summaryrefslogtreecommitdiffstats
path: root/kdvi/TeXFont_PK.cpp
blob: 625e86d01d56e8ea90087ca385ef3b8cb89bc2d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
/*
 * Copyright (c) 1994 Paul Vojta.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * NOTE:
 *	xdvi is based on prior work as noted in the modification history, below.
 */

/*
 * DVI previewer for X.
 *
 * Eric Cooper, CMU, September 1985.
 *
 * Code derived from dvi-imagen.c.
 *
 * Modification history:
 * 1/1986	Modified for X.10	--Bob Scheifler, MIT LCS.
 * 7/1988	Modified for X.11	--Mark Eichin, MIT
 * 12/1988	Added 'R' option, toolkit, magnifying glass
 *					--Paul Vojta, UC Berkeley.
 * 2/1989	Added tpic support	--Jeffrey Lee, U of Toronto
 * 4/1989	Modified for System V	--Donald Richardson, Clarkson Univ.
 * 3/1990	Added VMS support	--Scott Allendorf, U of Iowa
 * 7/1990	Added reflection mode	--Michael Pak, Hebrew U of Jerusalem
 * 1/1992	Added greyscale code	--Till Brychcy, Techn. Univ. Muenchen
 *					  and Lee Hetherington, MIT
 * 4/1994	Added DPS support, bounding box
 *					--Ricardo Telichevesky
 *					  and Luis Miguel Silveira, MIT RLE.
 */

#include <config.h>

#include <kdebug.h>
#include <klocale.h>
#include <math.h>
#include <tqbitmap.h>
#include <tqfile.h>
#include <tqimage.h>
#include <tqpainter.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "fontpool.h"
#include "glyph.h"
#include "xdvi.h"
#include "TeXFontDefinition.h"
#include "TeXFont_PK.h"


//#define DEBUG_PK

#define	PK_PRE		247
#define	PK_ID		89
#define	PK_MAGIC	(PK_PRE << 8) + PK_ID


extern void oops(TQString message);



TeXFont_PK::TeXFont_PK(TeXFontDefinition *parent)
  : TeXFont(parent)
{
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::TeXFont_PK( parent=" << parent << ")" << endl;
#endif

  for(unsigned int i=0; i<TeXFontDefinition::max_num_of_chars_in_font; i++)
    characterBitmaps[i] = 0;
  file = fopen(TQFile::encodeName(parent->filename), "r");
  if (file == 0) 
    kdError(4300) << i18n("Cannot open font file %1.").arg(parent->filename) << endl;
#ifdef DEBUG_PK
  else
    kdDebug(4300) << "TeXFont_PK::TeXFont_PK(): file opened successfully" << endl;
#endif

  read_PK_index();

#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::TeXFont_PK() ended" << endl;
#endif
}


TeXFont_PK::~TeXFont_PK()
{
  //@@@ Release bitmaps

  if (file != 0) {
    fclose(file);
    file = 0;
  }
}


glyph* TeXFont_PK::getGlyph(TQ_UINT16 ch, bool generateCharacterPixmap, const TQColor& color)
{
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::getGlyph( ch=" << ch << ", generateCharacterPixmap=" << generateCharacterPixmap << " )" << endl;
#endif

  // Paranoia checks
  if (ch >= TeXFontDefinition::max_num_of_chars_in_font) {
    kdError(4300) << "TeXFont_PK::getGlyph(): Argument is too big." << endl;
    return glyphtable;
  }
  
  // This is the address of the glyph that will be returned.
  struct glyph *g = glyphtable+ch;

  // Check if the glyph is loaded. If not, load it now.
  if (characterBitmaps[ch] == 0) {
    // If the character is not defined in the PK file, mark the
    // character as missing, and print an error message
    if (g->addr == 0) {
      kdError(4300) << i18n("TexFont_PK::operator[]: Character %1 not defined in font %2").arg(ch).arg(parent->filename) << endl;
      g->addr = -1;
      return g;
    }

    // If the character has already been marked as missing, just
    // return a pointer to the glyph (which will then be empty)
    if (g->addr == -1)
      return g;

    // Otherwise, try to load the character
    fseek(file, g->addr, 0);
    read_PK_char(ch);
    // Check if the character could be loaded. If not, mark the
    // character as 'missing', and return a pointer.
    if (characterBitmaps[ch]->bits == 0) {
      g->addr = -1;
      return g;
    }
  }

  // At this point, g points to a properly loaded character. Generate
  // a smoothly scaled TQPixmap if the user asks for it.
  if ((generateCharacterPixmap == true) && 
      ((g->shrunkenCharacter.isNull()) || (color != g->color)) &&
      (characterBitmaps[ch]->w != 0)) {
    g->color = color;
    double shrinkFactor = 1200 / parent->displayResolution_in_dpi;
    
    // All is fine? Then we rescale the bitmap in order to produce the
    // required pixmap.  Rescaling a character, however, is an art
    // that requires some explanation...
    //
    // If we would just divide the size of the character and the
    // coordinates by the shrink factor, then the result would look
    // quite ugly: due to the ineviatable rounding errors in the
    // integer arithmetic, the characters would be displaced by up to
    // a pixel. That doesn't sound much, but on low-resolution
    // devices, such as a notebook screen, the effect would be a
    // "dancing line" of characters, which looks really bad.
    
    // Calculate the coordinates of the hot point in the shrunken
    // bitmap. For simplicity, let us consider the x-coordinate
    // first. In principle, the hot point should have an x-coordinate
    // of (g->x/shrinkFactor). That, however, will generally NOT be an
    // integral number. The cure is to translate the source image
    // somewhat, so that the x-coordinate of the hot point falls onto
    // the round-up of this number, i.e.
    g->x2 = (int)ceil(g->x/shrinkFactor);

    // Translating and scaling then means that the pixel in the scaled
    // image which covers the range [x,x+1) corresponds to the range
    // [x*shrinkFactor+srcXTrans, (x+1)*shrinkFactor+srcXTrans), where
    // srcXTrans is the following NEGATIVE number
    double srcXTrans = shrinkFactor * (g->x/shrinkFactor - ceil(g->x/shrinkFactor));

    // How big will the shrunken bitmap then become? If shrunk_width
    // denotes that width of the scaled image, and
    // characterBitmaps[ch]->w the width of the orininal image, we
    // need to make sure that the following inequality holds:
    //
    // shrunk_width*shrinkFactor+srcXTrans >= characterBitmaps[ch]->w
    //
    // in other words,
    int shrunk_width  = (int)ceil( (characterBitmaps[ch]->w - srcXTrans)/shrinkFactor );
    
    // Now do the same for the y-coordinate
    g->y2 = (int)ceil(g->y/shrinkFactor);
    double srcYTrans = shrinkFactor * (g->y/shrinkFactor - ceil(g->y/shrinkFactor ));
    int shrunk_height = (int)ceil( (characterBitmaps[ch]->h - srcYTrans)/shrinkFactor );
    
    // Turn the image into 8 bit
    TQByteArray translated(characterBitmaps[ch]->w * characterBitmaps[ch]->h);
    TQ_UINT8 *data = (TQ_UINT8 *)translated.data();
    for(int x=0; x<characterBitmaps[ch]->w; x++)
      for(int y=0; y<characterBitmaps[ch]->h; y++) {
	TQ_UINT8 bit = *(characterBitmaps[ch]->bits + characterBitmaps[ch]->bytes_wide*y + (x >> 3));
	bit = bit >> (x & 7);
	bit = bit & 1;
	data[characterBitmaps[ch]->w*y + x] = bit;
      }
    
    // Now shrink the image. We shrink the X-direction first
    TQByteArray xshrunk(shrunk_width*characterBitmaps[ch]->h);
    TQ_UINT8 *xdata = (TQ_UINT8 *)xshrunk.data();
    
    // Do the shrinking. The pixel (x,y) that we want to calculate
    // corresponds to the line segment from 
    //
    // [shrinkFactor*x+srcXTrans, shrinkFactor*(x+1)+srcXTrans)
    //
    // The trouble is, these numbers are in general no integers.

    for(int y=0; y<characterBitmaps[ch]->h; y++)
      for(int x=0; x<shrunk_width; x++) {
	TQ_UINT32 value = 0;
	double destStartX = shrinkFactor*x+srcXTrans;
	double destEndX   = shrinkFactor*(x+1)+srcXTrans;
	for(int srcX=(int)ceil(destStartX); srcX<floor(destEndX); srcX++)
	  if ((srcX >= 0) && (srcX < characterBitmaps[ch]->w))
	    value += data[characterBitmaps[ch]->w*y + srcX] * 255;
	
	if (destStartX >= 0.0)
	  value += (TQ_UINT32) (255.0*(ceil(destStartX)-destStartX) * data[characterBitmaps[ch]->w*y + (int)floor(destStartX)]);
	if (floor(destEndX) < characterBitmaps[ch]->w)
	  value += (TQ_UINT32) (255.0*(destEndX-floor(destEndX)) * data[characterBitmaps[ch]->w*y + (int)floor(destEndX)]);
	
	xdata[shrunk_width*y + x] = (int)(value/shrinkFactor + 0.5);
      }
    
    // Now shrink the Y-direction
    TQByteArray xyshrunk(shrunk_width*shrunk_height);
    TQ_UINT8 *xydata = (TQ_UINT8 *)xyshrunk.data();
    for(int x=0; x<shrunk_width; x++)
      for(int y=0; y<shrunk_height; y++) {
	TQ_UINT32 value = 0;
	double destStartY = shrinkFactor*y+srcYTrans;
	double destEndY   = shrinkFactor*(y+1)+srcYTrans;
	for(int srcY=(int)ceil(destStartY); srcY<floor(destEndY); srcY++)
	  if ((srcY >= 0) && (srcY < characterBitmaps[ch]->h))
	    value += xdata[shrunk_width*srcY + x];
	
	if (destStartY >= 0.0)
	  value += (TQ_UINT32) ((ceil(destStartY)-destStartY) * xdata[shrunk_width*(int)floor(destStartY) + x]);
	if (floor(destEndY) < characterBitmaps[ch]->h)
	  value += (TQ_UINT32) ((destEndY-floor(destEndY)) * xdata[shrunk_width*(int)floor(destEndY) + x]);
	
	xydata[shrunk_width*y + x] = (int)(value/shrinkFactor);
      }
    
    TQImage im32(shrunk_width, shrunk_height, 32);
    im32.setAlphaBuffer(true);
    // Do TQPixmaps fully support the alpha channel? If yes, we use
    // that. Otherwise, use other routines as a fallback
    if (parent->font_pool->TQPixmapSupportsAlpha) {
      // If the alpha channel is properly supported, we set the
      // character glyph to a colored rectangle, and define the
      // character outline only using the alpha channel. That ensures
      // good quality rendering for overlapping characters.
      im32.fill(tqRgb(color.red(), color.green(), color.blue()));
      for(TQ_UINT16 y=0; y<shrunk_height; y++) {
	TQ_UINT8 *destScanLine = (TQ_UINT8 *)im32.scanLine(y);
	for(TQ_UINT16 col=0; col<shrunk_width; col++) 
	  destScanLine[4*col+3] = xydata[shrunk_width*y + col];
      }
    } else {
      // If the alpha channel is not supported... QT seems to turn the
      // alpha channel into a crude bitmap which is used to mask the
      // resulting TQPixmap. In this case, we define the character
      // outline using the image data, and use the alpha channel only
      // to store "maximally opaque" or "completely transparent"
      // values. When characters are rendered, overlapping characters
      // are no longer correctly drawn, but quality is still
      // sufficient for most purposes. One notable exception is output
      // from the gftodvi program, which will be partially unreadable.
      TQ_UINT16 rInv = 0xFF - color.red();
      TQ_UINT16 gInv = 0xFF - color.green();
      TQ_UINT16 bInv = 0xFF - color.blue();
      
      TQ_UINT8 *srcScanLine = xydata;
      for(TQ_UINT16 y=0; y<shrunk_height; y++) {
	unsigned int *destScanLine = (unsigned int *)im32.scanLine(y);
	for(TQ_UINT16 col=0; col<shrunk_width; col++) {
	  TQ_UINT16 data =  *srcScanLine;
	  // The value stored in "data" now has the following meaning:
	  // data = 0 -> white; data = 0xff -> use "color"
	  *destScanLine = tqRgba(0xFF - (rInv*data + 0x7F) / 0xFF,
				0xFF - (gInv*data + 0x7F) / 0xFF,
				0xFF - (bInv*data + 0x7F) / 0xFF,
				(data > 0x03) ? 0xff : 0x00);
	  destScanLine++;
	  srcScanLine++;
	}
      }
    }
    
    g->shrunkenCharacter.convertFromImage(im32,0);
    g->shrunkenCharacter.setOptimization(TQPixmap::BestOptim);
  }
  return g;
}



#define	ADD(a, b)	((TQ_UINT32 *) (((char *) a) + b))
#define	SUB(a, b)	((TQ_UINT32 *) (((char *) a) - b))



// This table is used for changing the bit order in a byte. The
// expression bitflp[byte] takes a byte in big endian and gives the
// little endian equivalent of that.
static const uchar bitflip[256] = {
  0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
  8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
  4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
  12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
  2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
  10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
  6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
  14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
  1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
  9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
  5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
  13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
  3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
  11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
  7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
  15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
};                                                                              

static TQ_UINT32	bit_masks[33] = {
	0x0,		0x1,		0x3,		0x7,
	0xf,		0x1f,		0x3f,		0x7f,
	0xff,		0x1ff,		0x3ff,		0x7ff,
	0xfff,		0x1fff,		0x3fff,		0x7fff,
	0xffff,		0x1ffff,	0x3ffff,	0x7ffff,
	0xfffff,	0x1fffff,	0x3fffff,	0x7fffff,
	0xffffff,	0x1ffffff,	0x3ffffff,	0x7ffffff,
	0xfffffff,	0x1fffffff,	0x3fffffff,	0x7fffffff,
	0xffffffff
};


#define PK_ID      89
#define PK_CMD_START 240
#define PK_X1     240
#define PK_X2     241
#define PK_X3     242
#define PK_X4     243
#define PK_Y      244
#define PK_POST   245
#define PK_NOOP   246
#define PK_PRE    247


int TeXFont_PK::PK_get_nyb(FILE *fp)
{
#ifdef DEBUG_PK
  kdDebug(4300) << "PK_get_nyb" << endl;
#endif

  unsigned temp;
  if (PK_bitpos < 0) {
    PK_input_byte = one(fp);
    PK_bitpos = 4;
  }
  temp = PK_input_byte >> PK_bitpos;
  PK_bitpos -= 4;
  return (temp & 0xf);
}


int TeXFont_PK::PK_packed_num(FILE *fp)
{
#ifdef DEBUG_PK
  kdDebug(4300) << "PK_packed_num" << endl;
#endif

  int	i,j;

  if ((i = PK_get_nyb(fp)) == 0) {
    do {
      j = PK_get_nyb(fp);
      ++i;
    }
    while (j == 0);
    while (i > 0) {
      j = (j << 4) | PK_get_nyb(fp);
      --i;
    }
    return (j - 15 + ((13 - PK_dyn_f) << 4) + PK_dyn_f);
  }
  else {
    if (i <= PK_dyn_f) return i;
    if (i < 14)
      return (((i - PK_dyn_f - 1) << 4) + PK_get_nyb(fp)
	      + PK_dyn_f + 1);
    if (i == 14) PK_repeat_count = PK_packed_num(fp);
    else PK_repeat_count = 1;
    return PK_packed_num(fp);
  }
}


void TeXFont_PK::PK_skip_specials()
{
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::PK_skip_specials() called" << endl;
#endif
  
  int i,j;
  register FILE *fp = file;
  
#ifdef DEBUG_PK
  if (fp == 0)
    kdDebug(4300) << "TeXFont_PK::PK_skip_specials(): file == 0" << endl;
#endif
  
  do {
    PK_flag_byte = one(fp);
    if (PK_flag_byte >= PK_CMD_START) {
      switch (PK_flag_byte) {
      case PK_X1 :
      case PK_X2 :
      case PK_X3 :
      case PK_X4 :
	i = 0;
	for (j = PK_CMD_START; j <= PK_flag_byte; ++j)
	  i = (i << 8) | one(fp);
	while (i--) (void) one(fp);
	break;
      case PK_Y :
	(void) four(fp);
      case PK_POST :
      case PK_NOOP :
	break;
      default :
	oops(i18n("Unexpected %1 in PK file %2").arg(PK_flag_byte).arg(parent->filename) );
	break;
      }
    }
  }
  while (PK_flag_byte != PK_POST && PK_flag_byte >= PK_CMD_START);
  
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::PK_skip_specials() ended" << endl;
#endif
}


void TeXFont_PK::read_PK_char(unsigned int ch)
{
#ifdef DEBUG_PK
  kdDebug(4300) << "read_PK_char" << endl;
#endif
  
  int	i, j;
  int	n;
  int	row_bit_pos;
  bool	paint_switch;
  TQ_UINT32	*cp;
  register struct glyph *g;
  register FILE *fp = file;
  long	fpwidth;
  TQ_UINT32	word = 0;
  int	word_weight, bytes_wide;
  int	rows_left, h_bit, count;
  
  g = glyphtable + ch;
  PK_flag_byte = g->x2;
  PK_dyn_f = PK_flag_byte >> 4;
  paint_switch = ((PK_flag_byte & 8) != 0);
  PK_flag_byte &= 0x7;
  if (PK_flag_byte == 7)
    n = 4;
  else 
    if (PK_flag_byte > 3)
      n = 2;
    else
      n = 1;
  
#ifdef DEBUG_PK
  kdDebug(4300) << "loading pk char " << ch << ", char type " << n << endl;
#endif

  if (characterBitmaps[ch] == 0)
    characterBitmaps[ch] = new bitmap();
  
  /*
   * now read rest of character preamble
   */
  if (n != 4)
    fpwidth = num(fp, 3);
  else {
    fpwidth = sfour(fp);
    (void) four(fp);	/* horizontal escapement */
  }
  (void) num(fp, n);	/* vertical escapement */
  {
    unsigned long w, h;
    
    w = num(fp, n);
    h = num(fp, n);
    if (w > 0x7fff || h > 0x7fff)
      oops(i18n("The character %1 is too large in file %2").arg(ch).arg(parent->filename));
    characterBitmaps[ch]->w = w;
    characterBitmaps[ch]->h = h;
  }
  g->x = snum(fp, n);
  g->y = snum(fp, n);
  
  g->dvi_advance_in_units_of_design_size_by_2e20 = fpwidth;
  
  {
    /* width must be multiple of 16 bits for raster_op */
    characterBitmaps[ch]->bytes_wide = ROUNDUP((int) characterBitmaps[ch]->w, 32) * 4;
    register unsigned int size = characterBitmaps[ch]->bytes_wide * characterBitmaps[ch]->h;
    characterBitmaps[ch]->bits = new char[size != 0 ? size : 1];
  }
  
  cp = (TQ_UINT32 *) characterBitmaps[ch]->bits;
  
  /*
   * read character data into *cp
   */
  bytes_wide = ROUNDUP((int) characterBitmaps[ch]->w, 32) * 4;
  PK_bitpos = -1;
  
  // The routines which read the character depend on the bit
  // ordering. In principle, the bit order should be detected at
  // compile time and the proper routing chosen. For the moment, as
  // autoconf is somewhat complicated for the author, we prefer a
  // simpler -even if somewhat slower approach and detect the ordering
  // at runtime. That should of course be changed in the future.
  
  int wordSize;
  bool bigEndian;
  tqSysInfo (&wordSize, &bigEndian);
  
  if (bigEndian) { 
    // Routine for big Endian machines. Applies e.g. to Motorola and
    // (Ultra-)Sparc processors.
    
#ifdef DEBUG_PK
    kdDebug(4300) << "big Endian byte ordering" << endl;
#endif
    
    if (PK_dyn_f == 14) {	/* get raster by bits */
      memset(characterBitmaps[ch]->bits, 0, (int) characterBitmaps[ch]->h * bytes_wide);
      for (i = 0; i < (int) characterBitmaps[ch]->h; i++) {	/* get all rows */
	cp = ADD(characterBitmaps[ch]->bits, i * bytes_wide);
	row_bit_pos = 32;
	for (j = 0; j < (int) characterBitmaps[ch]->w; j++) {    /* get one row */
	  if (--PK_bitpos < 0) {
	    word = one(fp);
	    PK_bitpos = 7;
	  }
	  if (--row_bit_pos < 0) {
	    cp++;
	    row_bit_pos = 32 - 1;
	  }
	  if (word & (1 << PK_bitpos)) 
	    *cp |= 1 << row_bit_pos;
	}
      }
    } else {		/* get packed raster */
      rows_left = characterBitmaps[ch]->h;
      h_bit = characterBitmaps[ch]->w;
      PK_repeat_count = 0;
      word_weight = 32;
      word = 0;
      while (rows_left > 0) {
	count = PK_packed_num(fp);
	while (count > 0) {
	  if (count < word_weight && count < h_bit) {
	    h_bit -= count;
	    word_weight -= count;
	    if (paint_switch)
	      word |= bit_masks[count] << word_weight;
	    count = 0;
	  } else 
	    if (count >= h_bit && h_bit <= word_weight) {
	      if (paint_switch)
		word |= bit_masks[h_bit] << (word_weight - h_bit);
	      *cp++ = word;
	      /* "output" row(s) */
	      for (i = PK_repeat_count * bytes_wide / 4; i > 0; --i) {
		*cp = *SUB(cp, bytes_wide);
		++cp;
	      }
	      rows_left -= PK_repeat_count + 1;
	      PK_repeat_count = 0;
	      word = 0;
	      word_weight = 32;
	      count -= h_bit;
	      h_bit = characterBitmaps[ch]->w;
	    } else {
	      if (paint_switch)
		word |= bit_masks[word_weight];
	      *cp++ = word;
	      word = 0;
	      count -= word_weight;
	      h_bit -= word_weight;
	      word_weight = 32;
	    }
	}
	paint_switch = 1 - paint_switch;
      }
      if (cp != ((TQ_UINT32 *) (characterBitmaps[ch]->bits + bytes_wide * characterBitmaps[ch]->h)))
	oops(i18n("Wrong number of bits stored:  char. %1, font %2").arg(ch).arg(parent->filename));
      if (rows_left != 0 || h_bit != characterBitmaps[ch]->w)
	oops(i18n("Bad pk file (%1), too many bits").arg(parent->filename));
    }
    
    // The data in the bitmap is now in the processor's bit order,
    // that is, big endian. Since XWindows needs little endian, we
    // need to change the bit order now.
    register unsigned char* bitmapData = (unsigned char*) characterBitmaps[ch]->bits;
    register unsigned char* endOfData  = bitmapData + characterBitmaps[ch]->bytes_wide*characterBitmaps[ch]->h;
    while(bitmapData < endOfData) {
      *bitmapData = bitflip[*bitmapData];
      bitmapData++;
    }
    
  } else {
    
    // Routines for small Endian start here. This applies e.g. to
    // Intel and Alpha processors.

#ifdef DEBUG_PK
    kdDebug(4300) << "small Endian byte ordering" << endl;
#endif

    if (PK_dyn_f == 14) {	/* get raster by bits */
      memset(characterBitmaps[ch]->bits, 0, (int) characterBitmaps[ch]->h * bytes_wide);
      for (i = 0; i < (int) characterBitmaps[ch]->h; i++) {	/* get all rows */
	cp = ADD(characterBitmaps[ch]->bits, i * bytes_wide);
	row_bit_pos = -1;
	for (j = 0; j < (int) characterBitmaps[ch]->w; j++) {    /* get one row */
	  if (--PK_bitpos < 0) {
	    word = one(fp);
	    PK_bitpos = 7;
	  }
	  if (++row_bit_pos >= 32) {
	    cp++;
	    row_bit_pos = 0;
	  }
	  if (word & (1 << PK_bitpos)) 
	    *cp |= 1 << row_bit_pos;
	}
      }
    } else {		/* get packed raster */
      rows_left = characterBitmaps[ch]->h;
      h_bit = characterBitmaps[ch]->w;
      PK_repeat_count = 0;
      word_weight = 32;
      word = 0;
      while (rows_left > 0) {
	count = PK_packed_num(fp);
	while (count > 0) {
	  if (count < word_weight && count < h_bit) {
	    if (paint_switch)
	      word |= bit_masks[count] << (32 - word_weight);
	    h_bit -= count;
	    word_weight -= count;
	    count = 0;
	  } else 
	    if (count >= h_bit && h_bit <= word_weight) {
	      if (paint_switch)
		word |= bit_masks[h_bit] << (32 - word_weight);
	      *cp++ = word;
	      /* "output" row(s) */
	      for (i = PK_repeat_count * bytes_wide / 4; i > 0; --i) {
		*cp = *SUB(cp, bytes_wide);
		++cp;
	      }
	      rows_left -= PK_repeat_count + 1;
	      PK_repeat_count = 0;
	      word = 0;
	      word_weight = 32;
	      count -= h_bit;
	      h_bit = characterBitmaps[ch]->w;
	    } else {
	      if (paint_switch)
		word |= bit_masks[word_weight] << (32 - word_weight);
	      *cp++ = word;
	      word = 0;
	      count -= word_weight;
	      h_bit -= word_weight;
	      word_weight = 32;
	    }
	}
	paint_switch = 1 - paint_switch;
      }
      if (cp != ((TQ_UINT32 *) (characterBitmaps[ch]->bits + bytes_wide * characterBitmaps[ch]->h)))
	oops(i18n("Wrong number of bits stored:  char. %1, font %2").arg(ch).arg(parent->filename));
      if (rows_left != 0 || h_bit != characterBitmaps[ch]->w)
	oops(i18n("Bad pk file (%1), too many bits").arg(parent->filename));
    }
  } // endif: big or small Endian?
}


void TeXFont_PK::read_PK_index()
{
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::read_PK_index() called" << endl;
#endif

  if (file == 0) {
    kdError(4300) << "TeXFont_PK::read_PK_index(): file == 0" << endl;
    return;
  }

  int magic      = two(file);
  if (magic != PK_MAGIC) {
    kdError(4300) << "TeXFont_PK::read_PK_index(): file is not a PK file" << endl;
    return;
  }

  fseek(file, (long) one(file), SEEK_CUR);      /* skip comment */
  (void) four(file);		/* skip design size */

  checksum = four(file);

  int hppp = sfour(file);
  int vppp = sfour(file);
  if (hppp != vppp)
    kdWarning(4300) << i18n("Font has non-square aspect ratio ") << vppp << ":" << hppp << endl;

  // Read glyph directory (really a whole pass over the file).
  for (;;) {
    int bytes_left, flag_low_bits;
    unsigned int ch;
    
    PK_skip_specials();
    if (PK_flag_byte == PK_POST)
      break;
    flag_low_bits = PK_flag_byte & 0x7;
    if (flag_low_bits == 7) {
      bytes_left = four(file);
      ch = four(file);
    } else 
      if (flag_low_bits > 3) {
	bytes_left = ((flag_low_bits - 4) << 16) + two(file);
	ch = one(file);
      } else {
	bytes_left = (flag_low_bits << 8) + one(file);
	ch = one(file);
      }

    glyphtable[ch].addr = ftell(file);
    glyphtable[ch].x2 = PK_flag_byte;
    fseek(file, (long) bytes_left, SEEK_CUR);
#ifdef DEBUG_PK
    kdDebug(4300) << "Scanning pk char " << ch << "at " << glyphtable[ch].addr << endl;
#endif
  }
#ifdef DEBUG_PK
  kdDebug(4300) << "TeXFont_PK::read_PK_index() called" << endl;
#endif
}