1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances. This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite_vm*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement. VDBE programs are
** similar in form to assembly language. The program consists of
** a linear sequence of operations. Each operation has an opcode
** and 3 operands. Operands P1 and P2 are integers. Operand P3
** is a null-terminated string. The P2 operand must be non-negative.
** Opcodes will typically ignore one or more operands. Many opcodes
** ignore all three operands.
**
** Computation results are stored on a stack. Each entry on the
** stack is either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value. An inplicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqliteVdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.268 2004/03/03 01:51:25 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_MoveTo or the OP_Next opcode. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
int sqlite_search_count = 0;
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
** of the db.flags field is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only. It does not function
** in an ordinary build.
*/
int sqlite_interrupt_count = 0;
/*
** Advance the virtual machine to the next output row.
**
** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
**
** SQLITE_BUSY means that the virtual machine attempted to open
** a locked database and there is no busy callback registered.
** Call sqlite_step() again to retry the open. *pN is set to 0
** and *pazColName and *pazValue are both set to NULL.
**
** SQLITE_DONE means that the virtual machine has finished
** executing. sqlite_step() should not be called again on this
** virtual machine. *pN and *pazColName are set appropriately
** but *pazValue is set to NULL.
**
** SQLITE_ROW means that the virtual machine has generated another
** row of the result set. *pN is set to the number of columns in
** the row. *pazColName is set to the names of the columns followed
** by the column datatypes. *pazValue is set to the values of each
** column in the row. The value of the i-th column is (*pazValue)[i].
** The name of the i-th column is (*pazColName)[i] and the datatype
** of the i-th column is (*pazColName)[i+*pN].
**
** SQLITE_ERROR means that a run-time error (such as a constraint
** violation) has occurred. The details of the error will be returned
** by the next call to sqlite_finalize(). sqlite_step() should not
** be called again on the VM.
**
** SQLITE_MISUSE means that the this routine was called inappropriately.
** Perhaps it was called on a virtual machine that had already been
** finalized or on one that had previously returned SQLITE_ERROR or
** SQLITE_DONE. Or it could be the case the the same database connection
** is being used simulataneously by two or more threads.
*/
int sqlite_step(
sqlite_vm *pVm, /* The virtual machine to execute */
int *pN, /* OUT: Number of columns in result */
const char ***pazValue, /* OUT: Column data */
const char ***pazColName /* OUT: Column names and datatypes */
){
Vdbe *p = (Vdbe*)pVm;
sqlite *db;
int rc;
if( p->magic!=VDBE_MAGIC_RUN ){
return SQLITE_MISUSE;
}
db = p->db;
if( sqliteSafetyOn(db) ){
p->rc = SQLITE_MISUSE;
return SQLITE_MISUSE;
}
if( p->explain ){
rc = sqliteVdbeList(p);
}else{
rc = sqliteVdbeExec(p);
}
if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
if( pazColName ) *pazColName = (const char**)p->azColName;
if( pN ) *pN = p->nResColumn;
}else{
if( pazColName) *pazColName = 0;
if( pN ) *pN = 0;
}
if( pazValue ){
if( rc==SQLITE_ROW ){
*pazValue = (const char**)p->azResColumn;
}else{
*pazValue = 0;
}
}
if( sqliteSafetyOff(db) ){
return SQLITE_MISUSE;
}
return rc;
}
/*
** Insert a new aggregate element and make it the element that
** has focus.
**
** Return 0 on success and 1 if memory is exhausted.
*/
static int AggInsert(Agg *p, char *zKey, int nKey){
AggElem *pElem, *pOld;
int i;
Mem *pMem;
pElem = sqliteMalloc( sizeof(AggElem) + nKey +
(p->nMem-1)*sizeof(pElem->aMem[0]) );
if( pElem==0 ) return 1;
pElem->zKey = (char*)&pElem->aMem[p->nMem];
memcpy(pElem->zKey, zKey, nKey);
pElem->nKey = nKey;
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
if( pOld!=0 ){
assert( pOld==pElem ); /* Malloc failed on insert */
sqliteFree(pOld);
return 0;
}
for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
pMem->flags = MEM_Null;
}
p->pCurrent = pElem;
return 0;
}
/*
** Get the AggElem currently in focus
*/
#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
static AggElem *_AggInFocus(Agg *p){
HashElem *pElem = sqliteHashFirst(&p->hash);
if( pElem==0 ){
AggInsert(p,"",1);
pElem = sqliteHashFirst(&p->hash);
}
return pElem ? sqliteHashData(pElem) : 0;
}
/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
static int hardStringify(Mem *pStack){
int fg = pStack->flags;
if( fg & MEM_Real ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
}else if( fg & MEM_Int ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
}else{
pStack->zShort[0] = 0;
}
pStack->z = pStack->zShort;
pStack->n = strlen(pStack->zShort)+1;
pStack->flags = MEM_Str | MEM_Short;
return 0;
}
/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc(). This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
static int hardDynamicify(Mem *pStack){
int fg = pStack->flags;
char *z;
if( (fg & MEM_Str)==0 ){
hardStringify(pStack);
}
assert( (fg & MEM_Dyn)==0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, pStack->z, pStack->n);
pStack->z = z;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls. In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
static int hardDeephem(Mem *pStack){
char *z;
assert( (pStack->flags & MEM_Ephem)!=0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, pStack->z, pStack->n);
pStack->z = z;
pStack->flags &= ~MEM_Ephem;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** Release the memory associated with the given stack level. This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
Mem *pTos = *ppTos;
while( N>0 ){
N--;
Release(pTos);
pTos--;
}
*ppTos = pTos;
}
/*
** Return TRUE if zNum is a 32-bit signed integer and write
** the value of the integer into *pNum. If zNum is not an integer
** or is an integer that is too large to be expressed with just 32
** bits, then return false.
**
** Under Linux (RedHat 7.2) this routine is much faster than atoi()
** for converting strings into integers.
*/
static int toInt(const char *zNum, int *pNum){
int v = 0;
int neg;
int i, c;
if( *zNum=='-' ){
neg = 1;
zNum++;
}else if( *zNum=='+' ){
neg = 0;
zNum++;
}else{
neg = 0;
}
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
v = v*10 + c - '0';
}
*pNum = neg ? -v : v;
return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
}
/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.
** NULLs are converted into 0.
*/
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
static void hardIntegerify(Mem *pStack){
if( pStack->flags & MEM_Real ){
pStack->i = (int)pStack->r;
Release(pStack);
}else if( pStack->flags & MEM_Str ){
toInt(pStack->z, &pStack->i);
Release(pStack);
}else{
pStack->i = 0;
}
pStack->flags = MEM_Int;
}
/*
** Get a valid Real representation for the given stack element.
**
** Any prior string or integer representation is retained.
** NULLs are converted into 0.0.
*/
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
static void hardRealify(Mem *pStack){
if( pStack->flags & MEM_Str ){
pStack->r = sqliteAtoF(pStack->z, 0);
}else if( pStack->flags & MEM_Int ){
pStack->r = pStack->i;
}else{
pStack->r = 0.0;
}
pStack->flags |= MEM_Real;
}
/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures. Merge these two lists together and return
** a single sorted list. This routine forms the core of the merge-sort
** algorithm.
**
** In the case of a tie, left sorts in front of right.
*/
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
Sorter sHead;
Sorter *pTail;
pTail = &sHead;
pTail->pNext = 0;
while( pLeft && pRight ){
int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
if( c<=0 ){
pTail->pNext = pLeft;
pLeft = pLeft->pNext;
}else{
pTail->pNext = pRight;
pRight = pRight->pNext;
}
pTail = pTail->pNext;
}
if( pLeft ){
pTail->pNext = pLeft;
}else if( pRight ){
pTail->pNext = pRight;
}
return sHead.pNext;
}
/*
** The following routine works like a replacement for the standard
** library routine fgets(). The difference is in how end-of-line (EOL)
** is handled. Standard fgets() uses LF for EOL under unix, CRLF
** under windows, and CR under mac. This routine accepts any of these
** character sequences as an EOL mark. The EOL mark is replaced by
** a single LF character in zBuf.
*/
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
int i, c;
for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
zBuf[i] = c;
if( c=='\r' || c=='\n' ){
if( c=='\r' ){
zBuf[i] = '\n';
c = getc(in);
if( c!=EOF && c!='\n' ) ungetc(c, in);
}
i++;
break;
}
}
zBuf[i] = 0;
return i>0 ? zBuf : 0;
}
/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors. If there is not currently enough space, then
** allocate more.
**
** If a memory allocation error occurs, return 1. Return 0 if
** everything works.
*/
static int expandCursorArraySize(Vdbe *p, int mxCursor){
if( mxCursor>=p->nCursor ){
Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
if( aCsr==0 ) return 1;
p->aCsr = aCsr;
memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
p->nCursor = mxCursor+1;
}
return 0;
}
#ifdef VDBE_PROFILE
/*
** The following routine only works on pentium-class processors.
** It uses the RDTSC opcode to read cycle count value out of the
** processor and returns that value. This can be used for high-res
** profiling.
*/
__inline__ unsigned long long int hwtime(void){
unsigned long long int x;
__asm__("rdtsc\n\t"
"mov %%edx, %%ecx\n\t"
:"=A" (x));
return x;
}
#endif
/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite_interrupt() routine has been called. If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop. This test used to be on every single instruction,
** but that meant we more testing that we needed. By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
/*
** Execute as much of a VDBE program as we can then return.
**
** sqliteVdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately. There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqliteVdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
int sqliteVdbeExec(
Vdbe *p /* The VDBE */
){
int pc; /* The program counter */
Op *pOp; /* Current operation */
int rc = SQLITE_OK; /* Value to return */
sqlite *db = p->db; /* The database */
Mem *pTos; /* Top entry in the operand stack */
char zBuf[100]; /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
unsigned long long start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int nProgressOps = 0; /* Opcodes executed since progress callback. */
#endif
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
assert( db->magic==SQLITE_MAGIC_BUSY );
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
p->rc = SQLITE_OK;
assert( p->explain==0 );
if( sqlite_malloc_failed ) goto no_mem;
pTos = p->pTos;
if( p->popStack ){
popStack(&pTos, p->popStack);
p->popStack = 0;
}
CHECK_FOR_INTERRUPT;
for(pc=p->pc; rc==SQLITE_OK; pc++){
assert( pc>=0 && pc<p->nOp );
assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
origPc = pc;
start = hwtime();
#endif
pOp = &p->aOp[pc];
/* Only allow tracing if NDEBUG is not defined.
*/
#ifndef NDEBUG
if( p->trace ){
sqliteVdbePrintOp(p->trace, pc, pOp);
}
#endif
/* Check to see if we need to simulate an interrupt. This only happens
** if we have a special test build.
*/
#ifdef SQLITE_TEST
if( sqlite_interrupt_count>0 ){
sqlite_interrupt_count--;
if( sqlite_interrupt_count==0 ){
sqlite_interrupt(db);
}
}
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqliteVdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
if( db->xProgress ){
if( db->nProgressOps==nProgressOps ){
if( db->xProgress(db->pProgressArg)!=0 ){
rc = SQLITE_ABORT;
continue; /* skip to the next iteration of the for loop */
}
nProgressOps = 0;
}
nProgressOps++;
}
#endif
switch( pOp->opcode ){
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine. If we follow the usual
** indentation conventions, each case should be indented by 6 spaces. But
** that is a lot of wasted space on the left margin. So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important. The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_". The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
** Formatting is important to scripts that scan this file.
** Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode: Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {
CHECK_FOR_INTERRUPT;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth. If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {
if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
p->rc = SQLITE_INTERNAL;
return SQLITE_ERROR;
}
p->returnStack[p->returnDepth++] = pc+1;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {
if( p->returnDepth<=0 ){
sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
p->rc = SQLITE_INTERNAL;
return SQLITE_ERROR;
}
p->returnDepth--;
pc = p->returnStack[p->returnDepth] - 1;
break;
}
/* Opcode: Halt P1 P2 *
**
** Exit immediately. All open cursors, Lists, Sorts, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite_exec(). For a normal
** halt, this should be SQLITE_OK (0). For errors, it can be some
** other value. If P1!=0 then P2 will determine whether or not to
** rollback the current transaction. Do not rollback if P2==OE_Fail.
** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
** out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
p->magic = VDBE_MAGIC_HALT;
p->pTos = pTos;
if( pOp->p1!=SQLITE_OK ){
p->rc = pOp->p1;
p->errorAction = pOp->p2;
if( pOp->p3 ){
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
}
return SQLITE_ERROR;
}else{
p->rc = SQLITE_OK;
return SQLITE_DONE;
}
}
/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack. If P3 is not zero
** then it is assumed to be a string representation of the same integer.
*/
case OP_Integer: {
pTos++;
pTos->i = pOp->p1;
pTos->flags = MEM_Int;
if( pOp->p3 ){
pTos->z = pOp->p3;
pTos->flags |= MEM_Str | MEM_Static;
pTos->n = strlen(pOp->p3)+1;
}
break;
}
/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack. If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
char *z = pOp->p3;
pTos++;
if( z==0 ){
pTos->flags = MEM_Null;
}else{
pTos->z = z;
pTos->n = strlen(z) + 1;
pTos->flags = MEM_Str | MEM_Static;
}
break;
}
/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack. A variable is
** an unknown in the original SQL string as handed to sqlite_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable. Variables in the SQL string are number from left to
** right beginning with 1. The values of variables are set using the
** sqlite_bind() API.
*/
case OP_Variable: {
int j = pOp->p1 - 1;
pTos++;
if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
pTos->z = p->azVar[j];
pTos->n = p->anVar[j];
pTos->flags = MEM_Str | MEM_Static;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
assert( pOp->p1>=0 );
popStack(&pTos, pOp->p1);
assert( pTos>=&p->aStack[-1] );
break;
}
/* Opcode: Dup P1 P2 *
**
** A copy of the P1-th element of the stack
** is made and pushed onto the top of the stack.
** The top of the stack is element 0. So the
** instruction "Dup 0 0 0" will make a copy of the
** top of the stack.
**
** If the content of the P1-th element is a dynamically
** allocated string, then a new copy of that string
** is made if P2==0. If P2!=0, then just a pointer
** to the string is copied.
**
** Also see the Pull instruction.
*/
case OP_Dup: {
Mem *pFrom = &pTos[-pOp->p1];
assert( pFrom<=pTos && pFrom>=p->aStack );
pTos++;
memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
if( pTos->flags & MEM_Str ){
if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
pTos->flags &= ~MEM_Dyn;
pTos->flags |= MEM_Ephem;
}else if( pTos->flags & MEM_Short ){
memcpy(pTos->zShort, pFrom->zShort, pTos->n);
pTos->z = pTos->zShort;
}else if( (pTos->flags & MEM_Static)==0 ){
pTos->z = sqliteMallocRaw(pFrom->n);
if( sqlite_malloc_failed ) goto no_mem;
memcpy(pTos->z, pFrom->z, pFrom->n);
pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
pTos->flags |= MEM_Dyn;
}
}
break;
}
/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on
** the stack and pushed back on top of the stack. The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op. "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
Mem *pFrom = &pTos[-pOp->p1];
int i;
Mem ts;
ts = *pFrom;
Deephemeralize(pTos);
for(i=0; i<pOp->p1; i++, pFrom++){
Deephemeralize(&pFrom[1]);
*pFrom = pFrom[1];
assert( (pFrom->flags & MEM_Ephem)==0 );
if( pFrom->flags & MEM_Short ){
assert( pFrom->flags & MEM_Str );
assert( pFrom->z==pFrom[1].zShort );
pFrom->z = pFrom->zShort;
}
}
*pTos = ts;
if( pTos->flags & MEM_Short ){
assert( pTos->flags & MEM_Str );
assert( pTos->z==pTos[-pOp->p1].zShort );
pTos->z = pTos->zShort;
}
break;
}
/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack. Then pop the top of the stack.
*/
case OP_Push: {
Mem *pTo = &pTos[-pOp->p1];
assert( pTo>=p->aStack );
Deephemeralize(pTos);
Release(pTo);
*pTo = *pTos;
if( pTo->flags & MEM_Short ){
assert( pTo->z==pTos->zShort );
pTo->z = pTo->zShort;
}
pTos--;
break;
}
/* Opcode: ColumnName P1 P2 P3
**
** P3 becomes the P1-th column name (first is 0). An array of pointers
** to all column names is passed as the 4th parameter to the callback.
** If P2==1 then this is the last column in the result set and thus the
** number of columns in the result set will be P1. There must be at least
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
** number of columns specified in OP_Callback must one more than the P1
** value of the OP_ColumnName that has P2==1.
*/
case OP_ColumnName: {
assert( pOp->p1>=0 && pOp->p1<p->nOp );
p->azColName[pOp->p1] = pOp->p3;
p->nCallback = 0;
if( pOp->p2 ) p->nResColumn = pOp->p1+1;
break;
}
/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array. Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {
int i;
char **azArgv = p->zArgv;
Mem *pCol;
pCol = &pTos[1-pOp->p1];
assert( pCol>=p->aStack );
for(i=0; i<pOp->p1; i++, pCol++){
if( pCol->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pCol);
azArgv[i] = pCol->z;
}
}
azArgv[i] = 0;
p->nCallback++;
p->azResColumn = azArgv;
assert( p->nResColumn==pOp->p1 );
p->popStack = pOp->p1;
p->pc = pc + 1;
p->pTos = pTos;
return SQLITE_ROW;
}
/* Opcode: Concat P1 P2 P3
**
** Look at the first P1 elements of the stack. Append them all
** together with the lowest element first. Use P3 as a separator.
** Put the result on the top of the stack. The original P1 elements
** are popped from the stack if P2==0 and retained if P2==1. If
** any element of the stack is NULL, then the result is NULL.
**
** If P3 is NULL, then use no separator. When P1==1, this routine
** makes a copy of the top stack element into memory obtained
** from sqliteMalloc().
*/
case OP_Concat: {
char *zNew;
int nByte;
int nField;
int i, j;
char *zSep;
int nSep;
Mem *pTerm;
nField = pOp->p1;
zSep = pOp->p3;
if( zSep==0 ) zSep = "";
nSep = strlen(zSep);
assert( &pTos[1-nField] >= p->aStack );
nByte = 1 - nSep;
pTerm = &pTos[1-nField];
for(i=0; i<nField; i++, pTerm++){
if( pTerm->flags & MEM_Null ){
nByte = -1;
break;
}else{
Stringify(pTerm);
nByte += pTerm->n - 1 + nSep;
}
}
if( nByte<0 ){
if( pOp->p2==0 ){
popStack(&pTos, nField);
}
pTos++;
pTos->flags = MEM_Null;
break;
}
zNew = sqliteMallocRaw( nByte );
if( zNew==0 ) goto no_mem;
j = 0;
pTerm = &pTos[1-nField];
for(i=j=0; i<nField; i++, pTerm++){
assert( pTerm->flags & MEM_Str );
memcpy(&zNew[j], pTerm->z, pTerm->n-1);
j += pTerm->n-1;
if( nSep>0 && i<nField-1 ){
memcpy(&zNew[j], zSep, nSep);
j += nSep;
}
}
zNew[j] = 0;
if( pOp->p2==0 ){
popStack(&pTos, nField);
}
pTos++;
pTos->n = nByte;
pTos->flags = MEM_Str|MEM_Dyn;
pTos->z = zNew;
break;
}
/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the addition.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Multiply * * *
**
** Pop the top two elements from the stack, multiply them together,
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the multiplication.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Subtract * * *
**
** Pop the top two elements from the stack, subtract the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the subtraction.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Divide * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Remainder * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:
case OP_Subtract:
case OP_Multiply:
case OP_Divide:
case OP_Remainder: {
Mem *pNos = &pTos[-1];
assert( pNos>=p->aStack );
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
Release(pTos);
pTos--;
Release(pTos);
pTos->flags = MEM_Null;
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
int a, b;
a = pTos->i;
b = pNos->i;
switch( pOp->opcode ){
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
case OP_Divide: {
if( a==0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
if( a==0 ) goto divide_by_zero;
b %= a;
break;
}
}
Release(pTos);
pTos--;
Release(pTos);
pTos->i = b;
pTos->flags = MEM_Int;
}else{
double a, b;
Realify(pTos);
Realify(pNos);
a = pTos->r;
b = pNos->r;
switch( pOp->opcode ){
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
case OP_Divide: {
if( a==0.0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
int ia = (int)a;
int ib = (int)b;
if( ia==0.0 ) goto divide_by_zero;
b = ib % ia;
break;
}
}
Release(pTos);
pTos--;
Release(pTos);
pTos->r = b;
pTos->flags = MEM_Real;
}
break;
divide_by_zero:
Release(pTos);
pTos--;
Release(pTos);
pTos->flags = MEM_Null;
break;
}
/* Opcode: Function P1 * P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 string arguments taken from the stack.
** Pop all arguments from the stack and push back the result.
**
** See also: AggFunc
*/
case OP_Function: {
int n, i;
Mem *pArg;
char **azArgv;
sqlite_func ctx;
n = pOp->p1;
pArg = &pTos[1-n];
azArgv = p->zArgv;
for(i=0; i<n; i++, pArg++){
if( pArg->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pArg);
azArgv[i] = pArg->z;
}
}
ctx.pFunc = (FuncDef*)pOp->p3;
ctx.s.flags = MEM_Null;
ctx.s.z = 0;
ctx.isError = 0;
ctx.isStep = 0;
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
popStack(&pTos, n);
pTos++;
*pTos = ctx.s;
if( pTos->flags & MEM_Short ){
pTos->z = pTos->zShort;
}
if( ctx.isError ){
sqliteSetString(&p->zErrMsg,
(pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise AND of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: BitOr * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise OR of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** left by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** right by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
Mem *pNos = &pTos[-1];
int a, b;
assert( pNos>=p->aStack );
if( (pTos->flags | pNos->flags) & MEM_Null ){
popStack(&pTos, 2);
pTos++;
pTos->flags = MEM_Null;
break;
}
Integerify(pTos);
Integerify(pNos);
a = pTos->i;
b = pNos->i;
switch( pOp->opcode ){
case OP_BitAnd: a &= b; break;
case OP_BitOr: a |= b; break;
case OP_ShiftLeft: a <<= b; break;
case OP_ShiftRight: a >>= b; break;
default: /* CANT HAPPEN */ break;
}
assert( (pTos->flags & MEM_Dyn)==0 );
assert( (pNos->flags & MEM_Dyn)==0 );
pTos--;
Release(pTos);
pTos->i = a;
pTos->flags = MEM_Int;
break;
}
/* Opcode: AddImm P1 * *
**
** Add the value P1 to whatever is on top of the stack. The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {
assert( pTos>=p->aStack );
Integerify(pTos);
pTos->i += pOp->p1;
break;
}
/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer. If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2. If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
int v;
assert( pTos>=p->aStack );
if( (pTos->flags & (MEM_Int|MEM_Real))==0
&& ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
Release(pTos);
pTos--;
pc = pOp->p2 - 1;
break;
}
if( pTos->flags & MEM_Int ){
v = pTos->i + (pOp->p1!=0);
}else{
Realify(pTos);
v = (int)pTos->r;
if( pTos->r>(double)v ) v++;
if( pOp->p1 && pTos->r==(double)v ) v++;
}
Release(pTos);
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: MustBeInt P1 P2 *
**
** Force the top of the stack to be an integer. If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped. In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Int ){
/* Do nothing */
}else if( pTos->flags & MEM_Real ){
int i = (int)pTos->r;
double r = (double)i;
if( r!=pTos->r ){
goto mismatch;
}
pTos->i = i;
}else if( pTos->flags & MEM_Str ){
int v;
if( !toInt(pTos->z, &v) ){
double r;
if( !sqliteIsNumber(pTos->z) ){
goto mismatch;
}
Realify(pTos);
v = (int)pTos->r;
r = (double)v;
if( r!=pTos->r ){
goto mismatch;
}
}
pTos->i = v;
}else{
goto mismatch;
}
Release(pTos);
pTos->flags = MEM_Int;
break;
mismatch:
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
if( pOp->p1 ) popStack(&pTos, 1);
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Eq P1 P2 *
**
** Pop the top two elements from the stack. If they are equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared for equality that way. Otherwise the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrEq.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ne P1 P2 *
**
** Pop the top two elements from the stack. If they are not equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Otherwise the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrNe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Lt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2. Otherwise, continue to the next instruction.
** In other words, jump if NOS<TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrLt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Le P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS<=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrLe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Gt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is greater than the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrGt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ge P1 P2 *
**
** Pop the top two elements from the stack. If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrGe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
case OP_Eq:
case OP_Ne:
case OP_Lt:
case OP_Le:
case OP_Gt:
case OP_Ge: {
Mem *pNos = &pTos[-1];
int c, v;
int ft, fn;
assert( pNos>=p->aStack );
ft = pTos->flags;
fn = pNos->flags;
if( (ft | fn) & MEM_Null ){
popStack(&pTos, 2);
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Null;
}
break;
}else if( (ft & fn & MEM_Int)==MEM_Int ){
c = pNos->i - pTos->i;
}else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
c = v - pTos->i;
}else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
c = pNos->i - v;
}else{
Stringify(pTos);
Stringify(pNos);
c = sqliteCompare(pNos->z, pTos->z);
}
switch( pOp->opcode ){
case OP_Eq: c = c==0; break;
case OP_Ne: c = c!=0; break;
case OP_Lt: c = c<0; break;
case OP_Le: c = c<=0; break;
case OP_Gt: c = c>0; break;
default: c = c>=0; break;
}
popStack(&pTos, 2);
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
pTos++;
pTos->i = c;
pTos->flags = MEM_Int;
}
break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
**
** grep '^case OP_' vdbe.c | ... >opcodes.h
**
** The opcodes are numbered in the order that they appear in this file.
** But in order for the expression generating code to work right, the
** string comparison operators that follow must be numbered exactly 6
** greater than the numeric comparison opcodes above. So no other
** cases can appear between the two.
*/
/* Opcode: StrEq P1 P2 *
**
** Pop the top two elements from the stack. If they are equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Eq.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrNe P1 P2 *
**
** Pop the top two elements from the stack. If they are not equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Ne.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2. Otherwise, continue to the next instruction.
** In other words, jump if NOS<TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Lt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLe P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS<=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Le.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is greater than the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Gt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGe P1 P2 *
**
** Pop the top two elements from the stack. If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Ge.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
case OP_StrEq:
case OP_StrNe:
case OP_StrLt:
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
Mem *pNos = &pTos[-1];
int c;
assert( pNos>=p->aStack );
if( (pNos->flags | pTos->flags) & MEM_Null ){
popStack(&pTos, 2);
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Null;
}
break;
}else{
Stringify(pTos);
Stringify(pNos);
c = strcmp(pNos->z, pTos->z);
}
/* The asserts on each case of the following switch are there to verify
** that string comparison opcodes are always exactly 6 greater than the
** corresponding numeric comparison opcodes. The code generator depends
** on this fact.
*/
switch( pOp->opcode ){
case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
}
popStack(&pTos, 2);
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Int;
pTos->i = c;
}
break;
}
/* Opcode: And * * *
**
** Pop two values off the stack. Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack.
*/
/* Opcode: Or * * *
**
** Pop two values off the stack. Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack.
*/
case OP_And:
case OP_Or: {
Mem *pNos = &pTos[-1];
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
assert( pNos>=p->aStack );
if( pTos->flags & MEM_Null ){
v1 = 2;
}else{
Integerify(pTos);
v1 = pTos->i==0;
}
if( pNos->flags & MEM_Null ){
v2 = 2;
}else{
Integerify(pNos);
v2 = pNos->i==0;
}
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = or_logic[v1*3+v2];
}
popStack(&pTos, 2);
pTos++;
if( v1==2 ){
pTos->flags = MEM_Null;
}else{
pTos->i = v1==0;
pTos->flags = MEM_Int;
}
break;
}
/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its additive inverse. If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:
case OP_AbsValue: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Real ){
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
pTos->r = -pTos->r;
}
pTos->flags = MEM_Real;
}else if( pTos->flags & MEM_Int ){
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->i<0 ){
pTos->i = -pTos->i;
}
pTos->flags = MEM_Int;
}else if( pTos->flags & MEM_Null ){
/* Do nothing */
}else{
Realify(pTos);
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
pTos->r = -pTos->r;
}
pTos->flags = MEM_Real;
}
break;
}
/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value. Replace it
** with its complement. If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(pTos);
Release(pTos);
pTos->i = !pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value. Replace it
** with its ones-complement. If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(pTos);
Release(pTos);
pTos->i = ~pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: Noop * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
case OP_Noop: {
break;
}
/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** true, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
/* Opcode: IfNot P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** false, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
int c;
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ){
c = pOp->p1;
}else{
Integerify(pTos);
c = pTos->i;
if( pOp->opcode==OP_IfNot ) c = !c;
}
assert( (pTos->flags & MEM_Dyn)==0 );
pTos--;
if( c ) pc = pOp->p2-1;
break;
}
/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {
int i, cnt;
Mem *pTerm;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
pTerm = &pTos[1-cnt];
assert( pTerm>=p->aStack );
for(i=0; i<cnt; i++, pTerm++){
if( pTerm->flags & MEM_Null ){
pc = pOp->p2-1;
break;
}
}
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
** stack if P1 times if P1 is greater than zero. If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {
int i, cnt;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
assert( &pTos[1-cnt] >= p->aStack );
for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
if( i>=cnt ) pc = pOp->p2-1;
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: MakeRecord P1 P2 *
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table. The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later. Refer to source code
** comments for the details of the record format.
**
** If P2 is true (non-zero) and one or more of the P1 entries
** that go into building the record is NULL, then add some extra
** bytes to the record to make it distinct for other entries created
** during the same run of the VDBE. The extra bytes added are a
** counter that is reset with each run of the VDBE, so records
** created this way will not necessarily be distinct across runs.
** But they should be distinct for transient tables (created using
** OP_OpenTemp) which is what they are intended for.
**
** (Later:) The P2==1 option was intended to make NULLs distinct
** for the UNION operator. But I have since discovered that NULLs
** are indistinct for UNION. So this option is never used.
*/
case OP_MakeRecord: {
char *zNewRecord;
int nByte;
int nField;
int i, j;
int idxWidth;
u32 addr;
Mem *pRec;
int addUnique = 0; /* True to cause bytes to be added to make the
** generated record distinct */
char zTemp[NBFS]; /* Temp space for small records */
/* Assuming the record contains N fields, the record format looks
** like this:
**
** -------------------------------------------------------------------
** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
** -------------------------------------------------------------------
**
** All data fields are converted to strings before being stored and
** are stored with their null terminators. NULL entries omit the
** null terminator. Thus an empty string uses 1 byte and a NULL uses
** zero bytes. Data(0) is taken from the lowest element of the stack
** and data(N-1) is the top of the stack.
**
** Each of the idx() entries is either 1, 2, or 3 bytes depending on
** how big the total record is. Idx(0) contains the offset to the start
** of data(0). Idx(k) contains the offset to the start of data(k).
** Idx(N) contains the total number of bytes in the record.
*/
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
addUnique = pOp->p2;
}else{
Stringify(pRec);
nByte += pRec->n;
}
}
if( addUnique ) nByte += sizeof(p->uniqueCnt);
if( nByte + nField + 1 < 256 ){
idxWidth = 1;
}else if( nByte + 2*nField + 2 < 65536 ){
idxWidth = 2;
}else{
idxWidth = 3;
}
nByte += idxWidth*(nField + 1);
if( nByte>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
if( nByte<=NBFS ){
zNewRecord = zTemp;
}else{
zNewRecord = sqliteMallocRaw( nByte );
if( zNewRecord==0 ) goto no_mem;
}
j = 0;
addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( (pRec->flags & MEM_Null)==0 ){
addr += pRec->n;
}
}
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( addUnique ){
memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
p->uniqueCnt++;
j += sizeof(p->uniqueCnt);
}
for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
if( (pRec->flags & MEM_Null)==0 ){
memcpy(&zNewRecord[j], pRec->z, pRec->n);
j += pRec->n;
}
}
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
if( nByte<=NBFS ){
assert( zNewRecord==zTemp );
memcpy(pTos->zShort, zTemp, nByte);
pTos->z = pTos->zShort;
pTos->flags = MEM_Str | MEM_Short;
}else{
assert( zNewRecord!=zTemp );
pTos->z = zNewRecord;
pTos->flags = MEM_Str | MEM_Dyn;
}
break;
}
/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index. The top P1 records are
** converted to strings and merged. The null-terminators
** are retained and used as separators.
** The lowest entry in the stack is the first field and the top of the
** stack becomes the last.
**
** If P2 is not zero, then the original entries remain on the stack
** and the new key is pushed on top. If P2 is zero, the original
** data is popped off the stack first then the new key is pushed
** back in its place.
**
** P3 is a string that is P1 characters long. Each character is either
** an 'n' or a 't' to indicates if the argument should be intepreted as
** numeric or text type. The first character of P3 corresponds to the
** lowest element on the stack. If P3 is NULL then all arguments are
** assumed to be of the numeric type.
**
** The type makes a difference in that text-type fields may not be
** introduced by 'b' (as described in the next paragraph). The
** first character of a text-type field must be either 'a' (if it is NULL)
** or 'c'. Numeric fields will be introduced by 'b' if their content
** looks like a well-formed number. Otherwise the 'a' or 'c' will be
** used.
**
** The key is a concatenation of fields. Each field is terminated by
** a single 0x00 character. A NULL field is introduced by an 'a' and
** is followed immediately by its 0x00 terminator. A numeric field is
** introduced by a single character 'b' and is followed by a sequence
** of characters that represent the number such that a comparison of
** the character string using memcpy() sorts the numbers in numerical
** order. The character strings for numbers are generated using the
** sqliteRealToSortable() function. A text field is introduced by a
** 'c' character and is followed by the exact text of the field. The
** use of an 'a', 'b', or 'c' character at the beginning of each field
** guarantees that NULLs sort before numbers and that numbers sort
** before text. 0x00 characters do not occur except as separators
** between fields.
**
** See also: MakeIdxKey, SortMakeKey
*/
/* Opcode: MakeIdxKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index. In addition, take one additional integer
** off of the stack, treat that integer as a four-byte record number, and
** append the four bytes to the key. Thus a total of P1+1 entries are
** popped from the stack for this instruction and a single entry is pushed
** back. The first P1 entries that are popped are strings and the last
** entry (the lowest on the stack) is an integer record number.
**
** The converstion of the first P1 string entries occurs just like in
** MakeKey. Each entry is separated from the others by a null.
** The entire concatenation is null-terminated. The lowest entry
** in the stack is the first field and the top of the stack becomes the
** last.
**
** If P2 is not zero and one or more of the P1 entries that go into the
** generated key is NULL, then jump to P2 after the new key has been
** pushed on the stack. In other words, jump to P2 if the key is
** guaranteed to be unique. This jump can be used to skip a subsequent
** uniqueness test.
**
** P3 is a string that is P1 characters long. Each character is either
** an 'n' or a 't' to indicates if the argument should be numeric or
** text. The first character corresponds to the lowest element on the
** stack. If P3 is null then all arguments are assumed to be numeric.
**
** See also: MakeKey, SortMakeKey
*/
case OP_MakeIdxKey:
case OP_MakeKey: {
char *zNewKey;
int nByte;
int nField;
int addRowid;
int i, j;
int containsNull = 0;
Mem *pRec;
char zTemp[NBFS];
addRowid = pOp->opcode==OP_MakeIdxKey;
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(j=0, i=0; i<nField; i++, j++, pRec++){
int flags = pRec->flags;
int len;
char *z;
if( flags & MEM_Null ){
nByte += 2;
containsNull = 1;
}else if( pOp->p3 && pOp->p3[j]=='t' ){
Stringify(pRec);
pRec->flags &= ~(MEM_Int|MEM_Real);
nByte += pRec->n+1;
}else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
pRec->r = pRec->i;
}else if( (flags & (MEM_Real|MEM_Int))==0 ){
pRec->r = sqliteAtoF(pRec->z, 0);
}
Release(pRec);
z = pRec->zShort;
sqliteRealToSortable(pRec->r, z);
len = strlen(z);
pRec->z = 0;
pRec->flags = MEM_Real;
pRec->n = len+1;
nByte += pRec->n+1;
}else{
nByte += pRec->n+1;
}
}
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
if( addRowid ) nByte += sizeof(u32);
if( nByte<=NBFS ){
zNewKey = zTemp;
}else{
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
}
j = 0;
pRec = &pTos[1-nField];
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
zNewKey[j++] = 'a';
zNewKey[j++] = 0;
}else if( pRec->flags==MEM_Real ){
zNewKey[j++] = 'b';
memcpy(&zNewKey[j], pRec->zShort, pRec->n);
j += pRec->n;
}else{
assert( pRec->flags & MEM_Str );
zNewKey[j++] = 'c';
memcpy(&zNewKey[j], pRec->z, pRec->n);
j += pRec->n;
}
}
if( addRowid ){
u32 iKey;
pRec = &pTos[-nField];
assert( pRec>=p->aStack );
Integerify(pRec);
iKey = intToKey(pRec->i);
memcpy(&zNewKey[j], &iKey, sizeof(u32));
popStack(&pTos, nField+1);
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
}else{
if( pOp->p2==0 ) popStack(&pTos, nField);
}
pTos++;
pTos->n = nByte;
if( nByte<=NBFS ){
assert( zNewKey==zTemp );
pTos->z = pTos->zShort;
memcpy(pTos->zShort, zTemp, nByte);
pTos->flags = MEM_Str | MEM_Short;
}else{
pTos->z = zNewKey;
pTos->flags = MEM_Str | MEM_Dyn;
}
break;
}
/* Opcode: IncrKey * * *
**
** The top of the stack should contain an index key generated by
** The MakeKey opcode. This routine increases the least significant
** byte of that key by one. This is used so that the MoveTo opcode
** will move to the first entry greater than the key rather than to
** the key itself.
*/
case OP_IncrKey: {
assert( pTos>=p->aStack );
/* The IncrKey opcode is only applied to keys generated by
** MakeKey or MakeIdxKey and the results of those operands
** are always dynamic strings or zShort[] strings. So we
** are always free to modify the string in place.
*/
assert( pTos->flags & (MEM_Dyn|MEM_Short) );
pTos->z[pTos->n-1]++;
break;
}
/* Opcode: Checkpoint P1 * *
**
** Begin a checkpoint. A checkpoint is the beginning of a operation that
** is part of a larger transaction but which might need to be rolled back
** itself without effecting the containing transaction. A checkpoint will
** be automatically committed or rollback when the VDBE halts.
**
** The checkpoint is begun on the database file with index P1. The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Checkpoint: {
int i = pOp->p1;
if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
}
break;
}
/* Opcode: Transaction P1 * *
**
** Begin a transaction. The transaction ends when a Commit or Rollback
** opcode is encountered. Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables.
**
** A write lock is obtained on the database file when a transaction is
** started. No other process can read or write the file while the
** transaction is underway. Starting a transaction also creates a
** rollback journal. A transaction must be started before any changes
** can be made to the database.
*/
case OP_Transaction: {
int busy = 1;
int i = pOp->p1;
assert( i>=0 && i<db->nDb );
if( db->aDb[i].inTrans ) break;
while( db->aDb[i].pBt!=0 && busy ){
rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
switch( rc ){
case SQLITE_BUSY: {
if( db->xBusyCallback==0 ){
p->pc = pc;
p->undoTransOnError = 1;
p->rc = SQLITE_BUSY;
p->pTos = pTos;
return SQLITE_BUSY;
}else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
busy = 0;
}
break;
}
case SQLITE_READONLY: {
rc = SQLITE_OK;
/* Fall thru into the next case */
}
case SQLITE_OK: {
p->inTempTrans = 0;
busy = 0;
break;
}
default: {
goto abort_due_to_error;
}
}
}
db->aDb[i].inTrans = 1;
p->undoTransOnError = 1;
break;
}
/* Opcode: Commit * * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to actually take effect. No additional modifications
** are allowed until another transaction is started. The Commit instruction
** deletes the journal file and releases the write lock on the database.
** A read lock continues to be held if there are still cursors open.
*/
case OP_Commit: {
int i;
if( db->xCommitCallback!=0 ){
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
if( db->xCommitCallback(db->pCommitArg)!=0 ){
rc = SQLITE_CONSTRAINT;
}
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
}
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
if( db->aDb[i].inTrans ){
rc = sqliteBtreeCommit(db->aDb[i].pBt);
db->aDb[i].inTrans = 0;
}
}
if( rc==SQLITE_OK ){
sqliteCommitInternalChanges(db);
}else{
sqliteRollbackAll(db);
}
break;
}
/* Opcode: Rollback P1 * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to be undone. The database is restored to its state
** before the Transaction opcode was executed. No additional modifications
** are allowed until another transaction is started.
**
** P1 is the index of the database file that is committed. An index of 0
** is used for the main database and an index of 1 is used for the file used
** to hold temporary tables.
**
** This instruction automatically closes all cursors and releases both
** the read and write locks on the indicated database.
*/
case OP_Rollback: {
sqliteRollbackAll(db);
break;
}
/* Opcode: ReadCookie P1 P2 *
**
** Read cookie number P2 from database P1 and push it onto the stack.
** P2==0 is the schema version. P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( db->aDb[pOp->p1].pBt!=0 );
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
pTos++;
pTos->i = aMeta[1+pOp->p2];
pTos->flags = MEM_Int;
break;
}
/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version. P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( db->aDb[pOp->p1].pBt!=0 );
assert( pTos>=p->aStack );
Integerify(pTos)
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
if( rc==SQLITE_OK ){
aMeta[1+pOp->p2] = pTos->i;
rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
}
Release(pTos);
pTos--;
break;
}
/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p1>=0 && pOp->p1<db->nDb );
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
rc = SQLITE_SCHEMA;
}
break;
}
/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by an
** integer from the top of the stack. 0 means the main database and
** 1 means the database used for temporary tables. Give the new
** cursor an identifier of P1. The P1 values need not be contiguous
** but all P1 values should be small integers. It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor. If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction. A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database. The read lock is
** released when all cursors are closed. If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted. But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. If P2==0 then take the root page number from the stack.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted. But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode. For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
int busy = 0;
int i = pOp->p1;
int p2 = pOp->p2;
int wrFlag;
Btree *pX;
int iDb;
assert( pTos>=p->aStack );
Integerify(pTos);
iDb = pTos->i;
pTos--;
assert( iDb>=0 && iDb<db->nDb );
pX = db->aDb[iDb].pBt;
assert( pX!=0 );
wrFlag = pOp->opcode==OP_OpenWrite;
if( p2<=0 ){
assert( pTos>=p->aStack );
Integerify(pTos);
p2 = pTos->i;
pTos--;
if( p2<2 ){
sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
rc = SQLITE_INTERNAL;
break;
}
}
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
sqliteVdbeCleanupCursor(&p->aCsr[i]);
memset(&p->aCsr[i], 0, sizeof(Cursor));
p->aCsr[i].nullRow = 1;
if( pX==0 ) break;
do{
rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
switch( rc ){
case SQLITE_BUSY: {
if( db->xBusyCallback==0 ){
p->pc = pc;
p->rc = SQLITE_BUSY;
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
return SQLITE_BUSY;
}else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
busy = 0;
}
break;
}
case SQLITE_OK: {
busy = 0;
break;
}
default: {
goto abort_due_to_error;
}
}
}while( busy );
break;
}
/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if
** the main database is read-only. The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P2==0 and to a BTree index
** if P2==1. A BTree table must have an integer key and can have arbitrary
** data. A BTree index has no data but can have an arbitrary key.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only. Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database. Same word; different meanings.
*/
case OP_OpenTemp: {
int i = pOp->p1;
Cursor *pCx;
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
if( rc==SQLITE_OK ){
rc = sqliteBtreeBeginTrans(pCx->pBt);
}
if( rc==SQLITE_OK ){
if( pOp->p2 ){
int pgno;
rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
if( rc==SQLITE_OK ){
rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
}
}else{
rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
}
}
break;
}
/* Opcode: OpenPseudo P1 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data. Any attempt to write a second row of data causes the
** first row to be deleted. All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
int i = pOp->p1;
Cursor *pCx;
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
pCx->pseudoTable = 1;
break;
}
/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
int i = pOp->p1;
if( i>=0 && i<p->nCursor ){
sqliteVdbeCleanupCursor(&p->aCsr[i]);
}
break;
}
/* Opcode: MoveTo P1 P2 *
**
** Pop the top of the stack and use its value as a key. Reposition
** cursor P1 so that it points to an entry with a matching key. If
** the table contains no record with a matching key, then the cursor
** is left pointing at the first record that is greater than the key.
** If there are no records greater than the key and P2 is not zero,
** then an immediate jump to P2 is made.
**
** See also: Found, NotFound, Distinct, MoveLt
*/
/* Opcode: MoveLt P1 P2 *
**
** Pop the top of the stack and use its value as a key. Reposition
** cursor P1 so that it points to the entry with the largest key that is
** less than the key popped from the stack.
** If there are no records less than than the key and P2
** is not zero then an immediate jump to P2 is made.
**
** See also: MoveTo
*/
case OP_MoveLt:
case OP_MoveTo: {
int i = pOp->p1;
Cursor *pC;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->pCursor!=0 ){
int res, oc;
pC->nullRow = 0;
if( pTos->flags & MEM_Int ){
int iKey = intToKey(pTos->i);
if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
pC->movetoTarget = iKey;
pC->deferredMoveto = 1;
Release(pTos);
pTos--;
break;
}
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
pC->lastRecno = pTos->i;
pC->recnoIsValid = res==0;
}else{
Stringify(pTos);
sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
pC->recnoIsValid = 0;
}
pC->deferredMoveto = 0;
sqlite_search_count++;
oc = pOp->opcode;
if( oc==OP_MoveTo && res<0 ){
sqliteBtreeNext(pC->pCursor, &res);
pC->recnoIsValid = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else if( oc==OP_MoveLt ){
if( res>=0 ){
sqliteBtreePrevious(pC->pCursor, &res);
pC->recnoIsValid = 0;
}else{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
int keysize;
res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
}
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key does
** not exist in the table of cursor P1, then jump to P2. If the record
** does already exist, then fall thru. The cursor is left pointing
** at the record if it exists. The key is not popped from the stack.
**
** This operation is similar to NotFound except that this operation
** does not pop the key from the stack.
**
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: Found P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key
** does exist in table of P1, then jump to P2. If the record
** does not exist, then fall thru. The cursor is left pointing
** to the record if it exists. The key is popped from the stack.
**
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key
** does not exist in table of P1, then jump to P2. If the record
** does exist, then fall thru. The cursor is left pointing to the
** record if it exists. The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {
int i = pOp->p1;
int alreadyExists = 0;
Cursor *pC;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( (pC = &p->aCsr[i])->pCursor!=0 ){
int res, rx;
Stringify(pTos);
rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
alreadyExists = rx==SQLITE_OK && res==0;
pC->deferredMoveto = 0;
}
if( pOp->opcode==OP_Found ){
if( alreadyExists ) pc = pOp->p2 - 1;
}else{
if( !alreadyExists ) pc = pOp->p2 - 1;
}
if( pOp->opcode!=OP_Distinct ){
Release(pTos);
pTos--;
}
break;
}
/* Opcode: IsUnique P1 P2 *
**
** The top of the stack is an integer record number. Call this
** record number R. The next on the stack is an index key created
** using MakeIdxKey. Call it K. This instruction pops R from the
** stack but it leaves K unchanged.
**
** P1 is an index. So all but the last four bytes of K are an
** index string. The last four bytes of K are a record number.
**
** This instruction asks if there is an entry in P1 where the
** index string matches K but the record number is different
** from R. If there is no such entry, then there is an immediate
** jump to P2. If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {
int i = pOp->p1;
Mem *pNos = &pTos[-1];
BtCursor *pCrsr;
int R;
/* Pop the value R off the top of the stack
*/
assert( pNos>=p->aStack );
Integerify(pTos);
R = pTos->i;
pTos--;
assert( i>=0 && i<=p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rc;
int v; /* The record number on the P1 entry that matches K */
char *zKey; /* The value of K */
int nKey; /* Number of bytes in K */
/* Make sure K is a string and make zKey point to K
*/
Stringify(pNos);
zKey = pNos->z;
nKey = pNos->n;
assert( nKey >= 4 );
/* Search for an entry in P1 where all but the last four bytes match K.
** If there is no such entry, jump immediately to P2.
*/
assert( p->aCsr[i].deferredMoveto==0 );
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
if( res<0 ){
rc = sqliteBtreeNext(pCrsr, &res);
if( res ){
pc = pOp->p2 - 1;
break;
}
}
rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
if( res>0 ){
pc = pOp->p2 - 1;
break;
}
/* At this point, pCrsr is pointing to an entry in P1 where all but
** the last for bytes of the key match K. Check to see if the last
** four bytes of the key are different from R. If the last four
** bytes equal R then jump immediately to P2.
*/
sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
v = keyToInt(v);
if( v==R ){
pc = pOp->p2 - 1;
break;
}
/* The last four bytes of the key are different from R. Convert the
** last four bytes of the key into an integer and push it onto the
** stack. (These bytes are the record number of an entry that
** violates a UNIQUE constraint.)
*/
pTos++;
pTos->i = v;
pTos->flags = MEM_Int;
}
break;
}
/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key. If a record with that key
** does not exist in table of P1, then jump to P2. If the record
** does exist, then fall thru. The cursor is left pointing to the
** record if it exists. The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rx, iKey;
assert( pTos->flags & MEM_Int );
iKey = intToKey(pTos->i);
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
p->aCsr[i].lastRecno = pTos->i;
p->aCsr[i].recnoIsValid = res==0;
p->aCsr[i].nullRow = 0;
if( rx!=SQLITE_OK || res!=0 ){
pc = pOp->p2 - 1;
p->aCsr[i].recnoIsValid = 0;
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: NewRecno P1 * *
**
** Get a new integer record number used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to. The new record number is pushed
** onto the stack.
*/
case OP_NewRecno: {
int i = pOp->p1;
int v = 0;
Cursor *pC;
assert( i>=0 && i<p->nCursor );
if( (pC = &p->aCsr[i])->pCursor==0 ){
v = 0;
}else{
/* The next rowid or record number (different terms for the same
** thing) is obtained in a two-step algorithm.
**
** First we attempt to find the largest existing rowid and add one
** to that. But if the largest existing rowid is already the maximum
** positive integer, we have to fall through to the second
** probabilistic algorithm
**
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
** and try again, up to 1000 times.
**
** For a table with less than 2 billion entries, the probability
** of not finding a unused rowid is about 1.0e-300. This is a
** non-zero probability, but it is still vanishingly small and should
** never cause a problem. You are much, much more likely to have a
** hardware failure than for this algorithm to fail.
**
** The analysis in the previous paragraph assumes that you have a good
** source of random numbers. Is a library function like lrand48()
** good enough? Maybe. Maybe not. It's hard to know whether there
** might be subtle bugs is some implementations of lrand48() that
** could cause problems. To avoid uncertainty, SQLite uses its own
** random number generator based on the RC4 algorithm.
**
** To promote locality of reference for repetitive inserts, the
** first few attempts at chosing a random rowid pick values just a little
** larger than the previous rowid. This has been shown experimentally
** to double the speed of the COPY operation.
*/
int res, rx, cnt, x;
cnt = 0;
if( !pC->useRandomRowid ){
if( pC->nextRowidValid ){
v = pC->nextRowid;
}else{
rx = sqliteBtreeLast(pC->pCursor, &res);
if( res ){
v = 1;
}else{
sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
v = keyToInt(v);
if( v==0x7fffffff ){
pC->useRandomRowid = 1;
}else{
v++;
}
}
}
if( v<0x7fffffff ){
pC->nextRowidValid = 1;
pC->nextRowid = v+1;
}else{
pC->nextRowidValid = 0;
}
}
if( pC->useRandomRowid ){
v = db->priorNewRowid;
cnt = 0;
do{
if( v==0 || cnt>2 ){
sqliteRandomness(sizeof(v), &v);
if( cnt<5 ) v &= 0xffffff;
}else{
unsigned char r;
sqliteRandomness(1, &r);
v += r + 1;
}
if( v==0 ) continue;
x = intToKey(v);
rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
cnt++;
}while( cnt<1000 && rx==SQLITE_OK && res==0 );
db->priorNewRowid = v;
if( rx==SQLITE_OK && res==0 ){
rc = SQLITE_FULL;
goto abort_due_to_error;
}
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
pTos++;
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value on the top of the
** stack. The key is the next value down on the stack. The key must
** be an integer. The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
** stored for subsequent return by the sqlite_last_insert_rowid() function
** (otherwise it's unmodified).
*/
/* Opcode: PutStrKey P1 * *
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value on the top of the
** stack. The key is the next value down on the stack. The key must
** be a string. The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
Mem *pNos = &pTos[-1];
int i = pOp->p1;
Cursor *pC;
assert( pNos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
char *zKey;
int nKey, iKey;
if( pOp->opcode==OP_PutStrKey ){
Stringify(pNos);
nKey = pNos->n;
zKey = pNos->z;
}else{
assert( pNos->flags & MEM_Int );
nKey = sizeof(int);
iKey = intToKey(pNos->i);
zKey = (char*)&iKey;
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
pC->nextRowidValid = 0;
}
}
if( pTos->flags & MEM_Null ){
pTos->z = 0;
pTos->n = 0;
}else{
assert( pTos->flags & MEM_Str );
}
if( pC->pseudoTable ){
/* PutStrKey does not work for pseudo-tables.
** The following assert makes sure we are not trying to use
** PutStrKey on a pseudo-table
*/
assert( pOp->opcode==OP_PutIntKey );
sqliteFree(pC->pData);
pC->iKey = iKey;
pC->nData = pTos->n;
if( pTos->flags & MEM_Dyn ){
pC->pData = pTos->z;
pTos->flags = MEM_Null;
}else{
pC->pData = sqliteMallocRaw( pC->nData );
if( pC->pData ){
memcpy(pC->pData, pTos->z, pC->nData);
}
}
pC->nullRow = 0;
}else{
rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
popStack(&pTos, 2);
break;
}
/* Opcode: Delete P1 P2 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {
int i = pOp->p1;
Cursor *pC;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->pCursor!=0 ){
sqliteVdbeCursorMoveto(pC);
rc = sqliteBtreeDelete(pC->pCursor);
pC->nextRowidValid = 0;
}
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
break;
}
/* Opcode: SetCounts * * *
**
** Called at end of statement. Updates lsChange (last statement change count)
** and resets csChange (current statement change count) to 0.
*/
case OP_SetCounts: {
db->lsChange=db->csChange;
db->csChange=0;
break;
}
/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data. This is used for
** processing compound selects.
*/
case OP_KeyAsData: {
int i = pOp->p1;
assert( i>=0 && i<p->nCursor );
p->aCsr[i].keyAsData = pOp->p2;
break;
}
/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data. It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
/* Opcode: RowKey P1 * *
**
** Push onto the stack the complete row key for cursor P1.
** There is no interpretation of the key. It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
int i = pOp->p1;
Cursor *pC;
int n;
pTos++;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->nullRow ){
pTos->flags = MEM_Null;
}else if( pC->pCursor!=0 ){
BtCursor *pCrsr = pC->pCursor;
sqliteVdbeCursorMoveto(pC);
if( pC->nullRow ){
pTos->flags = MEM_Null;
break;
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKeySize(pCrsr, &n);
}else{
sqliteBtreeDataSize(pCrsr, &n);
}
pTos->n = n;
if( n<=NBFS ){
pTos->flags = MEM_Str | MEM_Short;
pTos->z = pTos->zShort;
}else{
char *z = sqliteMallocRaw( n );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
pTos->z = z;
}
if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKey(pCrsr, 0, n, pTos->z);
}else{
sqliteBtreeData(pCrsr, 0, n, pTos->z);
}
}else if( pC->pseudoTable ){
pTos->n = pC->nData;
pTos->z = pC->pData;
pTos->flags = MEM_Str|MEM_Ephem;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
** a structure built using the MakeRecord instruction.
** (See the MakeRecord opcode for additional information about
** the format of the data.)
** Push onto the stack the value of the P2-th column contained
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
**
** If P1 is negative, then the record is stored on the stack rather
** than in a table. For P1==-1, the top of the stack is used.
** For P1==-2, the next on the stack is used. And so forth. The
** value pushed is always just a pointer into the record which is
** stored further down on the stack. The column value is not copied.
*/
case OP_Column: {
int amt, offset, end, payloadSize;
int i = pOp->p1;
int p2 = pOp->p2;
Cursor *pC;
char *zRec;
BtCursor *pCrsr;
int idxWidth;
unsigned char aHdr[10];
assert( i<p->nCursor );
pTos++;
if( i<0 ){
assert( &pTos[i]>=p->aStack );
assert( pTos[i].flags & MEM_Str );
zRec = pTos[i].z;
payloadSize = pTos[i].n;
}else if( (pC = &p->aCsr[i])->pCursor!=0 ){
sqliteVdbeCursorMoveto(pC);
zRec = 0;
pCrsr = pC->pCursor;
if( pC->nullRow ){
payloadSize = 0;
}else if( pC->keyAsData ){
sqliteBtreeKeySize(pCrsr, &payloadSize);
}else{
sqliteBtreeDataSize(pCrsr, &payloadSize);
}
}else if( pC->pseudoTable ){
payloadSize = pC->nData;
zRec = pC->pData;
assert( payloadSize==0 || zRec!=0 );
}else{
payloadSize = 0;
}
/* Figure out how many bytes in the column data and where the column
** data begins.
*/
if( payloadSize==0 ){
pTos->flags = MEM_Null;
break;
}else if( payloadSize<256 ){
idxWidth = 1;
}else if( payloadSize<65536 ){
idxWidth = 2;
}else{
idxWidth = 3;
}
/* Figure out where the requested column is stored and how big it is.
*/
if( payloadSize < idxWidth*(p2+1) ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( zRec ){
memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
}else if( pC->keyAsData ){
sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
}else{
sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
}
offset = aHdr[0];
end = aHdr[idxWidth];
if( idxWidth>1 ){
offset |= aHdr[1]<<8;
end |= aHdr[idxWidth+1]<<8;
if( idxWidth>2 ){
offset |= aHdr[2]<<16;
end |= aHdr[idxWidth+2]<<16;
}
}
amt = end - offset;
if( amt<0 || offset<0 || end>payloadSize ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
/* amt and offset now hold the offset to the start of data and the
** amount of data. Go get the data and put it on the stack.
*/
pTos->n = amt;
if( amt==0 ){
pTos->flags = MEM_Null;
}else if( zRec ){
pTos->flags = MEM_Str | MEM_Ephem;
pTos->z = &zRec[offset];
}else{
if( amt<=NBFS ){
pTos->flags = MEM_Str | MEM_Short;
pTos->z = pTos->zShort;
}else{
char *z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
pTos->z = z;
}
if( pC->keyAsData ){
sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
}else{
sqliteBtreeData(pCrsr, offset, amt, pTos->z);
}
}
break;
}
/* Opcode: Recno P1 * *
**
** Push onto the stack an integer which is the first 4 bytes of the
** the key to the current entry in a sequential scan of the database
** file P1. The sequential scan should have been started using the
** Next opcode.
*/
case OP_Recno: {
int i = pOp->p1;
Cursor *pC;
int v;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
sqliteVdbeCursorMoveto(pC);
pTos++;
if( pC->recnoIsValid ){
v = pC->lastRecno;
}else if( pC->pseudoTable ){
v = keyToInt(pC->iKey);
}else if( pC->nullRow || pC->pCursor==0 ){
pTos->flags = MEM_Null;
break;
}else{
assert( pC->pCursor!=0 );
sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
v = keyToInt(v);
}
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
**
** Compare this opcode to Recno. The Recno opcode extracts the first
** 4 bytes of the key and pushes those bytes onto the stack as an
** integer. This instruction pushes the entire key as a string.
**
** This opcode may not be used on a pseudo-table.
*/
case OP_FullKey: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( p->aCsr[i].keyAsData );
assert( !p->aCsr[i].pseudoTable );
assert( i>=0 && i<p->nCursor );
pTos++;
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int amt;
char *z;
sqliteVdbeCursorMoveto(&p->aCsr[i]);
sqliteBtreeKeySize(pCrsr, &amt);
if( amt<=0 ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( amt>NBFS ){
z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
}else{
z = pTos->zShort;
pTos->flags = MEM_Str | MEM_Short;
}
sqliteBtreeKey(pCrsr, 0, amt, z);
pTos->z = z;
pTos->n = amt;
}
break;
}
/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
** that occur while the cursor is on the null row will always push
** a NULL onto the stack.
*/
case OP_NullRow: {
int i = pOp->p1;
assert( i>=0 && i<p->nCursor );
p->aCsr[i].nullRow = 1;
p->aCsr[i].recnoIsValid = 0;
break;
}
/* Opcode: Last P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
rc = sqliteBtreeLast(pCrsr, &res);
pC->nullRow = res;
pC->deferredMoveto = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else{
pC->nullRow = 0;
}
break;
}
/* Opcode: Rewind P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
rc = sqliteBtreeFirst(pCrsr, &res);
pC->atFirst = res==0;
pC->nullRow = res;
pC->deferredMoveto = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else{
pC->nullRow = 0;
}
break;
}
/* Opcode: Next P1 P2 *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:
case OP_Next: {
Cursor *pC;
BtCursor *pCrsr;
CHECK_FOR_INTERRUPT;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = &p->aCsr[pOp->p1];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
if( pC->nullRow ){
res = 1;
}else{
assert( pC->deferredMoveto==0 );
rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
sqliteBtreePrevious(pCrsr, &res);
pC->nullRow = res;
}
if( res==0 ){
pc = pOp->p2 - 1;
sqlite_search_count++;
}
}else{
pC->nullRow = 1;
}
pC->recnoIsValid = 0;
break;
}
/* Opcode: IdxPut P1 P2 P3
**
** The top of the stack holds a SQL index key made using the
** MakeIdxKey instruction. This opcode writes that key into the
** index P1. Data for the entry is nil.
**
** If P2==1, then the key must be unique. If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back. If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
assert( pTos->flags & MEM_Str );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int nKey = pTos->n;
const char *zKey = pTos->z;
if( pOp->p2 ){
int res, n;
assert( nKey >= 4 );
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
while( res!=0 ){
int c;
sqliteBtreeKeySize(pCrsr, &n);
if( n==nKey
&& sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
&& c==0
){
rc = SQLITE_CONSTRAINT;
if( pOp->p3 && pOp->p3[0] ){
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
}
goto abort_due_to_error;
}
if( res<0 ){
sqliteBtreeNext(pCrsr, &res);
res = +1;
}else{
break;
}
}
}
rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
assert( p->aCsr[i].deferredMoveto==0 );
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
assert( i>=0 && i<p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int rx, res;
rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
if( rx==SQLITE_OK && res==0 ){
rc = sqliteBtreeDelete(pCrsr);
}
assert( p->aCsr[i].deferredMoveto==0 );
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxRecno P1 * *
**
** Push onto the stack an integer which is the last 4 bytes of the
** the key to the current entry in index P1. These 4 bytes should
** be the record number of the table entry to which this index entry
** points.
**
** See also: Recno, MakeIdxKey.
*/
case OP_IdxRecno: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pTos++;
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int v;
int sz;
assert( p->aCsr[i].deferredMoveto==0 );
sqliteBtreeKeySize(pCrsr, &sz);
if( sz<sizeof(u32) ){
pTos->flags = MEM_Null;
}else{
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
v = keyToInt(v);
pTos->i = v;
pTos->flags = MEM_Int;
}
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is greater than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is greater than or equal to
** the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxLT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is less than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
int i= pOp->p1;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
assert( pTos>=p->aStack );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rc;
Stringify(pTos);
assert( p->aCsr[i].deferredMoveto==0 );
rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
if( rc!=SQLITE_OK ){
break;
}
if( pOp->opcode==OP_IdxLT ){
res = -res;
}else if( pOp->opcode==OP_IdxGE ){
res++;
}
if( res>0 ){
pc = pOp->p2 - 1 ;
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxIsNull P1 P2 *
**
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
** that key. If any of the first P1 fields are NULL, then a jump is made
** to address P2. Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {
int i = pOp->p1;
int k, n;
const char *z;
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
z = pTos->z;
n = pTos->n;
for(k=0; k<n && i>0; i--){
if( z[k]=='a' ){
pc = pOp->p2-1;
break;
}
while( k<n && z[k] ){ k++; }
k++;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: Destroy P1 P2 *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Clear
*/
case OP_Destroy: {
rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
/* Opcode: Clear P1 P2 *
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {
rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
/* Opcode: CreateTable * P2 P3
**
** Allocate a new table in the main database file if P2==0 or in the
** auxiliary database file if P2==1. Push the page number
** for the root page of the new table onto the stack.
**
** The root page number is also written to a memory location that P3
** points to. This is the mechanism is used to write the root page
** number into the parser's internal data structures that describe the
** new table.
**
** The difference between a table and an index is this: A table must
** have a 4-byte integer key and can have arbitrary data. An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex * P2 P3
**
** Allocate a new index in the main database file if P2==0 or in the
** auxiliary database file if P2==1. Push the page number of the
** root page of the new index onto the stack.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:
case OP_CreateTable: {
int pgno;
assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
assert( pOp->p2>=0 && pOp->p2<db->nDb );
assert( db->aDb[pOp->p2].pBt!=0 );
if( pOp->opcode==OP_CreateTable ){
rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
}else{
rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
}
pTos++;
if( rc==SQLITE_OK ){
pTos->i = pgno;
pTos->flags = MEM_Int;
*(u32*)pOp->p3 = pgno;
pOp->p3 = 0;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: IntegrityCk P1 P2 *
**
** Do an analysis of the currently open database. Push onto the
** stack the text of an error message describing any problems.
** If there are no errors, push a "ok" onto the stack.
**
** P1 is the index of a set that contains the root page numbers
** for all tables and indices in the main database file. The set
** is cleared by this opcode. In other words, after this opcode
** has executed, the set will be empty.
**
** If P2 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used for testing purposes only.
*/
case OP_IntegrityCk: {
int nRoot;
int *aRoot;
int iSet = pOp->p1;
Set *pSet;
int j;
HashElem *i;
char *z;
assert( iSet>=0 && iSet<p->nSet );
pTos++;
pSet = &p->aSet[iSet];
nRoot = sqliteHashCount(&pSet->hash);
aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
if( aRoot==0 ) goto no_mem;
for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
toInt((char*)sqliteHashKey(i), &aRoot[j]);
}
aRoot[j] = 0;
sqliteHashClear(&pSet->hash);
pSet->prev = 0;
z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
if( z==0 || z[0]==0 ){
if( z ) sqliteFree(z);
pTos->z = "ok";
pTos->n = 3;
pTos->flags = MEM_Str | MEM_Static;
}else{
pTos->z = z;
pTos->n = strlen(z) + 1;
pTos->flags = MEM_Str | MEM_Dyn;
}
sqliteFree(aRoot);
break;
}
/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
Keylist *pKeylist;
assert( pTos>=p->aStack );
pKeylist = p->pList;
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
if( pKeylist==0 ) goto no_mem;
pKeylist->nKey = 1000;
pKeylist->nRead = 0;
pKeylist->nUsed = 0;
pKeylist->pNext = p->pList;
p->pList = pKeylist;
}
Integerify(pTos);
pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
Release(pTos);
pTos--;
break;
}
/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.
*/
case OP_ListRewind: {
/* What this opcode codes, really, is reverse the order of the
** linked list of Keylist structures so that they are read out
** in the same order that they were read in. */
Keylist *pRev, *pTop;
pRev = 0;
while( p->pList ){
pTop = p->pList;
p->pList = pTop->pNext;
pTop->pNext = pRev;
pRev = pTop;
}
p->pList = pRev;
break;
}
/* Opcode: ListRead * P2 *
**
** Attempt to read an integer from the temporary storage buffer
** and push it onto the stack. If the storage buffer is empty,
** push nothing but instead jump to P2.
*/
case OP_ListRead: {
Keylist *pKeylist;
CHECK_FOR_INTERRUPT;
pKeylist = p->pList;
if( pKeylist!=0 ){
assert( pKeylist->nRead>=0 );
assert( pKeylist->nRead<pKeylist->nUsed );
assert( pKeylist->nRead<pKeylist->nKey );
pTos++;
pTos->i = pKeylist->aKey[pKeylist->nRead++];
pTos->flags = MEM_Int;
if( pKeylist->nRead>=pKeylist->nUsed ){
p->pList = pKeylist->pNext;
sqliteFree(pKeylist);
}
}else{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: ListReset * * *
**
** Reset the temporary storage buffer so that it holds nothing.
*/
case OP_ListReset: {
if( p->pList ){
sqliteVdbeKeylistFree(p->pList);
p->pList = 0;
}
break;
}
/* Opcode: ListPush * * *
**
** Save the current Vdbe list such that it can be restored by a ListPop
** opcode. The list is empty after this is executed.
*/
case OP_ListPush: {
p->keylistStackDepth++;
assert(p->keylistStackDepth > 0);
p->keylistStack = sqliteRealloc(p->keylistStack,
sizeof(Keylist *) * p->keylistStackDepth);
if( p->keylistStack==0 ) goto no_mem;
p->keylistStack[p->keylistStackDepth - 1] = p->pList;
p->pList = 0;
break;
}
/* Opcode: ListPop * * *
**
** Restore the Vdbe list to the state it was in when ListPush was last
** executed.
*/
case OP_ListPop: {
assert(p->keylistStackDepth > 0);
p->keylistStackDepth--;
sqliteVdbeKeylistFree(p->pList);
p->pList = p->keylistStack[p->keylistStackDepth];
p->keylistStack[p->keylistStackDepth] = 0;
if( p->keylistStackDepth == 0 ){
sqliteFree(p->keylistStack);
p->keylistStack = 0;
}
break;
}
/* Opcode: ContextPush * * *
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
p->contextStackDepth++;
assert(p->contextStackDepth > 0);
p->contextStack = sqliteRealloc(p->contextStack,
sizeof(Context) * p->contextStackDepth);
if( p->contextStack==0 ) goto no_mem;
p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
break;
}
/* Opcode: ContextPop * * *
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
assert(p->contextStackDepth > 0);
p->contextStackDepth--;
p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
if( p->contextStackDepth == 0 ){
sqliteFree(p->contextStack);
p->contextStack = 0;
}
break;
}
/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data. Pop both from the stack
** and put them on the sorter. The key and data should have been
** made using SortMakeKey and SortMakeRec, respectively.
*/
case OP_SortPut: {
Mem *pNos = &pTos[-1];
Sorter *pSorter;
assert( pNos>=p->aStack );
if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
pSorter = sqliteMallocRaw( sizeof(Sorter) );
if( pSorter==0 ) goto no_mem;
pSorter->pNext = p->pSort;
p->pSort = pSorter;
assert( pTos->flags & MEM_Dyn );
pSorter->nKey = pTos->n;
pSorter->zKey = pTos->z;
assert( pNos->flags & MEM_Dyn );
pSorter->nData = pNos->n;
pSorter->pData = pNos->z;
pTos -= 2;
break;
}
/* Opcode: SortMakeRec P1 * *
**
** The top P1 elements are the arguments to a callback. Form these
** elements into a single data entry that can be stored on a sorter
** using SortPut and later fed to a callback using SortCallback.
*/
case OP_SortMakeRec: {
char *z;
char **azArg;
int nByte;
int nField;
int i;
Mem *pRec;
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(i=0; i<nField; i++, pRec++){
if( (pRec->flags & MEM_Null)==0 ){
Stringify(pRec);
nByte += pRec->n;
}
}
nByte += sizeof(char*)*(nField+1);
azArg = sqliteMallocRaw( nByte );
if( azArg==0 ) goto no_mem;
z = (char*)&azArg[nField+1];
for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
azArg[i] = 0;
}else{
azArg[i] = z;
memcpy(z, pRec->z, pRec->n);
z += pRec->n;
}
}
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
pTos->z = (char*)azArg;
pTos->flags = MEM_Str | MEM_Dyn;
break;
}
/* Opcode: SortMakeKey * * P3
**
** Convert the top few entries of the stack into a sort key. The
** number of stack entries consumed is the number of characters in
** the string P3. One character from P3 is prepended to each entry.
** The first character of P3 is prepended to the element lowest in
** the stack and the last character of P3 is prepended to the top of
** the stack. All stack entries are separated by a \000 character
** in the result. The whole key is terminated by two \000 characters
** in a row.
**
** "N" is substituted in place of the P3 character for NULL values.
**
** See also the MakeKey and MakeIdxKey opcodes.
*/
case OP_SortMakeKey: {
char *zNewKey;
int nByte;
int nField;
int i, j, k;
Mem *pRec;
nField = strlen(pOp->p3);
pRec = &pTos[1-nField];
nByte = 1;
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
nByte += 2;
}else{
Stringify(pRec);
nByte += pRec->n+2;
}
}
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
j = 0;
k = 0;
for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
zNewKey[j++] = 'N';
zNewKey[j++] = 0;
k++;
}else{
zNewKey[j++] = pOp->p3[k++];
memcpy(&zNewKey[j], pRec->z, pRec->n-1);
j += pRec->n-1;
zNewKey[j++] = 0;
}
}
zNewKey[j] = 0;
assert( j<nByte );
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
pTos->flags = MEM_Str|MEM_Dyn;
pTos->z = zNewKey;
break;
}
/* Opcode: Sort * * *
**
** Sort all elements on the sorter. The algorithm is a
** mergesort.
*/
case OP_Sort: {
int i;
Sorter *pElem;
Sorter *apSorter[NSORT];
for(i=0; i<NSORT; i++){
apSorter[i] = 0;
}
while( p->pSort ){
pElem = p->pSort;
p->pSort = pElem->pNext;
pElem->pNext = 0;
for(i=0; i<NSORT-1; i++){
if( apSorter[i]==0 ){
apSorter[i] = pElem;
break;
}else{
pElem = Merge(apSorter[i], pElem);
apSorter[i] = 0;
}
}
if( i>=NSORT-1 ){
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
}
}
pElem = 0;
for(i=0; i<NSORT; i++){
pElem = Merge(apSorter[i], pElem);
}
p->pSort = pElem;
break;
}
/* Opcode: SortNext * P2 *
**
** Push the data for the topmost element in the sorter onto the
** stack, then remove the element from the sorter. If the sorter
** is empty, push nothing on the stack and instead jump immediately
** to instruction P2.
*/
case OP_SortNext: {
Sorter *pSorter = p->pSort;
CHECK_FOR_INTERRUPT;
if( pSorter!=0 ){
p->pSort = pSorter->pNext;
pTos++;
pTos->z = pSorter->pData;
pTos->n = pSorter->nData;
pTos->flags = MEM_Str|MEM_Dyn;
sqliteFree(pSorter->zKey);
sqliteFree(pSorter);
}else{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: SortCallback P1 * *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction. Pop this record from the stack and invoke the
** callback on it.
*/
case OP_SortCallback: {
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
p->nCallback++;
p->pc = pc+1;
p->azResColumn = (char**)pTos->z;
assert( p->nResColumn==pOp->p1 );
p->popStack = 1;
p->pTos = pTos;
return SQLITE_ROW;
}
/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
sqliteVdbeSorterReset(p);
break;
}
/* Opcode: FileOpen * * P3
**
** Open the file named by P3 for reading using the FileRead opcode.
** If P3 is "stdin" then open standard input for reading.
*/
case OP_FileOpen: {
assert( pOp->p3!=0 );
if( p->pFile ){
if( p->pFile!=stdin ) fclose(p->pFile);
p->pFile = 0;
}
if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
p->pFile = stdin;
}else{
p->pFile = fopen(pOp->p3, "r");
}
if( p->pFile==0 ){
sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: FileRead P1 P2 P3
**
** Read a single line of input from the open file (the file opened using
** FileOpen). If we reach end-of-file, jump immediately to P2. If
** we are able to get another line, split the line apart using P3 as
** a delimiter. There should be P1 fields. If the input line contains
** more than P1 fields, ignore the excess. If the input line contains
** fewer than P1 fields, assume the remaining fields contain NULLs.
**
** Input ends if a line consists of just "\.". A field containing only
** "\N" is a null field. The backslash \ character can be used be used
** to escape newlines or the delimiter.
*/
case OP_FileRead: {
int n, eol, nField, i, c, nDelim;
char *zDelim, *z;
CHECK_FOR_INTERRUPT;
if( p->pFile==0 ) goto fileread_jump;
nField = pOp->p1;
if( nField<=0 ) goto fileread_jump;
if( nField!=p->nField || p->azField==0 ){
char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
if( azField==0 ){ goto no_mem; }
p->azField = azField;
p->nField = nField;
}
n = 0;
eol = 0;
while( eol==0 ){
if( p->zLine==0 || n+200>p->nLineAlloc ){
char *zLine;
p->nLineAlloc = p->nLineAlloc*2 + 300;
zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
if( zLine==0 ){
p->nLineAlloc = 0;
sqliteFree(p->zLine);
p->zLine = 0;
goto no_mem;
}
p->zLine = zLine;
}
if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
eol = 1;
p->zLine[n] = 0;
}else{
int c;
while( (c = p->zLine[n])!=0 ){
if( c=='\\' ){
if( p->zLine[n+1]==0 ) break;
n += 2;
}else if( c=='\n' ){
p->zLine[n] = 0;
eol = 1;
break;
}else{
n++;
}
}
}
}
if( n==0 ) goto fileread_jump;
z = p->zLine;
if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
goto fileread_jump;
}
zDelim = pOp->p3;
if( zDelim==0 ) zDelim = "\t";
c = zDelim[0];
nDelim = strlen(zDelim);
p->azField[0] = z;
for(i=1; *z!=0 && i<=nField; i++){
int from, to;
from = to = 0;
if( z[0]=='\\' && z[1]=='N'
&& (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
if( i<=nField ) p->azField[i-1] = 0;
z += 2 + nDelim;
if( i<nField ) p->azField[i] = z;
continue;
}
while( z[from] ){
if( z[from]=='\\' && z[from+1]!=0 ){
int tx = z[from+1];
switch( tx ){
case 'b': tx = '\b'; break;
case 'f': tx = '\f'; break;
case 'n': tx = '\n'; break;
case 'r': tx = '\r'; break;
case 't': tx = '\t'; break;
case 'v': tx = '\v'; break;
default: break;
}
z[to++] = tx;
from += 2;
continue;
}
if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
z[to++] = z[from++];
}
if( z[from] ){
z[to] = 0;
z += from + nDelim;
if( i<nField ) p->azField[i] = z;
}else{
z[to] = 0;
z = "";
}
}
while( i<nField ){
p->azField[i++] = 0;
}
break;
/* If we reach end-of-file, or if anything goes wrong, jump here.
** This code will cause a jump to P2 */
fileread_jump:
pc = pOp->p2 - 1;
break;
}
/* Opcode: FileColumn P1 * *
**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {
int i = pOp->p1;
char *z;
assert( i>=0 && i<p->nField );
if( p->azField ){
z = p->azField[i];
}else{
z = 0;
}
pTos++;
if( z ){
pTos->n = strlen(z) + 1;
pTos->z = z;
pTos->flags = MEM_Str | MEM_Ephem;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1. If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {
int i = pOp->p1;
Mem *pMem;
assert( pTos>=p->aStack );
if( i>=p->nMem ){
int nOld = p->nMem;
Mem *aMem;
p->nMem = i + 5;
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
if( aMem==0 ) goto no_mem;
if( aMem!=p->aMem ){
int j;
for(j=0; j<nOld; j++){
if( aMem[j].flags & MEM_Short ){
aMem[j].z = aMem[j].zShort;
}
}
}
p->aMem = aMem;
if( nOld<p->nMem ){
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
}
}
Deephemeralize(pTos);
pMem = &p->aMem[i];
Release(pMem);
*pMem = *pTos;
if( pMem->flags & MEM_Dyn ){
if( pOp->p2 ){
pTos->flags = MEM_Null;
}else{
pMem->z = sqliteMallocRaw( pMem->n );
if( pMem->z==0 ) goto no_mem;
memcpy(pMem->z, pTos->z, pMem->n);
}
}else if( pMem->flags & MEM_Short ){
pMem->z = pMem->zShort;
}
if( pOp->p2 ){
Release(pTos);
pTos--;
}
break;
}
/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location. If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
int i = pOp->p1;
assert( i>=0 && i<p->nMem );
pTos++;
memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
if( pTos->flags & MEM_Str ){
pTos->flags |= MEM_Ephem;
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
}
break;
}
/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P1 by 1. If P2 is not zero
** and the result after the increment is greater than zero, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
int i = pOp->p1;
Mem *pMem;
assert( i>=0 && i<p->nMem );
pMem = &p->aMem[i];
assert( pMem->flags==MEM_Int );
pMem->i++;
if( pOp->p2>0 && pMem->i>0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: AggReset * P2 *
**
** Reset the aggregator so that it no longer contains any data.
** Future aggregator elements will contain P2 values each.
*/
case OP_AggReset: {
sqliteVdbeAggReset(&p->agg);
p->agg.nMem = pOp->p2;
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
if( p->agg.apFunc==0 ) goto no_mem;
break;
}
/* Opcode: AggInit * P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {
int i = pOp->p2;
assert( i>=0 && i<p->agg.nMem );
p->agg.apFunc[i] = (FuncDef*)pOp->p3;
break;
}
/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate. The
** function has P2 arguments. P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left. The integer is popped from the stack.
*/
case OP_AggFunc: {
int n = pOp->p2;
int i;
Mem *pMem, *pRec;
char **azArgv = p->zArgv;
sqlite_func ctx;
assert( n>=0 );
assert( pTos->flags==MEM_Int );
pRec = &pTos[-n];
assert( pRec>=p->aStack );
for(i=0; i<n; i++, pRec++){
if( pRec->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pRec);
azArgv[i] = pRec->z;
}
}
i = pTos->i;
assert( i>=0 && i<p->agg.nMem );
ctx.pFunc = (FuncDef*)pOp->p3;
pMem = &p->agg.pCurrent->aMem[i];
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
ctx.pAgg = pMem->z;
ctx.cnt = ++pMem->i;
ctx.isError = 0;
ctx.isStep = 1;
(ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
pMem->z = ctx.pAgg;
pMem->flags = MEM_AggCtx;
popStack(&pTos, n+1);
if( ctx.isError ){
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: AggFocus * P2 *
**
** Pop the top of the stack and use that as an aggregator key. If
** an aggregator with that same key already exists, then make the
** aggregator the current aggregator and jump to P2. If no aggregator
** with the given key exists, create one and make it current but
** do not jump.
**
** The order of aggregator opcodes is important. The order is:
** AggReset AggFocus AggNext. In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations. You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {
AggElem *pElem;
char *zKey;
int nKey;
assert( pTos>=p->aStack );
Stringify(pTos);
zKey = pTos->z;
nKey = pTos->n;
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
if( pElem ){
p->agg.pCurrent = pElem;
pc = pOp->p2 - 1;
}else{
AggInsert(&p->agg, zKey, nKey);
if( sqlite_malloc_failed ) goto no_mem;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate. String values are duplicated into new memory.
*/
case OP_AggSet: {
AggElem *pFocus = AggInFocus(p->agg);
Mem *pMem;
int i = pOp->p2;
assert( pTos>=p->aStack );
if( pFocus==0 ) goto no_mem;
assert( i>=0 && i<p->agg.nMem );
Deephemeralize(pTos);
pMem = &pFocus->aMem[i];
Release(pMem);
*pMem = *pTos;
if( pMem->flags & MEM_Dyn ){
pTos->flags = MEM_Null;
}else if( pMem->flags & MEM_Short ){
pMem->z = pMem->zShort;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate. Strings are not duplicated so
** string values will be ephemeral.
*/
case OP_AggGet: {
AggElem *pFocus = AggInFocus(p->agg);
Mem *pMem;
int i = pOp->p2;
if( pFocus==0 ) goto no_mem;
assert( i>=0 && i<p->agg.nMem );
pTos++;
pMem = &pFocus->aMem[i];
*pTos = *pMem;
if( pTos->flags & MEM_Str ){
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
pTos->flags |= MEM_Ephem;
}
break;
}
/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate. The prior
** aggregate is deleted. If all aggregate values have been consumed,
** jump to P2.
**
** The order of aggregator opcodes is important. The order is:
** AggReset AggFocus AggNext. In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations. You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {
CHECK_FOR_INTERRUPT;
if( p->agg.pSearch==0 ){
p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
}else{
p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
}
if( p->agg.pSearch==0 ){
pc = pOp->p2 - 1;
} else {
int i;
sqlite_func ctx;
Mem *aMem;
p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
aMem = p->agg.pCurrent->aMem;
for(i=0; i<p->agg.nMem; i++){
int freeCtx;
if( p->agg.apFunc[i]==0 ) continue;
if( p->agg.apFunc[i]->xFinalize==0 ) continue;
ctx.s.flags = MEM_Null;
ctx.s.z = aMem[i].zShort;
ctx.pAgg = (void*)aMem[i].z;
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
ctx.cnt = aMem[i].i;
ctx.isStep = 0;
ctx.pFunc = p->agg.apFunc[i];
(*p->agg.apFunc[i]->xFinalize)(&ctx);
if( freeCtx ){
sqliteFree( aMem[i].z );
}
aMem[i] = ctx.s;
if( aMem[i].flags & MEM_Short ){
aMem[i].z = aMem[i].zShort;
}
}
}
break;
}
/* Opcode: SetInsert P1 * P3
**
** If Set P1 does not exist then create it. Then insert value
** P3 into that set. If P3 is NULL, then insert the top of the
** stack into the set.
*/
case OP_SetInsert: {
int i = pOp->p1;
if( p->nSet<=i ){
int k;
Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
if( aSet==0 ) goto no_mem;
p->aSet = aSet;
for(k=p->nSet; k<=i; k++){
sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
}
p->nSet = i+1;
}
if( pOp->p3 ){
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
}else{
assert( pTos>=p->aStack );
Stringify(pTos);
sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
Release(pTos);
pTos--;
}
if( sqlite_malloc_failed ) goto no_mem;
break;
}
/* Opcode: SetFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped exists in set P1,
** then jump to P2. Otherwise fall through.
*/
case OP_SetFound: {
int i = pOp->p1;
assert( pTos>=p->aStack );
Stringify(pTos);
if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
pc = pOp->p2 - 1;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: SetNotFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped does not exists in
** set P1, then jump to P2. Otherwise fall through.
*/
case OP_SetNotFound: {
int i = pOp->p1;
assert( pTos>=p->aStack );
Stringify(pTos);
if( i<0 || i>=p->nSet ||
sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
pc = pOp->p2 - 1;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: SetFirst P1 P2 *
**
** Read the first element from set P1 and push it onto the stack. If the
** set is empty, push nothing and jump immediately to P2. This opcode is
** used in combination with OP_SetNext to loop over all elements of a set.
*/
/* Opcode: SetNext P1 P2 *
**
** Read the next element from set P1 and push it onto the stack. If there
** are no more elements in the set, do not do the push and fall through.
** Otherwise, jump to P2 after pushing the next set element.
*/
case OP_SetFirst:
case OP_SetNext: {
Set *pSet;
CHECK_FOR_INTERRUPT;
if( pOp->p1<0 || pOp->p1>=p->nSet ){
if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
break;
}
pSet = &p->aSet[pOp->p1];
if( pOp->opcode==OP_SetFirst ){
pSet->prev = sqliteHashFirst(&pSet->hash);
if( pSet->prev==0 ){
pc = pOp->p2 - 1;
break;
}
}else{
assert( pSet->prev );
pSet->prev = sqliteHashNext(pSet->prev);
if( pSet->prev==0 ){
break;
}else{
pc = pOp->p2 - 1;
}
}
pTos++;
pTos->z = sqliteHashKey(pSet->prev);
pTos->n = sqliteHashKeysize(pSet->prev);
pTos->flags = MEM_Str | MEM_Ephem;
break;
}
/* Opcode: Vacuum * * *
**
** Vacuum the entire database. This opcode will cause other virtual
** machines to be created and run. It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
rc = sqliteRunVacuum(&p->zErrMsg, db);
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
break;
}
/* An other opcode is illegal...
*/
default: {
sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
rc = SQLITE_INTERNAL;
break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
** readability. From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
}
#ifdef VDBE_PROFILE
{
long long elapse = hwtime() - start;
pOp->cycles += elapse;
pOp->cnt++;
#if 0
fprintf(stdout, "%10lld ", elapse);
sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
/* Sanity checking on the top element of the stack */
if( pTos>=p->aStack ){
assert( pTos->flags!=0 ); /* Must define some type */
if( pTos->flags & MEM_Str ){
int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
assert( x!=0 ); /* Strings must define a string subtype */
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
assert( pTos->z!=0 ); /* Strings must have a value */
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
}else{
/* Cannot define a string subtype for non-string objects */
assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
}
/* MEM_Null excludes all other types */
assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
}
if( pc<-1 || pc>=p->nOp ){
sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
rc = SQLITE_INTERNAL;
}
if( p->trace && pTos>=p->aStack ){
int i;
fprintf(p->trace, "Stack:");
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
if( pTos[i].flags & MEM_Null ){
fprintf(p->trace, " NULL");
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
fprintf(p->trace, " si:%d", pTos[i].i);
}else if( pTos[i].flags & MEM_Int ){
fprintf(p->trace, " i:%d", pTos[i].i);
}else if( pTos[i].flags & MEM_Real ){
fprintf(p->trace, " r:%g", pTos[i].r);
}else if( pTos[i].flags & MEM_Str ){
int j, k;
char zBuf[100];
zBuf[0] = ' ';
if( pTos[i].flags & MEM_Dyn ){
zBuf[1] = 'z';
assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
}else if( pTos[i].flags & MEM_Static ){
zBuf[1] = 't';
assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
}else if( pTos[i].flags & MEM_Ephem ){
zBuf[1] = 'e';
assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
}else{
zBuf[1] = 's';
}
zBuf[2] = '[';
k = 3;
for(j=0; j<20 && j<pTos[i].n; j++){
int c = pTos[i].z[j];
if( c==0 && j==pTos[i].n-1 ) break;
if( isprint(c) && !isspace(c) ){
zBuf[k++] = c;
}else{
zBuf[k++] = '.';
}
}
zBuf[k++] = ']';
zBuf[k++] = 0;
fprintf(p->trace, "%s", zBuf);
}else{
fprintf(p->trace, " ???");
}
}
if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
fprintf(p->trace,"\n");
}
#endif
} /* The end of the for(;;) loop the loops through opcodes */
/* If we reach this point, it means that execution is finished.
*/
vdbe_halt:
if( rc ){
p->rc = rc;
rc = SQLITE_ERROR;
}else{
rc = SQLITE_DONE;
}
p->magic = VDBE_MAGIC_HALT;
p->pTos = pTos;
return rc;
/* Jump to here if a malloc() fails. It's hard to get a malloc()
** to fail on a modern VM computer, so this code is untested.
*/
no_mem:
sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
rc = SQLITE_NOMEM;
goto vdbe_halt;
/* Jump to here for an SQLITE_MISUSE error.
*/
abort_due_to_misuse:
rc = SQLITE_MISUSE;
/* Fall thru into abort_due_to_error */
/* Jump to here for any other kind of fatal error. The "rc" variable
** should hold the error number.
*/
abort_due_to_error:
if( p->zErrMsg==0 ){
if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
}
goto vdbe_halt;
/* Jump to here if the sqlite_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert( db->flags & SQLITE_Interrupt );
db->flags &= ~SQLITE_Interrupt;
if( db->magic!=SQLITE_MAGIC_BUSY ){
rc = SQLITE_MISUSE;
}else{
rc = SQLITE_INTERRUPT;
}
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
goto vdbe_halt;
}
|