item_t);
last_item->next = item;
item->next = NULL;
item->key = key;
item->hash_value = hash_value;
item->secondary_hash_value = secondary_hash_value;
}
rehash_check:
hash->num_elems++;
if (hash->num_elems > ((hash->size*3)>>2))
{
SFO_hash_rehash(hash);
}
return NULL;
}
void freecell_solver_hash_free_with_callback(
SFO_hash_t * hash,
void (*function_ptr)(void * key, void * context)
)
{
int i;
SFO_hash_symlink_item_t * item, * next_item;
for(i=0;i<hash->size;i++)
{
item = hash->entries[i].first_item;
while (item != NULL)
{
function_ptr(item->key, hash->context);
next_item = item->next;
item = next_item;
}
}
freecell_solver_hash_free(hash);
}
void freecell_solver_hash_free(
SFO_hash_t * hash
)
{
freecell_solver_compact_allocator_finish(hash->allocator);
free(hash->entries);
free(hash);
}
/*
This function "rehashes" a hash. I.e: it increases the size of its
hash table, allowing for smaller chains, and faster lookup.
*/
static void SFO_hash_rehash(
SFO_hash_t * hash
)
{
int old_size, new_size, new_size_bitmask;
int i;
#if 0
SFO_hash_t * new_hash;
#endif
SFO_hash_symlink_item_t * item, * next_item;
int place;
SFO_hash_symlink_t * new_entries;
old_size = hash->size;
#if 0
/* Allocate a new hash with hash_init() */
new_hash = freecell_solver_hash_init_proto(
old_size * 2,
hash->compare_function,
hash->context
);
#endif
old_size = hash->size;
new_size = old_size << 1;
new_size_bitmask = new_size - 1;
new_entries = calloc(new_size, sizeof(SFO_hash_symlink_t));
/* Copy the items to the new hash while not allocating them again */
for(i=0;i<old_size;i++)
{
item = hash->entries[i].first_item;
/* traverse the chain item by item */
while(item != NULL)
{
/* The place in the new hash table */
place = item->hash_value & new_size_bitmask;
/* Store the next item in the linked list in a safe place,
so we can retrieve it after the assignment */
next_item = item->next;
/* It is placed in front of the first element in the chain,
so it should link to it */
item->next = new_entries[place].first_item;
/* Make it the first item in its chain */
new_entries[place].first_item = item;
/* Move to the next item this one. */
item = next_item;
}
};
/* Free the entries of the old hash */
free(hash->entries);
/* Copy the new hash to the old one */
#if 0
*hash = *new_hash;
#endif
hash->entries = new_entries;
hash->size = new_size;
hash->size_bitmask = new_size_bitmask;
}
#else
/* ANSI C doesn't allow empty compilation */
static void freecell_solver_hash_c_dummy();
#endif /* (FCS_STATE_STORAGE == FCS_STATE_STORAGE_INTERNAL_HASH) || defined(INDIRECT_STACK_STATES) */
|